福建省宁德市中考数学试卷(解析版)

合集下载

【免费下载】福建省宁德市中考数学试卷解析版

【免费下载】福建省宁德市中考数学试卷解析版

A.
B.
C.
考点:简单几何体的三视图. 分析:主视图是分别从物体正面看所得到的图形. 解答:解:从几何体的正面看所得到的形状是矩形,中间有一道竖直的虚线, 故选:D. 点评:本ห้องสมุดไป่ตู้考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. 9.(2013 宁德)如图所示的两圆位置关系是( )
A.黑(3,3),白(3,1) B.黑(3,1),白(3,3) C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)
考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案. 分析:首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可. 解答:解:A.当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错 误; B.当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确; C.当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;
A.40° B.60° C.80° D.100° 考点:相似三角形的性质. 分析:根据相似三角形的性质:对应角相等. 解答:解:∵△ABC∽CAED, ∴∠C=∠ADE=80°, 故选 C. 点评:本题考查了相似三角形的性质,题目比较简单. 8.(2013 宁德)如图所示的正三棱柱的主视图是( )
2013 年福建省宁德市中考数学试卷 一.选择题(本大题共 10 小题,每小题 4 分,满分 40 分,每小题只有一个正确答案)
1.(2013 宁德)﹣5 的绝对值是( )
A.5 B.﹣5 C. D.﹣
考点:绝对值. 分析:根据绝对值的性质求解.
解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选 A. 点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0 的绝对值是 0. 2.(2013 宁德)计算 a3a2 的结果是( ) A.2a5 B.a5 C.a6 D.a9 考点:同底数幂的乘法. 分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即可求得答案. 解答:解:a3a2=a5. 故选 B. 点评:此题考查了同底数幂的乘法.此题比较简单,注意掌握指数的变化是解此题的关键. 3.(2013 宁德)根据市委建设“六新大宁德”的目标,到 2017 年全市公路通车里程增加到 10500 千米,将 10500 用科学计数法表示为( ) A.10.5×103 B.0.105×105 C.1.05×104 D.1.05×105 考点:科学记数法—表示较大的数. 分析:科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变 成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数; 当原数的绝对值<1 时,n 是负数. 解答:解:将 10500 用科学记数法表示为:1.05×104. 故选:C. 点评:此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整 数,表示时关键要正确确定 a 的值以及 n 的值. 4.(2013 宁德)为了解某射击运动员的射击成绩,从一次训练中随机抽取了了该运动员的 10 次射击成绩, 纪录如下;8,9,8,8,10,9,10,8,9,10.这组数据的极差是( ) A.9 B.8.9 C.8 D.2 考点:极差. 分析:根据极差的定义即可求得答案. 解答:解:这组数据的最大数是 10,最小数是 8,

【真题】宁德市中考数学试题含答案解析(Word版)

【真题】宁德市中考数学试题含答案解析(Word版)

福建省宁德市中考数学试卷(解析版)一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂〕1.(4分)(•宁德)﹣3的绝对值是()A.3 B.C.D.﹣3【考点】15:绝对值.【分析】根据一个负数的绝对值是它的相反数即可求解.【解答】解:﹣3的绝对值是3.故选A.【点评】本题考查了绝对值,如果用字母a表示有理数,则数a 的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.(4分)(•宁德)已知一个几何体的三种视图如图所示,则该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱【考点】U3:由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆锥.故选C.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.3.(4分)(•宁德)如图,点M在线段AB上,则下列条件不能确定M是AB中点的是()A.BM=AB B.AM+BM=AB C.AM=BM D.AB=2AM【考点】ID:两点间的距离.【分析】直接利用两点之间的距离定义结合线段中点的性质分别分析得出答案.【解答】解:A、当BM=AB时,则M为AB的中点,故此选项错误;B、AM+BM=AB时,无法确定M为AB的中点,符合题意;C、当AM=BM时,则M为AB的中点,故此选项错误;D、当AB=2AM时,则M为AB的中点,故此选项错误;故选:B.【点评】此题主要考查了两点之间,正确把握线段中点的性质是解题关键.4.(4分)(•宁德)在△ABC中,AB=5,AC=8,则BC长不可能是()A.4 B.8 C.10 D.13【考点】K6:三角形三边关系.【专题】11 :计算题.【分析】根据三角形三边的关系得到3<BC<13,然后对各选项进行判断.【解答】解:∵AB=5,AC=8,∴3<BC<13.故选D.【点评】本题考查了三角形三边的关系:三角形任意两边之和大于第三边.5.(4分)(•宁德)下列计算正确的是()A.﹣5+2=﹣7 B.6÷(﹣2)=﹣3 C.(﹣1)=1 D.﹣20=1【考点】1G:有理数的混合运算;6E:零指数幂.【专题】11 :计算题;511:实数.【分析】各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣3,不符合题意;B、原式=﹣3,符合题意;C、原式=﹣1,不符合题意;D、原式=﹣1,不符合题意,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.(4分)(•宁德)如图所示的分式化简,对于所列的每一步运算,依据错误的是()A.①:同分母分式的加减法法则B.②:合并同类项法则C.③:提公因式法 D.④:等式的基本性质【考点】6B:分式的加减法.【分析】根据分式的加减法法则计算即可.【解答】解:①:同分母分式的加减法法则,正确;②:合并同类项法则,正确;③:提公因式法,正确,④:分式的基本性质,故错误;故选D.【点评】此题考查了分式的加减,熟练掌握法则及运算律是解本题的关键.7.(4分)(•宁德)某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为4500元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变【考点】W7:方差;W1:算术平均数.【分析】根据平均数、方差的定义即可解决问题.【解答】解:由题意原来6位员工的月工资平均数为4500元,因为新员工的工资为4500元,所以现在7位员工工资的平均数是4500元,由方差公式可知,7位员工工资的方差变小,故选B.【点评】本题考查方差的定义、平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.(4分)(•宁德)如图,直线ι是一次函数y=kx+b的图象,若点A(3,m)在直线ι上,则m的值是()A.﹣5 B.C.D.7【考点】F8:一次函数图象上点的坐标特征.【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.9.(4分)(•宁德)函数y=x3﹣3x的图象如图所示,则以下关于该函数图象及其性质的描述正确的是()A.函数最大值为2 B.函数图象最低点为(1,﹣2)C.函数图象关于原点对称D.函数图象关于y轴对称【考点】E6:函数的图象;P5:关于x轴、y轴对称的点的坐标;R6:关于原点对称的点的坐标.【专题】532:函数及其图像.【分析】观察函数图象,得出正确的表述即可.【解答】解:观察图形得:函数没有最大值,没有最低点,函数图象关于原点对称,故选C【点评】此题考查了函数的图象,关于x轴、y轴对称的点的坐标,以及关于原点对称的点的坐标,认真观察图形是解本题的关键.10.(4分)(•宁德)如图,在△ABC中,AB=AC,点D,E分别在边BC 和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠CDE=∠BAD D.∠AED=2∠ECD【考点】KH:等腰三角形的性质.【分析】由三角形的外角性质、等腰三角形的性质得出选项A、B、C正确,选项D错误,即可得出答案.【解答】解:∵∠ADB是△ACD的外角,∴∠ADB=∠ACB+∠CAD,选项A正确;∵AD=AE,∴∠ADE=∠AED,选项B正确;∵AB=AC,∴∠B=∠C,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD,∠AED=∠CDE+∠C,∴∠CDE+∠C+∠CDE=∠B+∠BAD,∴∠CDE=∠BAD,选项C正确;∵∠AED=∠ECD+∠CDE,∠ECD≠∠CDE,∴选项D错误;故选:D.【点评】本题考查了等腰三角形的性质、三角形的外角性质;熟练掌握等腰三角形的性质和三角形的外角性质是解决问题的关键.二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.(4分)(•宁德)9月26日,我国自主设计建造的世界最大球面射电望远镜落成启用.该望远镜理论上能接收到13 700 000 000光年以外的电磁信号.数据13 700 000 000光年用科学记数法表示为 1.37×1010光年.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:13 700 000 000=1.37×1010,故答案为:1.37×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(•宁德)一元二次方程x(x+3)=0的根是x=0或﹣3.【考点】A8:解一元二次方程﹣因式分解法.【专题】11 :计算题.【分析】利用分解因式法即可求解.【解答】解:x(x+3)=0,∴x=0或x=﹣3.故答案为:x=0或x=﹣3.【点评】此题主要考查了利用因式分解的方法解一元二次方程,解题的关键是熟练进行分解因式.13.(4分)(•宁德)若矩形的面积为a2+ab,长为a+b,则宽为a.【考点】4H:整式的除法.【分析】根据多项式除以多项式的运算法则计算即可.【解答】解:矩形的宽=(a2+ab)÷(a+b)=a,故答案为:a.【点评】本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.14.(4分)(•宁德)甲、乙两位同学参加物理实验考试,若每人只能从A、B、C、D四个实验中随机抽取一个,则甲、乙两位同学抽到同一实验的概率为.【考点】X6:列表法与树状图法.【专题】11 :计算题;543:概率及其应用.【分析】列表得出所有等可能的情况数,找出甲乙两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:列表如下:A B C DA AA BA CA DAB AB BB CB DBC AC BC CC DCD AD BD CD DD所有等可能的情况有16种,其中甲乙两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,则P==,故答案为:【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.15.(4分)(•宁德)将边长为2的正六边形ABCDEF绕中心O顺时针旋转α度与原图形重合,当α最小时,点A运动的路径长为.【考点】O4:轨迹;R3:旋转对称图形.【分析】根据题意α最小值是60°,然后根据弧长公式即可求得.【解答】解:∵正六边形ABCDEF绕中心O顺时针旋转α度与原图形重合,α最小值是60°,∴点A运动的路径长==.故答案为.【点评】本题考查了旋转对称图形,主要考查了学生的理解能力和计算能力,题目是一道比较好的题目,解此题的关键是求出α的最小值.16.(4分)(•宁德)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC 向左平移n个单位,使点C落在该反比例函数图象上,则n的值为2.【考点】G6:反比例函数图象上点的坐标特征;L8:菱形的性质;Q3:坐标与图形变化﹣平移.【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数y=的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.【解答】解:∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数y=的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴y=,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为:2.【点评】本题考查了菱形的性质,平移的性质,用待定系数法求反比例函数的解析式等知识点,能求出C的坐标是解此题的关键.三、解答题(本大题有9小题,共86分.请在答题卞的相应位置作答)17.(8分)(•宁德)化简并求值:x(x﹣2)+(x+1)2,其中x=﹣2.【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题;512:整式.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣2x+x2+2x+1=2x2+1,当x=﹣2时,原式=8+1=9.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(•宁德)已知:不等式≤2+x(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是否是该不等式的解.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)根据不等式的解的定义求解可得.【解答】解:(1)2﹣x≤3(2+x),2﹣x≤6+3x,﹣4x≤4,x≥﹣1,解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥﹣1,而2>﹣1,∴a是不等式的解.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.(8分)(•宁德)如图,E,F为平行四边形ABCD的对角线BD上的两点,AE ⊥BD于点E,CF⊥BD于点F.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,即可证得∠ABE=∠CDF,则可证得△ABE≌△CDF,继而证得结论.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在▱ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.20.(8分)(•宁德)小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.【考点】9A:二元一次方程组的应用.【专题】12 :应用题.【分析】被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意列出方程组,求出方程组的解即可得到结果.【解答】解:被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意得:,解得:,则“五一”前同样的电视每台2500元,空调每台3000元.【点评】此题考查了二元一次方程组的应用,弄清题中的等量关系是解本题的关键.21.(8分)(•宁德)某初中学校组织200位同学参加义务植树活动,每人植树的棵数在5至10之间.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况78910人数36156频率0.10.20.50.2表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)每人植树情况678910人数363116频率0.10.20.10.40.2根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是9棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是11,正确的数据应该是12(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动200位同学一共植树多少棵?【考点】W4:中位数;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)乙组调查了30人,根据人数和下面的频率可得错误数据为11,应为12;(3)根据样本要具有代表性可得乙同学抽取的样本比较有代表性,再利用样本估计总体的方法计算即可.【解答】解:(1)表1中30位同学植树情况的中位数是9棵,故答案为:9;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是11,正确的数据应该是12;(3)乙同学所抽取的样本能更好反映此次植树活动情况,(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.【点评】此题主要考查了抽样调查,以及中位数,关键是掌握中位数定义,掌握抽样调查抽取的样本要具有代表性.22.(10分)(•宁德)如图,在边长为1的正方形组成的5×8方格中,△ABC 的顶点都在格点上.(1)在给定的方格中,以直线AB为对称轴,画出△ABC的轴对称图形△ABD.(2)求sin∠ABD的值.【考点】P7:作图﹣轴对称变换;T7:解直角三角形.【分析】(1)根据格点的特点作出点C关于直线AB的对称点D,连接AD,BD 即可;(2)根据格点的特点可知∠DBC=90°,再由轴对称的性质可知∠ABD=∠ABC=45°,据此可得出结论.【解答】解:(1)如图,△ABD即为所求;(2)由图可知,∠DBC=90°,∵点C与点D关于直线AB的对称,∴∠ABD=∠ABC=45°,∴sin∠ABD=sin45°=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.23.(10分)(•宁德)如图,BF为⊙O的直径,直线AC交⊙O于A,B两点,点D在⊙O上,BD平分∠OBC,DE⊥AC于点E.(1)求证:直线DE是⊙O的切线;(2)若BF=10,sin∠BDE=,求DE的长.【考点】ME:切线的判定与性质;T7:解直角三角形.【分析】(1)先连接OD,根据∠ODB=∠DBE,即可得到OD∥AC,再根据DE⊥AC,可得OD⊥DE,进而得出直线DE是⊙O的切线;(2)先连接DF,根据题意得到∠F=∠BDE,在Rt△BDF中,根据=sinF=sin∠BDE=,可得BD=2,在Rt△BDE中,根据sin∠BDE==,可得BE=2,最后依据勾股定理即可得到DE的长.【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4.【点评】本题主要考查了切线的判定以及解直角三角形的运用,解决问题的关键是作辅助线,构造等腰三角形以及直角三角形,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.24.(13分)(•宁德)在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形.(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.【考点】LO:四边形综合题.【分析】(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;(2)先根据垂直的作法即可画出图形,判断出△ADE≌△CBF,得出CF=1,再判断出△AOB∽△DEA,即可得出OB=,即可得出结论;(3)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.【解答】解:(1)如图1,过点D作DE⊥y轴于E,∴∠AED=∠AOB=90°,∴∠ADE+∠DAE=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAE+∠BAO=90°,∴∠ADE=∠BAO,在△ABO和△ADE中,,∴△ABO≌△ADE,∴DE=OA,AE=OB,∵A(0,3),B(m,0),D(n,4),∴OA=3,OB=m,OE=4,DE=n,∴n=3,∴OE=OA+AE=OA+OB=3+m=4,∴m=1;(2)画法:如图2,①过点A画AB的垂线l1,过点B画AB的垂线l2,②过点E(0,4),画y轴的垂线l3交l1于D,③过点D画直线l1的垂线交直线l2于点C,所以,四边形ABCD是所求作的图形,过点C作CF⊥x轴于F,∴∠CBF+∠BCF=90°,∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BAD=90°,∴∠ABO+∠CBF=90°,∴∠BCF=∠ABO,同理:∠ABO=∠DAE,∴∠BCF=∠DAE,在△ADE和△CBF中,,∴△ADE≌△CBF,∴DE=BF=n,AE=CF=1,易证△AOB∽△DEA,∴,∴,∴n=,∴OF=OB+BF=m+,∴C(m+,1);(3)如图3,由矩形的性质可知,BD=AC,∴BD最小时,AC最小,∵B(m,0),D(n,4),∴当BD⊥x轴时,BD有最小值4,此时,m=n,即:AC的最小值为4,连接BD,AC交于点M,过点A作AE⊥BD于E,由矩形的性质可知,DM=BM=BD=2,∵A(0,3),D(n,4),∴DE=1,∴EM=DM﹣DE=1,在Rt△AEM中,根据勾股定理得,AE=,∴m=,即:当m=时,矩形ABCD的对角线AC的长最短为4.【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO ≌△ADE ,解(2)的关键是△ADE ≌△CBF 和△AOB ∽△DEA ,解(3)的关键是作出辅助线,是一道中考常考题.25.(13分)(•宁德)如图,抛物线l :y=(x ﹣h )2﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),将抛物线ι在x 轴下方部分沿轴翻折,x 轴上方的图象保持不变,就组成了函数ƒ的图象. (1)若点A 的坐标为(1,0).①求抛物线l 的表达式,并直接写出当x 为何值时,函数ƒ的值y 随x 的增大而增大;②如图2,若过A 点的直线交函数ƒ的图象于另外两点P ,Q ,且S △ABQ =2S △ABP ,求点P 的坐标;(2)当2<x <3时,若函数f 的值随x 的增大而增大,直接写出h 的取值范围.【考点】HF :二次函数综合题.【分析】(1)①利用待定系数法求抛物线的解析式,由对称性求点B 的坐标,根据图象写出函数ƒ的值y 随x 的增大而增大(即呈上升趋势)的x 的取值; ②如图2,作辅助线,构建对称点F 和直角角三角形AQE ,根据S △ABQ =2S △ABP ,得QE=2PD ,证明△PAD ∽△QAE ,则,得AE=2AD ,设AD=a ,根据QE=2FD列方程可求得a 的值,并计算P 的坐标;(2)先令y=0求抛物线与x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h 的取值.【解答】解:(1)①把A (1,0)代入抛物线y=(x ﹣h )2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵点A在点B的左侧,∴h>0,∴h=3,∴抛物线l的表达式为:y=(x﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,由对称性得:DF=PD,∵S△ABQ =2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、二次函数的增减性问题、三角形相似的性质和判定,与方程相结合,找等量关系,第二问还运用了。

【真题】宁德市中考数学试题含答案解析(版)

【真题】宁德市中考数学试题含答案解析(版)

【真题】宁德市中考数学试题含答案解析(版)宁德市中考数学试题含答案解析一、选择题1. 某工厂用两种型号的机器加工产品,分别为A型和B型。

若只使用A型机器,加工一件产品需要12小时;若只使用B型机器,加工一件产品需要16小时;若同时使用A型和B型机器,加工一件产品需要8小时。

那么,在同样的条件下,同时使用2台A型机器和3台B型机器,加工3件产品需要多少小时?A. 33B. 24C. 22D. 15答案:B解析:设同时使用2台A型机器和3台B型机器加工3件产品需要的时间为t。

根据题意,可列出方程:2×12t + 16t = 3×8解得,t = 2因此,同时使用2台A型机器和3台B型机器,加工3件产品需要24小时。

2. 卡卡在超市购买了若干只眼睛彩球,其中3只是不同颜色的,其余的是红色的。

每只彩球塞在同样大小的盒子里。

已知卡卡用这些盒子可以摆出2个边长为6厘米的正方形,每个正方形上的盒子数量一样。

在这些彩球中,红色彩球的只数是蓝色彩球的2倍。

那么,红色彩球的总只数是多少?A. 36B. 30C. 18D. 12答案:A解析:设红色彩球的只数为x,则蓝色彩球的只数为2x。

根据题意,可列出方程:x + 2x + 3 = 12解得,x = 3因此,红色彩球的总只数为3 + 2×3 = 9 + 6 = 15.3. 小明投篮,在3分钟内射入2个篮球,这2个篮球的出手次序相同。

小明每次投篮有命中的可能性是80%,没有命中的可能性是20%。

在这次投篮中,最早投进的篮球与最后投进的篮球之间,连续的没有命中的次数正好是1次。

请问,在这3分钟内,小明一共进行了多少次投篮?A. 14B. 13C. 12D. 10答案:B解析:设连续没有命中的次数为n,则投进第一个篮球前有n次没有命中。

根据题意,可列出方程:0.2×0.8^n = 0.2^n–1×0.2×0.8化简得 4 = 5×0.8^n解得,n = 1因此,在这3分钟内,小明一共进行了2 + 2×1 + 1 = 5次投篮。

福建省宁德市2020年中考数学试卷(解析版)

福建省宁德市2020年中考数学试卷(解析版)

2020年福建省宁德市中考数学试卷、选择题(本大题共 10小题,每小题 4分,满分40分.每小题只有一个正确的选项,请用 2B铅笔在答题卡的相应位置填涂)3.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法 表不为( )A. 0.47 X 108B. 4.7 X107C. 47X 107D. 4.7 X 1064 .已知袋中有若干个球,其中只有 2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是 则袋中球的总个数是( )4A. 2B. 4C. 6D. 85 .下列分解因式正确的是() A. - ma- m=-m (a-1) B. a 2-1=( a-1) 2 C. a 2-6a+9= (a - 3) 2D. a 2+3a+9= (a+3) 6 .如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )从正面看AS B.② C.③ D.④7 .如图,。

的半径为3,点A, B, C, D 在OO±, ZAOB=30 ,将扇形AOB 绕点。

顺时针旋转120° 后恰好与扇形CODt 合,则 标的长为( )1 . 2的相反数是() A. 2 B. - 2 C — 2 2.下列运算正确的是(A. a+a 2=a 3B. a 2?a 3=a 6D --2)C. a a =a 2D. (a=aA互^ B旦£ C 2兀D.基巴4 2 28.如图,已知△ ABC AB=AC将△ ABC管边BC翻转,得到的△ DBCf原△ ABC^成四边形ABDC则能直接判定四边形ABD境菱形的依据是()DA. 一组邻边相等的平行四边形是菱形8.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a- 5, a是方框①,②,③,④中的一个数,则数a所在的方框是()AS B.② C.③ D.④10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A「吃—”B^n -------- LJ——।-n 1 1 1*C 白 ViD D °二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ AD曰△ ABC;若/ADE=37 ,则/ B=:12 . 一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是 分. 13 .方程a_=-L 的解是2 式 x+114 .已知点A (1, yi ) , B (2, y2)是如图所示的反比例函数 y=2图象上两点,则yiy2 (填"“V" 或"=").15 .如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中/ 1的大小为16 .如图,在 Rt^ABC 中,/ BAC=90 , AB=4, AC=3,点 D> E 分别是 ARBC 边上(均不与端点重合), DG/ EF.将4BD 筮点D 顺时针旋转180° ,将^ CEF 绕点E 逆时针旋转180° ,拼成四边形 MGFN 则四边形 MGF 调长l 的取值范围是 .三、解答题(本大题共 9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作 图或添辅助线用铅笔画完,再用黑色签字笔描黑)17 .计算:'+ + (兀—3) 0— 2cos 30 ° .18 .解不等式 々-1W:—,并把解集在数轴上表示出来.2 3 -5 -4 -3 -2 -1 0 1 2 3 4 519 .如图,已知△ ABC^n△ DAE D 是 AC 上一点,AD=AB DE// AB, DE=AC 求证:AE=BC£AC 的中点,点G F 在20. (8分)某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a, b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.21.如图,在边长为1的正方形组成的6X5方格中,点A, B都在格点上.(1)在给定的方格中将线段AB平移到CD使得四边形ABDB矩形,且点C, D都落在格点上.画出四边形ABDC并叙述线段AB的平移过程;(2)在方格中画出△ ACD关于直线AD对称白勺/\ AED(3)直接写出AB与DE的交点P到线段BE的距离.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八. 甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的看,那么乙也共有钱48.问甲、乙两人各带了多少钱?23.如图,已知AB是。

精品解析:2024年福建省中考真题数学试题(解析版)

精品解析:2024年福建省中考真题数学试题(解析版)

数学试题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.下列实数中,无理数是()A.3-B.0C.23D.【答案】D 【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2ππ等;开方开不尽的数;以及像0.1010010001....,等数.故选:D .2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为()A.696110⨯B.2696.110⨯ C.46.96110⨯ D.50.696110⨯【答案】C 【解析】【分析】根据科学记数法的定义解答,科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<∣∣为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.本题考查了科学记数法,熟悉科学记数法概念是解题的关键.【详解】469610 6.96110=⨯故选:C .3.如图是由长方体和圆柱组成的几何体,其俯视图是()A. B.C. D.【答案】C 【解析】【分析】本题考查了简单组合体的三视图,根据从上边看得到的图形是俯视图,可得答案.【详解】解:这个立体图形的俯视图是一个圆形,圆形内部中间是一个矩形.故选:C .4.在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为()A.30︒B.45︒C.60︒D.75︒【答案】A 【解析】【分析】本题考查了平行线的性质,由AB CD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD ,∴60CDB ∠=︒,∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒-∠-∠=︒,故选:A .5.下列运算正确的是()A.339a a a ⋅=B.422a a a ÷= C.()235a a = D.2222a a -=【答案】B 【解析】【分析】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,解题的关键是掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项运算法则.利用同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项计算后判断正误.【详解】解:336a a a ⋅=,A 选项错误;422a a a ÷=,B 选项正确;()236a a =,C 选项错误;2222a a a -=,D 选项错误;故选:B .6.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是()A.14B.13C.12D.23【答案】B 【解析】【分析】此题考查了树状图或列表法求概率,根据题意画出树状图,求和后利用概率公式计算即可.【详解】解:画树状图如下:由树状图可知,共有6种不同情况,和是偶数的共有2种情况,故和是偶数的概率是2163=,故选:B7.如图,已知点,A B 在O 上,72AOB ∠=︒,直线MN 与O 相切,切点为C ,且C 为 AB 的中点,则ACM ∠等于()A.18︒B.30︒C.36︒D.72︒【答案】A 【解析】【分析】本题考查了切线的性质,三角形内角和以及等腰三角形的性质,根据C 为AB的中点,三角形内角和可求出1(18036)722OCA ∠=⨯︒-︒=︒,再根据切线的性质即可求解.【详解】∵72AOB ∠=︒,C 为 AB 的中点,∴36AOC ∠=︒∵OA OC =∴1(18036)722OCA ∠=⨯︒-︒=︒∵直线MN 与O 相切,∴90OCM ∠=︒,∴18ACM OCM OCA ∠=∠-∠=︒故选:A .8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是()A.()1 4.7%120327x += B.()1 4.7%120327x -=C.1203271 4.7%x=+ D.1203271 4.7%x=-【答案】A 【解析】【分析】本题主要考查了列一元一次方程,解题的关键是理解题意,找出等量关系,根据今年第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,列出方程即可.【详解】解:将去年第一季度社会消费品零售总额设为x 亿元,根据题意得:()1 4.7%120327x +=,故选:A .9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是()A.OB OD ⊥B.BOC AOB ∠=∠C.OE OF =D.180BOC AOD ∠+∠=︒【答案】B 【解析】【分析】本题考查了对称的性质,等腰三角形的性质等;A.由对称的性质得AOB DOC ∠=∠,由等腰三角形的性质得12BOE AOB ∠=∠,12DOF DOC ∠=∠,即可判断;B.BOC ∠不一定等于AOB ∠,即可判断;C.由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;D.过O 作GM OH ⊥,可得GOD BOH ∠=∠,由对称性质得BOH COH ∠∠=同理可证AOM AOH ∠=∠,即可判断;掌握性质是解题的关键.【详解】解:A. OE OF ⊥,90BOE BOF ∴∠+∠=︒,由对称得AOB DOC ∠=∠,点E ,F 分别是底边AB ,CD 的中点,OAB 与ODC 都是等腰三角形,12BOE AOB ∴∠=∠,12DOF DOC ∠=∠,90BOF DOF ∴∠+∠=︒,OB OD ∴⊥,结论正确,故不符合题意;B.BOC ∠不一定等于AOB ∠,结论错误,故符合题意;C.由对称得OAB ODC ≌,OE OF ∴=,结论正确,故不符合题意;D.过O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒ ,GOD BOH ∴∠=∠,由对称得BOH COH ∠∠=,GOD COH ∴∠=∠,同理可证AOM AOH ∴∠=∠,AOD BOC ∠∠∴+AOD AOM DOG =∠+∠+∠180=︒,结论正确,故不符合题意;故选:B .10.已知二次函数()220y x ax a a =-+≠的图象经过1,2a A y ⎛⎫⎪⎝⎭,()23,B a y 两点,则下列判断正确的是()A.可以找到一个实数a ,使得1y a >B.无论实数a 取什么值,都有1y a >C.可以找到一个实数a ,使得20y <D.无论实数a 取什么值,都有20y <【答案】C 【解析】【分析】本题考查二次函数的图象和性质,根据题意得到二次函数开口向上,且对称轴为22ax a -=-=,顶点坐标为()2,a a a-,再分情况讨论,当0a >时,当a<0时,1y ,2y 的大小情况,即可解题.【详解】解: 二次函数解析式为()220y x ax a a =-+≠,∴二次函数开口向上,且对称轴为22ax a -=-=,顶点坐标为()2,a a a -,当0a >时,02aa <<,∴21a y a a >>-,当a<0时,02aa <<,∴21a a y a -<<,故A 、B 错误,不符合题意;当0a >时,023a a a <<<,由二次函数对称性可知,20y a >>,当a<0时,320a a a <<<,由二次函数对称性可知,2y a >,不一定大于0,故C 正确符合题意;D 错误,不符合题意;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.因式分解:x 2+x =_____.【答案】()1x x +【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+12.不等式321x -<的解集是______.【答案】1x <【解析】【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解.【详解】解:321x -<,33x <,1x <,故答案为:1x <.13.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是______.(单位:分)【答案】90【解析】【分析】本题考查了中位数的知识,解题的关键是了解中位数的求法,难度不大.根据中位数的定义(数据个数为偶数时,排序后,位于中间位置的数为中位数),结合图中的数据进行计算即可;【详解】解:∵共有12个数,∴中位数是第6和7个数的平均数,∴中位数是(9090)290+÷=;故答案为:90.14.如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为______.【答案】2【解析】【分析】本题考查正方形性质,线段中点的性质,根据正方形性质和线段中点的性质得到1HD DG ==,进而得到 DGH S ,同理可得12AHE EFB CGF S S S === ,最后利用四边形EFGH 的面积=正方形ABCD 的面积4-个小三角形面积求解,即可解题.【详解】解: 正方形ABCD 的面积为4,2AB BC CD AD ∴====,90D Ð=°, 点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,1HD DG ∴==,111122DGH S ∴=⨯⨯= ,同理可得12AHE EFB CGF S S S === ,∴四边形EFGH 的面积为1111422222----=.故答案为:2.15.如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与O 交于,A B 两点,且点,A B 都在第一象限.若()1,2A ,则点B 的坐标为______.【答案】()2,1【解析】【分析】本题考查了反比例函数的性质以及勾股定理,完全平方公式的应用,先根据()1,2A 得出2k =,设()B n m ,,则2nm k ==,结合完全平方公式的变形与应用得出()()22332120m m m m m m+=-+=--=,,结合()1,2A ,则()21B ,,即可作答.【详解】解:如图:连接OA OB,∵反比例函数ky x=的图象与O 交于,A B 两点,且()1,2A ∴221kk ==,设()B n m ,,则2nm k ==∵OB OA ==∴2225m n +==则()2222549m n m n mn +=++=+=∵点B 在第一象限∴3m n +=把2nm k ==代入得()()22332120m m m m m m+=-+=--=,∴1212m m ==,经检验:1212m m ==,都是原方程的解∵()1,2A ∴()21B ,故答案为:()21,16.无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,风对帆的作用力F 为400N .根据物理知识,F 可以分解为两个力1F 与2F ,其中与帆平行的力1F 不起作用,与帆垂直的力2F 仪可以分解为两个力1f 与21,f f 与航行方向垂直,被舵的阻力抵消;2f 与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:400F AD ==,则2f CD ==______.(单位:N )(参考数据:sin400.64,cos400.77︒=︒=)【答案】128【解析】【分析】此题考查了解直角三角形的应用,求出40ADQ ∠=︒,130PDQ ∠=∠=︒,由AB QD ∥得到40BAD ADQ ∠=∠=︒,求出2sin 256F BD AD BAD ==⋅∠=,求出90160BDC ∠=︒-∠=︒在Rt BCD 中,根据2cos f CD BD BDC ==⋅∠即可求出答案.【详解】解:如图,∵帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,∴703040ADQ PDA PDQ ∠=∠-∠=︒-︒=︒,130PDQ ∠=∠=︒,∵AB QD ∥,∴40BAD ADQ ∠=∠=︒,在Rt △ABD 中,400F AD ==,90ABD Ð=°,∴2sin 400sin 404000.64256F BD AD BAD ==⋅∠=⨯︒=⨯=,由题意可知,BD DQ ⊥,∴190BDC ∠+∠=︒,∴90160BDC ∠=︒-∠=︒在Rt BCD 中,256,90BD BCD =∠=︒,∴21cos 256cos 602561282f CD BD BDC ==⋅∠=⨯︒=⨯=,故答案为:128三、解答题:本题共9小题,共86分。

2022年福建省宁德市中考数学一检试卷(解析版)

2022年福建省宁德市中考数学一检试卷(解析版)

2022年福建省宁德市中考数学一检试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(本大题共10小题,共40.0分)1.的相反数是A. B. C. D.2.下列运算正确的是A. B. C. D.3.如图是个相同的小正方体组合而成的几何体,它的俯视图是A.B.C.D.4.闽北某村原有林地公顷,旱地公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的,设把公顷旱地改造为林地,则可列方程为A. B.C. D.5.下列尺规作图,能判断是边上的高是A. B.C. D.6.如图,等边三角形中,,垂足为,点在线段上,,则等于A.B.C.D.7.如图,一直线与两坐标轴的正半轴分别交于,两点,是线段上任意一点不包括端点,过点分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为,则该直线的函数表达式是A.B.C.D.8.如图,在中,,,是线段上的动点不含端点、若线段长为正整数,则点的个数共有A. 个B. 个C. 个D. 个9.如图,在中,,,将折叠,使点落在边上的点处,为折痕,若,则的值为A. B. C. D.10.如图,在菱形中,,,菱形的一个顶点在反比例函数的图象上,则反比例函数的解析式为第2页,共26页A.B.C.D.二、填空题(本大题共6小题,共24.0分)11.计算:______ .12.如图,中,,,是的中点,则______.13.把二次函数的图象向右平移个单位,再向下平移个单位,所得图象对应的函数解析式是______.14.如图,点,是双曲线上的点,分别过点,作轴和轴的垂线段,若图中阴影部分的面积为,则两个空白矩形面积的和为_____.15.如图,正方形的顶点、分别在轴、轴上,是菱形的对角线,若,,则点的坐标是_______16.如图,等腰中,,,点在线段上运动不与、重合,将与分别沿直线、翻折得到与,给出下列结论:;的大小不变;面积的最小值为;当点在的中点时,是等边三角形,其中所有正确结论的序号是______.三、计算题(本大题共1小题,共8.0分)17.计算:.四、解答题(本大题共8小题,共78.0分)18.解不等式组:第4页,共26页19.小梅家的阳台上放置了一个晒衣架如图,图是晒衣架的侧面示意图,,两点立于地面,将晒衣架稳固张开,测得张角,立杆,小梅的连衣裙穿在衣架后的总长度为,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由参考数据:,,20.如图,在矩形中,连接对角线、,将沿方向平移,使点移到点,得到.求证:≌;请探究的形状,并说明理由.21.已知正比例函数与反比例函数的图象在第一象限内交于点求,的值;在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答时的取值范围.22.国务院办公厅在年月日发布了中国足球发展改革总体方案,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图如图,请根据图中提供的信息,解答下列问题:被调查的学生共有______人.在扇形统计图中,表示“比较了解”的扇形的圆心角度数为______度;从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?第6页,共26页23.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按元千克的价格出售.设经销商购进甲种水果千克,付款元,与之间的函数关系如图所示.直接写出当和时,与之间的函数关系式;若经销商计划一次性购进甲,乙两种水果共千克,且甲种水果不少于千克,但又不超过千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额元最少?24.如图,矩形中,,,是边上一点,将沿直线对折,得到.当平分时,求的长;连接,当时,求的面积;当射线交线段于点时,求的最大值.25.已知抛物线与轴只有一个公共点.若抛物线与轴的公共点坐标为,求、满足的关系式;设为抛物线上的一定点,直线:与抛物线交于点、,直线垂直于直线,垂足为点当时,直线与抛物线的一个交点在轴上,且为等腰直角三角形.求点的坐标和抛物线的解析式;证明:对于每个给定的实数,都有、、三点共线.第8页,共26页答案和解析1.【答案】【解析】【分析】本题考查了相反数的知识,根据相反数的定义求解即可。

2022年福建省中考数学试卷(解析版)

2022年福建省中考数学试卷(解析版)

2022年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.(4分)(2022•福建)﹣11的相反数是()A.﹣11B.C.D.112.(4分)(2022•福建)如图所示的圆柱,其俯视图是()A.B.C.D.3.(4分)(2022•福建)5G应用在福建省全面铺开,助力千行百业迎“智”变.截止2021年底,全省5G终端用户达1397.6万户.数据13976000用科学记数法表示为()A.13976×103B.1397.6×104C.1.3976×107D.0.13976×1084.(4分)(2022•福建)美术老师布置同学们设计窗花,下列作品为轴对称图形的是()A.B.C.D.5.(4分)(2022•福建)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()A.B.C.D.π6.(4分)(2022•福建)不等式组的解集是()A.x>1B.1<x<3C.1<x≤3D.x≤37.(4分)(2022•福建)化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a48.(4分)(2022•福建)2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1B.F6C.F7D.F109.(4分)(2022•福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm10.(4分)(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB =60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是()A.96B.96C.192D.160二、填空题:本题共6小题,每小题4分,共24分。

2022年中考数学卷精析版——福建省宁德卷

2022年中考数学卷精析版——福建省宁德卷

2022年中考数学卷精析版——宁德卷〔本试卷总分值150分,考试时间120分钟〕一、选择题〔本大题共10小题,每题4分,总分值40分〕3.〔2022福建宁德4分〕2022年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被称为“伦敦碗〞,预计可容纳80000人.将80000用科学记数法表示为【】A.80×103B.0.8×105C.8×104D.8×103【答案】C。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数〔含小数点前的1个0〕。

80000一共5位,从而80000=8×104。

应选C。

4.〔2022福建宁德4分〕以下事件是必然事件的是【】A.从一副扑克牌中任意抽取一张牌,花色是红桃B.掷一枚均匀的骰子,骰子停止转动后6点朝上C.在同一年出生的367名学生中,至少有两人的生日是同一天D .两条线段可以组成一个三角形 【答案】C 。

【考点】必然事件、随机事件和不可能事件。

【分析】根据必然事件、随机事件和不可能事件和意义作出判断:A .从一副扑克牌中任意抽取一张牌,花色是红桃,是随机事件;B .掷一枚均匀的骰子,骰子停止转动后6点朝上,是随机事件;C .在同一年出生的367名学生中,至少有两人的生日是同一天,是必然事件〔因为一年只有365天〕;D .两条线段可以组成一个三角形是不可能事件。

应选C 。

5.〔2022福建宁德4分〕以下两个电子数字成中心对称的是【 】 【答案】A 。

【考点】中心对称图形。

【分析】根据轴中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年福建省宁德市中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请用2B 铅笔在答题卡的相应位置填涂)1.2的相反数是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a53.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为()A.0.47×108B.4.7×107C.47×107D.4.7×1064.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.85.下列分解因式正确的是()A.﹣ma﹣m=﹣m(a﹣1)B.a2﹣1=(a﹣1)2C.a2﹣6a+9=(a﹣3)2D.a2+3a+9=(a+3)2 6.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④7.如图,⊙O的半径为3,点A,B,C,D在⊙O上,∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,则的长为()A. B. C.2πD.8.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a﹣5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= °.12.一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是分.13.方程=的解是.14.已知点A(1,y1),B(2,y2)是如图所示的反比例函数y=图象上两点,则y1y2(填“>”,“<”或“=”).15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为.16.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是.三、解答题(本大题共9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)17.计算: +(π﹣3)0﹣2cos30°.18.解不等式﹣1≤,并把解集在数轴上表示出来.19.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.20.(8分)某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a,b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.组别分数段(x)频数A 0≤x<60 2B 60≤x<70 5C 70≤x<80 17D 80≤x<90 aE 90≤x≤100 b21.如图,在边长为1的正方形组成的6×5方格中,点A,B都在格点上.(1)在给定的方格中将线段AB平移到CD,使得四边形ABDC是矩形,且点C,D都落在格点上.画出四边形ABDC,并叙述线段AB的平移过程;(2)在方格中画出△ACD关于直线AD对称的△AED;(3)直接写出AB与DE的交点P到线段BE的距离.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.问甲、乙两人各带了多少钱?23.如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.24.已知正方形ABCD,点E在直线CD上.(1)若F是直线BC上一点,且AF⊥AE,求证:AF=AE;(请利用图1所给的图形加以证明)(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;(3)若点G在直线BC上,且AG平分∠BAE,探索线段BG、DE、AE之间的数量关系,并说明理由.25.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.2016年福建省宁德市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请用2B 铅笔在答题卡的相应位置填涂)1.2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:﹣2.故选:B.【点评】本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.2.下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分析得出答案.【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a5÷a3=a2,正确;D、(a2)3=a6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、幂的乘方运算等知识,正确应用相关运算法则是解题关键.3.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为()A.0.47×108B.4.7×107C.47×107D.4.7×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:47 000 000用科学记数法表示为4.7×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.8【考点】概率公式.【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【解答】解:袋中球的总个数是:2÷=8(个).故选D.【点评】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.5.下列分解因式正确的是()A.﹣ma﹣m=﹣m(a﹣1)B.a2﹣1=(a﹣1)2C.a2﹣6a+9=(a﹣3)2D.a2+3a+9=(a+3)2【考点】提公因式法与公式法的综合运用.【分析】利用提取公因式或者公式法即可求出答案.【解答】解:(A)原式=﹣m(a+1),故A错误;(B)原式=(a+1)(a﹣1),故B错误;(C)原式=(a﹣3)2,故C正确;(D)该多项式不能因式分解,故D错误,故选(C)【点评】本题考查因式分解,注意应用公式法时,要严格按照公式进行分解.6.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④【考点】简单组合体的三视图.【分析】根据题意得到原几何体的主视图,结合主视图选择.【解答】解:原几何体的主视图是:.故取走的正方体是①.故选:A.【点评】本题考查了简单组合体的三视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.如图,⊙O的半径为3,点A,B,C,D在⊙O上,∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,则的长为()A. B. C.2πD.【考点】弧长的计算.【分析】根据题意可得∠AOD=150°,然后再利用弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)进行计算.【解答】解:∵∠AOB=30°,将扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,∴∠AOD=120°+30°=150°,∴==,故选:B.【点评】此题主要考查了弧长计算,关键是掌握弧长计算公式.8.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形【考点】菱形的判定.【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【解答】解:如图所示;∵将△ABC延底边BC翻折得到△DBC,∴AB=BD,AC=CD,∵AB=AC,∴AB=BD=CD=AC,∴四边形ABDC是菱形;故选B.【点评】本题考查了菱形的判定和翻折变换的应用,解此题的关键是求出AB=BD=CD=AC,题目比较典型,难度不大.9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a﹣5,a是方框①,②,③,④中的一个数,则数a所在的方框是()A.①B.②C.③D.④【考点】一元一次方程的应用.【专题】计算题;应用题;一次方程(组)及应用.【分析】先假定一个方框中的数为a,再根据日历上的数据规律写出其他方框中的数,相加是否得5a﹣5,即可作出判断.【解答】解:解法一:设中间位置的数为A,则①位置数为:A﹣7,④位置为:A+7,左②位置为:A﹣1,右③位置为:A+1,其和为5A=5a﹣5,∴a=A+1,即a为③位置的数;解法二:A、若方框①表示的数为a,则②a+6,③a+8,④a+14,A:a+7,则这5个数的和:a+a+8+a+6+a+14+a+7=5a+35,所以方框①表示的数不是a,B、若方框②表示的数为a,则①a﹣6,③a+2,④a+8,A:a+1,则这5个数的和:a+a﹣6+a+2+a+8+a+1=5a+5,所以方框②表示的数不是a,C、若方框③表示的数为a,则①a﹣8,②a﹣2,④a+6,A:a﹣1,则这5个数的和:a+a﹣8+a﹣2+a+6+a﹣1=5a﹣5,所以方框③表示的数是a,D、若方框④表示的数为a,则①a﹣14,③a﹣6,②a﹣8,A:a﹣7,则这5个数的和:a+a﹣14+a﹣6+a﹣8+a﹣7=5a﹣35,所以方框④表示的数不是a,故选C.【点评】本题是日历上的数,明确日历上的规律是关键:上下两数的差为7,左右两数的差为1;解答时要细心表示方框中的数,容易书写错误.10.已知三个数a、b、c的平均数是0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.【考点】数轴.【专题】数形结合.【分析】根据平均数为0可判断三个数中一定有一个正数和一个负数,讨论:若第三个数为负数,根据绝对值的意义得到两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离,然后利用此特征对各选项进行判断.【解答】解:因为三个数a、b、c的平均数是0,所以三个数中一定有一个正数和一个负数,若第三个数为负数,则两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离.故选D.【点评】本题考查了数轴:记住数轴的三要素:原点,单位长度,正方向.二、填空题(本大题共6小题,每小题4分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置)11.如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B= 37 °.【考点】相似三角形的性质.【分析】根据相似三角形的对应角相等,可得答案.【解答】解:由△ADE∽△ABC,若∠ADE=37°,得∠B=∠ADE=37°,故答案为:37.【点评】本题考查了相似三角形的性质,熟记相似三角形的性质是解题关键.12.一次艺术节演出,5位评委给某个节目打分如下:9.3分,8.9分,8.7分,9.3分,9.1分,则该节目得分的中位数是9.1 分.【考点】中位数.【分析】先把数据按从小到大排列,然后根据中位数的定义求解.【解答】解:数据按从小到大排列为:8.7分,8.9分,9.1分,9.3分,9.3分的中位数为9.1分.故答案为9.1.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.方程=的解是x=1 .【考点】解分式方程.【专题】计算题.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论,据此求出方程=的解是多少即可.【解答】解:去分母得:x+1=2x,解得x=1,经检验x=1是分式方程的解,∴方程=的解是x=1.故答案为:x=1.【点评】此题主要考查了解分式方程,要熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14.已知点A(1,y1),B(2,y2)是如图所示的反比例函数y=图象上两点,则y1>y2(填“>”,“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】先确定k的值为2,得在每一分支上,y随x 的增大而减小,通过判断x的大小来确定y 的值.【解答】解:∵k=2>0,∴在每一分支上,y随x 的增大而减小,∵1<2,∴y1>y2,故答案为:>.【点评】本题考查了反比例函数的增减性,当k>0时,在每一分支上,y随x 的增大而减小;当k <0时,在每一分支上,y随x 的增大而增大;本题也可以将x的值代入计算求出对应y的值来判断大小关系.15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为108 °.【考点】多边形内角与外角.【专题】计算题;正多边形与圆.【分析】所求角即为正五边形的内角,利用多边形的内角和定理求出即可.【解答】解:∵正五边形的内角和为(5﹣2)×180°=540°,∴∠1=540°÷5=108°,故答案为:108【点评】此题考查了多边形的内角和外角,熟练掌握多边形的内角和定理是解本题的关键.16.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是≤l<13..【考点】旋转的性质;勾股定理;图形的剪拼.【分析】如图,连接DE,作AH⊥BC于H.首先证明GF=DE=,要求四边形MNFG周长的取值范围,只要求出MG的最大值和最小值即可.【解答】解:如图,连接DE,作AH⊥BC于H.在Rt△ABC中,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵•AB•AC=•BC•AH,∴AH=,∵AD=DB,AE=EC,∴DE∥CB,DE=BC=,∵DG∥EF,∴四边形DGFE是平行四边形,∴GF=DE=,由题意MN∥BC,GM∥FN,∴四边形MNFG是平行四边形,∴当MG=NF=AH时,可得四边形MNFG周长的最小值=2×+2×=,当G与B重合时可得周长的最大值为13,∵G不与B重合,∴≤l<13.故答案为≤l<13.【点评】本题考查旋转变换、勾股定理、平行四边形的性质、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会取特殊点解决问题,属于中考常考题型.三、解答题(本大题共9小题,满分86分.请将解答过程用黑色签字笔写在答题卡的相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)17.计算: +(π﹣3)0﹣2cos30°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂的意义和特殊角的三角函数值得到原式=2+1﹣2×,然后进行乘法运算后合并即可.【解答】解:原式=2+1﹣2×=2+1﹣=+1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解不等式﹣1≤,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】利用解一元一次不等式的方法解出不等式的解集,再将其表示在数轴上即可得出结论.【解答】解:不等式两边同时×6得:3x﹣6≤14﹣2x,移项得:5x≤20,解得:x≤4.将其在数轴上表示出来如图所示.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.19.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【考点】全等三角形的判定与性质.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理SAS证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(SAS),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.20.某市第三中学组织学生参加生命安全知识网络测试.小明对九年2班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图.根据图表中的信息解答下列问题:(1)求九年2班学生的人数;(2)写出频数分布表中a,b的值;(3)已知该市共有80 000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,估计该市本次测试成绩达到优秀的人数;(4)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56 320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因.组别分数段(x)频数A 0≤x<60 2B 60≤x<70 5C 70≤x<80 17D 80≤x<90 aE 90≤x≤100 b【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据数据总数=代入计算,求出九年2班学生的人数;(2)a是D组的频数=百分比×总数;b是E组的频数=50﹣各组频数;(3)先计算优秀的百分比,再与80000相乘即可;(4)取的样本不足以代表全市总中学的总体情况.【解答】解:(1)17÷34%=50(人),答:九年2班学生的人数为50人;(2)a=24%×50=12,b=50﹣2﹣5﹣17﹣12=14,(3)E:14÷50=28%,(28%+24%)×80000=52×800=41600(人),答:估计该市本次测试成绩达到优秀的人数为41600人;(4)全市参加本次测试的中学生中,成绩达到优秀有56 320人;而样本中估计该市本次测试成绩达到优秀的人数为41600人,原因是:小明对第三中学九年2班全体学生的测试成绩取的样本不足以代表全市总中学的总体情况,所以会出现较大偏差.【点评】此题考查了数据的收集与整理,根据频数分布表和扇形统计图可以将大量数据分类,结果清晰,一目了然地表达出来,熟练掌握公式是做好本题的关键:数据总数=,各组频数和=总数据;属于基础题,比较简单.21.如图,在边长为1的正方形组成的6×5方格中,点A,B都在格点上.(1)在给定的方格中将线段AB平移到CD,使得四边形ABDC是矩形,且点C,D都落在格点上.画出四边形ABDC,并叙述线段AB的平移过程;(2)在方格中画出△ACD关于直线AD对称的△AED;(3)直接写出AB与DE的交点P到线段BE的距离.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)、(2)根据题意作出图象;(3)建立坐标系,求出直线AB、DE所在直线解析式,再求出两直线交点坐标可得.【解答】解:(1)如图所示,将线段AB沿AC方向平移即可;(2)如图所示,△AED即为所求;(3)建立如图所示坐标系,设AB所在直线解析式为y=kx+b,将A(0,2)、B(4,0)代入,得:,解得:,∴AB所在直线解析式为y=﹣x+2,设DE所在直线解析式为y=mx+n,将点D(5,2)、E(1,0)代入,得:,解得:,∴DE所在直线解析式为y=x﹣,根据题意,,解得:,∴点E的坐标为(,),故AB与DE的交点P到线段BE的距离.【点评】本题主要考查平移变换和轴对称变换及两直线相交问题,建立坐标系后待定系数求函数解析式是解题的关键.22.解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱四十八,乙得甲太半而亦钱四十八.甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48,如果乙得到甲所有钱的,那么乙也共有钱48.问甲、乙两人各带了多少钱?【考点】二元一次方程组的应用.【分析】设甲原有x元钱,乙原有y元钱,根据题意可得,甲的钱+乙的钱的一半=48元,乙的钱+甲所有钱的=48元,据此列方程组,求解即可.【解答】解:设甲原有x元钱,乙原有y元钱,根据题意,得,解得:,答:甲、乙两人各带了36元和24元钱.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23.如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.【考点】切线的判定;圆周角定理;解直角三角形.【分析】(1)要证CE是⊙O的切线,只要证明∠OCE=90°,根据,∠CDB=45°,CE∥AB可以求得∠OCE=90°,从而可以解答本题;(2)要求⊙O的直径,根据CE∥AB,cos∠CED=,BD=6,可以求得AB的长,本题得以解决.【解答】(1)证明:连接BC、CO,如右图所示,∵AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°,∴∠COB=2∠CDB=90°,∵CE∥AB,∴∠COB+∠OCE=180°,∴∠OCE=90°,即CE是⊙O的切线;(2)连接AD,如右上图所示,∵CE∥AB,∴∠CED=∠ABD,∵cos∠CED=,BD=6,AB是⊙O的直径,∴∠ADB=90°,cos∠ABD=,∴,∴AB=18,即⊙O的直径是18.【点评】本题考查切线的判定、圆周角定理、解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.已知正方形ABCD,点E在直线CD上.(1)若F是直线BC上一点,且AF⊥AE,求证:AF=AE;(请利用图1所给的图形加以证明)(2)写出(1)中命题的逆命题,并画出一个图形说明该逆命题是假命题;(3)若点G在直线BC上,且AG平分∠BAE,探索线段BG、DE、AE之间的数量关系,并说明理由.【考点】四边形综合题.【专题】压轴题.【分析】(1)如图1,利用ASA证明△ABF≌△ADE,可以直接得出AE=AF;(2)如图2所示,如果AF=AE时,AE与AF不一定垂直;(3)分三种情况:①当E在线段CD上时,满足AE=BG+DE,如图3,作辅助线,利用(1)的结论得:△ABF≌△ADE,得AE=AF,DE=BF,再证明AF=FG,利用等量代换和线段的和得出结论.②当E在CD的延长线上时,满足BG=DE+AE,③当E在DC的延长线上时,满足AE=DE+BG;同理分别得出相应结论.【解答】证明:(1)如图1,∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠BAD=90°,∴∠ABF=∠ADC=90°,∠DAE+∠BAE=90°,∵AE⊥AF,∴∠EAF=90°,∴∠FAB+∠BAE=90°,∴∠DAE=∠BAF,∴△ABF≌△ADE,∴AE=AF;(2)若F是直线BC上一点,且AF=AE,则AF⊥AE;如图2所示,当AF=AE时,则AF与AE不一定垂直,所以“若F是直线BC上一点,且AF=AE,则AF ⊥AE“是假命题;(3)分三种情况:①当E在线段CD上时,满足AE=BG+DE,理由是:如图3,过A作AF⊥AE,与直线CB交于点F,由(1)得:△ABF≌△ADE,∴AE=AF,DE=BF,∴FG=BF+BG=BG+DE,∵AG平分∠BAE,∴∠BAG=∠EAG,∵∠BAF=∠DAE,∴∠BAF+∠BAG=∠EAG+∠DAE,∴∠FAG=∠DAG,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=BG+DE.②当E在CD的延长线上时,满足BG=DE+AE,理由是:如图4,过A作AF⊥AE,与直线CB交于点F,由(1)得:△ABF≌△ADE,∴AE=AF,DE=BF,∠BAF=∠DAE,∵AG平分∠BAE,∴∠BAG=∠EAG,∴∠BAG﹣∠BAF=∠EAG﹣∠DAE,∴∠FAG=∠GAD,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=AF,∴BG=BF+FG=DE+AE;③当E在DC的延长线上时,满足AE=DE+BG,理由是:如图5,过A作AF⊥AE,与直线CB交于点F,同理得:△ABF≌△ADE,∴AE=AF,DE=BF,∴FG=BF+BG=BG+DE,∵AG平分∠BAE,∴∠BAG=∠EAG,∵∠BAF=∠DAE,∴∠BAF+∠BAG=∠EAG+∠DAE∴∠FAG=∠DAG,∵AD∥BC,∴∠DAG=∠AGF,∴∠AGF=∠FAG,∴AF=FG,∴AE=FG=BG+DE.【点评】本题是四边形的综合题,考查了正方形、全等三角形的性质和判定;正方形的各边相等且每个角都等于90°,在全等的证明中常利用同角的余角相等证明两个角相等,这一方法要熟练掌握;对于第三问中线段的和差问题,常利用全等三角形对应边相等作等量代换,得出结论.25.如图1,已知抛物线l1:y=﹣x2+x+3与y轴交于点A,过点A的直线l2:y=kx+b与抛物线l1交于另一点B,点A,B到直线x=2的距离相等.(1)求直线l2的表达式;(2)将直线l2向下平移个单位,平移后的直线l3与抛物线l1交于点C,D(如图2),判断直线x=2是否平分线段CD,并说明理由;(3)已知抛物线y=ax2+bx+c(a,b,c为常数)和直线y=3x+m有两个交点M,N,对于任意满足条件的m,线段MN都能被直线x=h平分,请直接写出h与a,b之间的数量关系.【考点】二次函数综合题.【分析】(1)先根据抛物线的解析式求出抛物线与y轴的交点A的坐标,再根据点A,B到直线x=2的距离相等,求出点B的横坐标为4,因为B也在抛物线上,当x=4代入抛物线的解析式求出y的值,即是点B的坐标,再利用待定系数法求直线l2的表达式;(2)根据平移规律写出直线l3表达式,计算出直线l3与直线x=2的交点坐标(2,﹣1.5),根据二次函数和直线l3的解析式列方程组求出C、D两点的坐标,由中点坐标公式计算CD的中点坐标,恰好与直线l3与直线x=2的交点重合,所以直线x=2平分线段CD;(3)先设M(x1,y1),N(x2,y2),根据M、N是抛物线和直线y=3x+m的交点,列方程组得:x1+x2=﹣,由中点坐标公式列式可得结论.【解答】解:(1)当x=0时,y=3,∴A(0,3),∴A到直线x=2的距离为2,∵点A,B到直线x=2的距离相等,∴B到直线x=2的距离为2,∴B的横坐标为4,当x=4时,y=﹣×42+4+3=﹣1,∴B(4,﹣1),把A(0,3)和B(4,﹣1)代入y=kx+b中得:,解得:,∴直线l2的表达式为:y=﹣x+3;(2)直线x=2平分线段CD,理由是:直线l3表达式为:y=﹣x+3﹣=﹣x+0.5,当x=2时,y=﹣2+0.5=﹣1.5,,解得:或,∴C(﹣1,1.5)、D(5,﹣4.5),∴线段CD的中点坐标为:x==2,y==﹣1.5,则直线x=2平分线段CD;(3),ax2+(b﹣3)x+c﹣m=0,则x1、x2是此方程的两个根,。

相关文档
最新文档