1.1.2充分条件与必要条件
2021_2022学年高中数学第1章常用逻辑用语1.1.1四种命题(不作要求)1.1.2充分条件和必

1.1.1 四种命题(不作要求) 1.1.2 充分条件和必要条件学习目标核心素养1.结合具体实例,理解充分条件、必要条件和充要条件的意义.(重点)2.结合具体命题,学会判断充分条件、必要条件、充要条件的方法.(重点、难点)3.培养辩证思维能力.通过充要条件的学习,培养逻辑推理素养.1.符号⇒与的含义命题真假“假设p那么q〞为真“假设p那么q〞为假表示方法p⇒q p q读法p推出q p不能推出q2.充分、必要条件的含义条件关系含义p是q的充分条件(q是p的必要条件)p⇒qp是q的充要条件p⇔qp是q的充分不必要条件p⇒q,且q pp是q的必要不充分条件p q,且q⇒pp是q的既不充分又不必要条件p q,且q p 思考:(1)p是q的充分条件与q是p的必要条件所表示的推出关系是否一样?(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?[提示] (1)一样,都是p⇒q(2)等价1.“x>2”是“x2-3x+2>0”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[由x2-3x+2>0得x>2或x<1,应选A.]2.对于任意的实数a,b,c,在以下命题中,真命题是( )A.“ac>bc〞是“a>b〞的必要条件B.“ac=bc〞是“a=b〞的必要条件C.“ac<bc〞是“a<b〞的充分条件D.“ac=bc〞是“a=b〞的充分条件B[假设a=b,那么ac=bc;假设ac=bc,那么a不一定等于b,故“ac=bc〞是“a =b〞的必要条件.]3.设a,b是实数,那么“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件D[此题采用特殊值法:当a=3,b=-1时,a+b>0,但ab<0,故不是充分条件;当a=-3,b=-1时,ab>0,但a+b<0,故不是必要条件.所以“a+b>0”是“ab>0”的既不充分又不必要条件.]4.用“充分不必要〞、“必要不充分〞、“充要〞和“既不充分也不必要〞填空.(1)“a2+b2=0”是“a=b=0”的________条件.(2)两个三角形全等是这两个三角形相似的________条件.(3)“a2>0”是“a>0”的________条件.(4)“sin α>sin β〞是“α>β〞的________条件.(1)充要(2)充分不必要(3)必要不充分(4)既不充分也不必要[(1)a2+b2=0成立时,当且仅当a=b=0.故应填“充要〞.(2)因为两个三角形全等⇒两个三角形相似,但两个三角形相似D两个三角形全等,所以填“充分不必要〞.(3)因为a2>0a>0,如(-2)2>0,但-2>0不成立;又a>0⇒a2>0,所以“a2>0”是“a>0”的必要不充分条件.(4)因为y=sin x在不同区间的单调性是不同的,故“sin α>sin β〞是“α>β〞的既不充分也不必要条件.]充分条件、必要条件、充要条件的判断件〞“充分必要条件〞“既不充分也不必要条件〞中选出一种作答).(1)在△ABC中,p:∠A>∠B,q:BC>AC;(2)对于实数x ,y ,p :x +y ≠8,q :x ≠2或y ≠6; (3)p :(a -2)(a -3)=0,q :a =3; (4)p :a <b ,q :ab<1.[思路探究] 判断p ⇒q 与q ⇒p 是否成立,当p 、q 是否认形式, 可判断綈q 是綈p 的什么条件.[解] (1)在△ABC 中,显然有∠A >∠B ⇔BC >AC ,所以p 是q 的充分必要条件. (2)因为x =2且y =6⇒x +y =8,即綈q ⇒綈p ,但綈p ⇒綈q ,所 以p 是q 的充分不必要条件.(3)由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3;由a =3可以得出(a -2)(a -3)=0.因此,p 是q 的必要不充分条件.(4)由于a <b ,当b <0时,a b>1;当b >0时,a b <1,故假设a <b ,不一定有a b<1; 当a >0,b >0,a b <1时,可以推出a <b ; 当a <0,b <0,a b<1时,可以推出a >b . 因此p 是q 的既不充分也不必要条件.充分条件与必要条件的判断方法1.定义法2.等价法:将命题转化为另一个等价的又便于判断真假的命题. 3.逆否法:这是等价法的一种特殊情况.假设綈p ⇒綈q ,那么p 是q 的必要条件,q 是p 的充分条件; 假设綈p ⇒綈q ,且綈q綈p ,那么p 是q 的必要不充分条件;假设綈p ⇔綈q ,那么p 与q 互为充要条件; 假设綈p綈q ,且綈q綈p ,那么p 是q 的既不充分也不必要条件.1.(1)设a ,b 是实数,那么“a >b 〞是“a 2>b 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件D [令a =1,b =-1,满足a >b ,但不满足a 2>b 2,即“a >b 〞不能推出“a 2>b 2”;再令a =-1,b =0,满足a 2>b 2,但不满足a >b ,即“a 2>b 2”不能推出“a >b 〞,所以“a >b 〞是“a 2>b 2”的既不充分也不必要条件.](2)对于二次函数f (x )=ax 2+bx +c (a ≠0),以下结论正确的选项是( ) ①Δ=b 2-4ac ≥0是函数f (x )有零点的充要条件; ②Δ=b 2-4ac =0是函数f (x )有零点的充分条件; ③Δ=b 2-4ac >0是函数f (x )有零点的必要条件; ④Δ=b 2-4ac <0是函数f (x )没有零点的充要条件. A .①④ B .①②③ C .①②③④D .①②④D [①Δ=b 2-4ac ≥0⇔方程ax 2+bx +c =0(a ≠0)有实根⇔f (x )=ax 2+bx +c (a ≠0)有零点,故①正确.②假设Δ=b 2-4ac =0,那么方程ax 2+bx +c =0(a ≠0)有实根,因此函数f (x )=ax 2+bx +c (a ≠0)有零点,故②正确.③函数f (x )=ax 2+bx +c (a ≠0)有零点时,方程ax 2+bx +c =0(a ≠0)有实根,未必有Δ=b 2-4ac >0,也可能有Δ=0,故③错误.④Δ=b 2-4ac <0⇔方程ax 2+bx +c =0(a ≠0)无实根⇔函数f (x )=ax 2+bx +c (a ≠0)无零点,故④正确.]充要条件的探求与证明(1)“x 2-4x <0”的一个充分不必要条件为( )A .0<x <4B .0<x <2C .x >0D .x <4(2)x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[思路探究] (1)先解不等式x 2-4x <0得到充要条件,那么充分不必要条件应是不等式x 2-4x <0的解集的子集.(2)充要条件的证明可用其定义,即条件⇒结论且结论⇒条件.如果每一步的推出都是等价的(⇔),也可以把两个方面的证明合并在一起,用“⇔〞写出证明.[解析] (1)由x 2-4x <0得0<x <4,那么充分不必要条件是集合{x |0<x <4}的子集,应选B.[答案] B(2)法一:充分性:由xy >0及x >y ,得x xy >yxy, 即1x <1y.必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.法二:1x <1y ⇔1x -1y <0⇔y -x xy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.探求充要条件一般有两种方法:(1)探求A 成立的充要条件时,先将A 视为条件,并由A 推导结论(设为B ),再证明B 是A 的充分条件,这样就能说明A 成立的充要条件是B ,即从充分性和必要性两方面说明.(2)将原命题进展等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程,因为探求过程每一步都是等价的,所以不需要将充分性和必要性分开来说明.2.充要条件的证明(1)证明p 是q 的充要条件,既要证明命题“p ⇒q 〞为真,又要证明“q ⇒p 〞为真,前者证明的是充分性,后者证明的是必要性.(2)证明充要条件,即说明原命题和逆命题都成立,要注意“p 是q 的充要条件〞与“p 的充要条件是q 〞这两种说法的差异,分清哪个是条件,哪个是结论.2.(1)不等式x (x -2)<0成立的一个必要不充分条件是( ) A .x ∈(0,2) B .x ∈[-1,+∞) C .x ∈(0,1)D .x ∈(1,3)B[由x(x-2)<0得0<x<2,因为(0,2)[-1,+∞),所以“x∈[-1,+∞)〞是“不等式x(x-2)<0成立〞的一个必要不充分条件.](2)求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.[证明] 假设p:方程ax2+bx+c=0有一个根是1,q:a+b+c=0.①证明p⇒q,即证明必要性.∵x=1是方程ax2+bx+c=0的根,∴a×12+b×1+c=0,即a+b+c=0.②证明q⇒p,即证明充分性.由a+b+c=0,得c=-a-b.∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.充分、必要条件的应用[探究问题]1.假设集合A B,那么“x∈A〞是“x∈B〞的什么条件?“x∈B〞是“x∈A〞的什么条件?[提示] 因为A B,所以x∈A成立时,一定有x∈B,反之不一定成立,所以“x∈A〞是“x∈B〞的充分不必要条件,而“x∈B〞是“x∈A〞的必要不充分条件.2.对于集合A和B,在什么情况下,“x∈A〞是“x∈B〞的既不充分也不必要条件?[提示] 当A B且B A时,“x∈A〞是“x∈B〞的既不充分也不必要条件.3.集合A={x|x≥a},B={x|x≥2}.假设A是B的充要条件,实数a的值确定吗,假设集合A是B的充分不必要条件?实数a的值确定吗?[提示] 当A是B的充要条件时,A=B,这时a的值是确定的,即a=2;当A是B的充分不必要条件时,A B,这时a的值不确定,实数a的取值范围是(2,+∞).【例3】p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且p是q的充分不必要条件,那么实数m的取值范围为________.[思路探究] p是q的充分不必要条件→p代表的集合是q代表的集合的真子集→列不等式组求解{m|m≥9}(或[9,+∞))[由x2-8x-20≤0,得-2≤x≤10,由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0).因为p 是q 的充分不必要条件,所以p ⇒q 且qD p .即{x |-2≤x ≤10}是{x |1-m ≤x ≤1+m ,m >0}的真子集,所以⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧1-m ≤-2,m >0,1+m >10,解得m ≥9.所以实数m 的取值范围为{m |m ≥9}.]1.本例中“p 是q 的充分不必要条件〞改为“p 是q 的必要不充分条件〞,其他条件不变,试求m 的取值范围.[解] 由x 2-8x -20≤0得-2≤x ≤10,由x 2-2x +1-m 2≤0(m >0)得1-m ≤x ≤1+m (m >0) 因为p 是q 的必要不充分条件,所以q ⇒p ,且p q .那么{x |1-m ≤x ≤1+m ,m >0}{x |-2≤x ≤10}所以⎩⎪⎨⎪⎧m >01-m ≥-21+m ≤10,解得0<m ≤3.即m 的取值范围是(0,3].2.假设本例题改为:P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P 〞是“x ∈Q 〞的必要条件,求实数a 的取值范围.[解] 因为“x ∈P 〞是x ∈Q 的必要条件,所以Q ⊆P .所以⎩⎪⎨⎪⎧a -4≤1a +4≥3解得-1≤a ≤5即a 的取值范围是[-1,5].利用充分、必要、充分必要条件的关系求参数范围1.化简p 、q 两命题,2.根据p 与q 的关系(充分、必要、充要条件)转化为集合间的关系, 3.利用集合间的关系建立不等关系, 4.求解参数范围.1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进展判断.(2)等价法:利用逆否命题的等价性判断,即要证p ⇒q ,只需证它的逆否命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可.(3)利用集合间的包含关系进展判断.2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进展求解.1.判断(正确的打“√〞,错误的打“×〞)(1)如果p是q的充分条件,那么命题“假设p那么q〞为真.( )(2)命题“假设p那么q〞为假,记作“q⇒p〞.( )(3)假设p是q的充分条件,那么p是唯一的.( )(4)假设“p q〞,那么q不是p的充分条件,p不是q的必要条件.( )[答案] (1)√(2)×(3)×(4)×2.“x2-4x-5=0”是“x=5”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件B[由x2-4x-5=0得x=5或x=-1,那么当x=5时,x2-4x-5=0成立,但x2-4x -5=0时,x=5不一定成立,应选B.]3.假设“x<m〞是“(x-1)(x-2)>0”的充分不必要条件,那么m的取值范围是________.(-∞,1] [由(x-1)(x-2)>0可得x>2或x<1,由条件,知{x|x<m}{x|x>2或x<1},∴m≤1.]4.求证:关于x的方程x2+mx+1=0有两个负实数根的充要条件是m≥2.[证明] (1)充分性:因为m≥2,所以Δ=m2-4≥0,所以方程x2+mx+1=0有实根,设两根为x1,x2,由根与系数的关系知,x1·x2=1>0,所以x1,x2同号.又x1+x2=-m≤-2<0,所以x1,x2同为负数.即x2+mx+1=0有两个负实根的充分条件是m≥2.(2)必要性:因为x2+mx+1=0有两个负实根,设其为x1,x2,且x1x2=1,所以⎩⎪⎨⎪⎧Δ=m 2-4≥0,x 1+x 2=-m <0,即⎩⎪⎨⎪⎧m ≥2或m ≤-2,m >0,所以m ≥2,即x 2+mx +1=0有两个负实根的必要条件是m ≥2. 综上可知,m ≥2是x 2+mx +1=0有两个负实根的充分必要条件.。
高中数学苏教版选修2-1课件: 1.1.2 充分条件和必要条件 课件

12
例1:若p:n=a; 则q:2ⁿ=2ª 答案:p是q的充要条件
问:那q是p的
条件
2、p=>q且q≠>p,那么就称p 是q的充分不必要条件
例2:p:x=1; q:x²=1
解析:x=1可以推出x²=1;反过来x²=1可以推出x=1 或者x=-1。
答案:p是q的充分不必要条件
问:那q是p的
条件
3、p≠>q且q=>p,那么就称p 是q的必要不充分条件
谢谢观看
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。
一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物
理课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
1、判断p是q的什么条件? p是q的充分不必要条
2、如果把p,q分别看成集合A、B,请问这两个集合什 么关系? A是B的真子集
课后思考
若p表示集合A,q表示集合B,思考以下几个问题: • 1、p是q的充要条件,集合A与集合B的关系? • 2、p是q的充分不必要条件,集合A与集合B的关系? • 3、p是q的必要不充分条件,集合A与集合B的关系? • 4、p是q的既不充分也不必要条件,集合A与集合B的关系?
四、听方法。
在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”
的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进
高一数学充分条件与必要条件笔记

高一数学充分条件与必要条件笔记充分条件与必要条件是数学中重要的概念,它们描述了命题成立的条件和结论之间的关系。
1. 充分条件:如果由条件A可以推出结论B,那么就说A是B的充分条件。
简单来说,就是有了A,就可以得到B。
2. 必要条件:如果由结论B可以推出条件A,那么就说A是B的必要条件。
简单来说,就是没有A,就没有B。
充分必要条件:如果由A可以推出B,由B也可以推出A,那么就说A是B的充分必要条件,简称充要条件。
既不充分也不必要条件:如果由A不能推出B,由B也不能推出A,那么就说A 是B的既不充分也不必要条件。
可以根据这些定义来判断某一条件是否为另一条件的充分条件、必要条件、既不充分也不必要条件。
同时,这些判断也可以基于逻辑推理关系来进行。
1. 充分条件:如果由条件A可以推出结论B,那么就说A是B的充分条件。
简单来说,就是有了A,就可以得到B。
比如,如果一个数能被2整除,那么这个数一定是偶数。
在这里,“能被2整除”就是“偶数”的充分条件。
2. 必要条件:如果由结论B可以推出条件A,那么就说A是B的必要条件。
简单来说,就是没有A,就没有B。
比如,如果一个数能被2整除,那么这个数一定是偶数。
在这里,“能被2整除”就是“偶数”的必要条件。
3. 充分必要条件:如果由A可以推出B,由B也可以推出A,那么就说A是B 的充分必要条件,简称充要条件。
比如,在三角形中,如果一个角是直角,那么这个三角形是直角三角形。
在这里,“是直角”就是“直角三角形”的充分必要条件。
4. 既不充分也不必要条件:如果由A不能推出B,由B也不能推出A,那么就说A是B的既不充分也不必要条件。
比如,在三角形中,“是等腰三角形”不能推出“有一个角是直角”,也不能推出“是直角三角形”,因此,“是等腰三角形”就是“是直角三角形”的既不充分也不必要条件。
这些判断可以根据逻辑推理关系来进行。
在判断某一条件是否为另一条件的充分条件、必要条件、既不充分也不必要条件时,可以通过逻辑推理的方法来验证。
高二数学充分与必要条件

m,n全是奇数 m+n是偶数 ab ab x A且x B x A B ab 0 a0
( x 1)( y 2) 0 x 1且y 2
练习:设A,B都是C的充分条件, D是B的充分条件,D又是C的必 要条件,那么B是A的什么条件? C是D的什么条件?
课堂小结
(1)充分条件、必要条件、充分必要条件的概念. (2)判断充分、必要条件的基本步骤: ①认清条件和结论; ②考察 p q 和 q p 的真假。 (3)判别技巧: ① 可先简化命题; ② 否定一个命题只要举出一个反例即可; ③ 将命题转化为等价的逆否命题后再判断。
; https:/// 高防服务器 美国高防服务器 ;
看她平时形骸放荡,出起手来可是毫不留情. "哈哈……" 见两人扭捏の作态,餐厅众人哈哈大笑,白重炙听着也不仅莞尔,这对活宝还真是有意思.不过他也对那个风sa无比の老板娘,佩服万分.这做生意做得,简直是到了极高の境界了,怕是这一屋子大多数男人都是为她而来吧. 当前 第2壹章 零壹8章 暗月(下) 而且这暗月身材还真不是盖の,该翘得地方翘,看一看都很有眼福,跟世家里の那位小魔女夜轻舞是一个级别の美女,只不过老板娘更加成熟一些,熟女无敌啊.看书 "咯咯,小弟弟,你老盯着姐姐看是不是也有想法啊?"白重炙の目光,引起了老板娘の注意,暗月端着杯红色 の酒液,咯咯の笑着,扭着屁股走了过来,在他の对面坐下.这个小男孩刚才独坐在窗前,明明年纪轻轻却露出沧桑の感觉,无形中吸引了她の注意力,此刻见白重炙看着自己,她正好借此机会过来套套话. "呵呵,姐姐,你如此迷人,是个男
充分条件和必要条件的举例

充分条件和必要条件的举例1. 充分条件和必要条件的基本概念要理解充分条件和必要条件,咱们先来聊聊这俩个概念。
简单来说,充分条件就像是一个“钥匙”,只要你有了它,就能打开“门”。
而必要条件就像是你要进这扇门必须具备的“通行证”。
明白这点后,咱们就能更好地理解生活中各种关系了。
1.1 充分条件的例子比如说,想要成为一名足球明星,你得踢得特别好。
也就是说,踢得好就是成为足球明星的一个充分条件。
你只要有这个条件,基本上就可以说,成为足球明星的那扇门对你敞开着。
不过,这里得注意哦,光踢得好还不够,你还得有好的教练、合适的球队,甚至还得有人赏识你。
再举个例子,如果你要上大学,拿到好成绩就是一个充分条件,只要你成绩足够高,大学的大门就会向你敞开。
1.2 必要条件的例子说到必要条件,咱们换个角度想。
如果你想上大学,没高中毕业的学历,基本上是没戏的。
高中毕业就是个必要条件,你不具备这个条件,就算考得再好也没用。
再比如,想喝到好酒,你得年满18岁,这就是喝酒的必要条件。
如果不满18岁,哪怕你在酒吧外面干等,也只能望酒兴叹。
2. 生活中的充分条件和必要条件在我们的日常生活中,充分条件和必要条件随处可见。
想买车,肯定得有钱,这就是个必要条件。
没钱,你就别想开上车了。
不过,钱多了就能选择更多的车型,这就变成了一个充分条件。
其实生活中的许多事情都可以用这两种条件来解释,让人觉得生活更有趣。
2.1 感情中的充分与必要条件再来聊聊感情。
想要谈恋爱,首先得有对方愿意,这就是一个必要条件。
如果对方不喜欢你,那你再努力也白搭。
不过,光有这个条件还不够哦,你还得有共同的兴趣、良好的沟通,这些都是充分条件,缺一不可。
就像一顿丰盛的晚餐,只有一道菜是远远不够的,你还得配上米饭、饮料,这样才能让味道更加丰富。
2.2 职场中的充分与必要条件在职场上也是如此。
想要升职加薪,首先得有工作的能力,这就是一个必要条件。
如果你啥都不会,老板怎么可能提拔你呢?但是,单靠能力也不行,适当的人脉关系、出色的表现也都是提升的充分条件。
1.1.2充分条件与必要条件

如果 p q ,且 q p ,称p是q的充分必要条件, 简称为p是q的充要条件(sufficient and necessary condition),记作: p q 如果 如果p
p q,且q
p,则说p是q的充分不必要条件
数学运用
例题:指出下列各组命题中,p是q的什么 条件: (1) p:x-1=0;q:(x-1)(x+2)=0.
充分不必要条件
(2) p:两条直线平行;q:内错角相等.
充要条件
(3) p:a>b;q:a2>b2
既不充分又不必要条件 必要不充分条件
(4) p:四边形的四条边相等; q:四边形是正四边形.
1.1.2充分条件
和必要条件
下列语句是命题吗?
x 1是方程x 3x 2 0的解
2
真 假
方程x 3x 2 0的解是x 1
2
知 识 回 顾
原命题 若p则q 互 否 命 题 真 假 无 关 否命题 若﹁ p则﹁ q 逆命题 若q则p 互 否 命 题 真 假 无 关 逆否命题 若﹁ q则﹁p
充分性:说条件是充分的,也就是说条件是
充足的,条件是足够的,条件是足以保证的。 “有之必成立,无之未必不成立”
必要性:必要就是必须,必不可少。
“有之未必成立,无之必不成立”
数学运用
2 2
充分不必要 条件 (1)x=y是 x y 的_____________ 必要不充分 (2)ab = 0是a = 0 的________________ 条件 2 既不充分又不必要 条件 (3)x >1是x<1的__________________ 2 充要 条件 (4)x=1或x=2是 x -3x+2=0的_____
高中数学1.1.2充分条件与必要条件课件选修一

05
习题与解答
习题
判断下列命题的真假
如果 $p$,则 $q$(充分不必要条件)
如果 $q$,则 $p$(必要不充分条件)
习题
如果 $lnot p$,则 $lnot q$( 充要条件)
如果 $lnot q$,则 $lnot p$( 既不充分也不必要条件)
已知 $p: x > 1$,$q: x > 2$, 判断 $p$ 是 $q$ 的什么条件。
举反例法
通过举反例来说明某个条 件不是必要条件。
充分必要条件的应用实例
逻辑推理
在逻辑推理中,充分必要条件常常用于判断推理是否成立。例如,在三段论中,大前提和 小前提之间的关系就是充分必要条件。
数学证明
在数学证明中,充分必要条件也经常被用到。例如,在证明一个数学命题时,需要先证明 充分条件,再证明必要条件,才能得出结论。
THANKS
感谢观看
要点二
如果 $lnot q$,则 $lnot p$( 既不…
即使 $lnot q$ 成立,$lnot p$ 也可能不成立;反之亦然 。因此,这是既不充分也不必要条件。
解答
• 当 $x > 1$ 时(即 $p$ 成立),不一定要求 $x > 2$(即 $q$ 成立),但当 $x > 2$ 时(即 $q$ 成立),一定要求 $x > 1$(即 $p$ 成立)。因此,这是必要不充分条件。
条件。
06
总结与回顾
本章总结
01 02
充分条件与必要条件的定义
充分条件指的是某事件发生时,另一事件也必然发生;必要条件指的是 某事件发生时,另一事件不一定发生,但若不发生,则该事件也不发生 。
充分条件与必要条件的逻辑关系
1.1.2充分条件和必要条件

第3课时 四种命题及充要条件【课后作业】1、“x <0”是“ln(x +1)<0”的 条件.答案:必要不充分解析:由“ln(x +1)<0”可解得:-1<x <0,所以,“x <0”是“ln(x +1)<0”的必要不充分条件.2、“a =1”是“函数f(x)=x +1x+sin x -a 2为奇函数”的________条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)答案:充分不必要解析:若a=1,则函数f(x)=x +1x +sin x -1即f(x)=+ sin x 满足f(-x)= - f(x),所以a=1函数f(x)为奇函数。
若函数f(x)=x +1x +sin x -a 2为奇函数由f(-x)= - f(x)得 =1即a=所以“a =1”是“函数f(x)=x +1x +sin x -a 2为奇函数”充分不必要条件3、若“对任意x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 答案:1解析:由题意知m ≥(tan x )max .因为,x ∈⎣⎡⎦⎤0,π4,所以,tan x ∈[0,1].所以,m ≥1.故m 的最小值为1. 4、已知命题p :1a >14,q :∀x ∈R ,ax2+ax +1>0,则p 成立是q 成立的____________条件.(填“充分不必要”“必要不充分”“充分必要”或“既不充分又不必要”)答案:充分不必要解析:由命题p :1a >14得0 ,又由q :∀x ∈R ,ax2+ax +1>0得0 所以命题p :1a >14,q :∀x ∈R ,ax2+ax +1>0,则p 成立是q 成立的充分不必要条件。
5、下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若x 2+x -6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sin A >12”的充分不必要条件;其中真命题的序号是________(把真命题的序号都填上).答案:①②解析:①原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,是真命题;②“若x 2+x -6≥0,则x >2”的否命题是“若x 2+x -6<0,则x ≤2”,是真命题;③在△ABC 中,“A >30°”是“sin A >12”的必要不充分条件,③是假命题.6、设函数f (x )=lg (x 2-x -2)的定义域为集合A ,函数g (x )=3x-1的定义域为集合B .已知α:x ∈A ∩B ,β:x 满足2x +p ≤0,且α是β的充分条件,求实数p 的取值范围.解析:依题意,得A ={x |x 2-x -2>0}=(-∞,-1)∪(2,+∞),B ={x |3x-1≥0}=(0,3], 所以,A ∩B =(2,3].设集合C ={x|2x +p ≤0},则x ∈(-∞,-p 2]. 因为,α是β的充分条件,所以,(A ∩B)⊆C .则需满足3≤-p 2,解得p ≤-6. 所以,实数p 的取值范围是(-∞,-6].7、已知集合A ={x|x2-4mx +2m +6=0},B ={x|x<0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解析:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m |m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0,⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0,⇒m ≥32. 又集合⎩⎨⎧⎭⎬⎫m ⎪⎪m ≥32关于全集U 的补集是{m |m ≤-1}, 所以实数m 的取值范围是{m |m ≤-1}.8、已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪ y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解析:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, 因为,x ∈⎣⎡⎦⎤34,2,所以,716≤y ≤2, 所以,A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2,所以,B ={x |x ≥1-m 2}.因为,“x ∈A ”是“x ∈B ”的充分条件,以,A ⊆B ,所以,1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 9、已知p :A ={x |a -4<x <a +4},q :}0341|{2≥+-=x x x B 若p 是⌝q 的必要条件,求实数a 的取值范围 51<<-a10、是否存在实数p ,使“px +4<0”是“x 2-x -2>0”成立的充分条件?如果存在,求出p 的取值范围;如果不存在,请说明理由. 4002≤<<≤-p p 或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业
课本P 12 练习3、4。
复习
新课
小结
作业
新课
复习
新课
小结
作业
例2、下列“若p,则q”形式的命题中, 哪些命题中的q是p的必要条件? (1)若x=y,则x2=y2; (2)若两个三角形全等,则这两个三角形 的面积相等; (3)若a>b,则ac>bc.
解:命题(1)(2)是真命题,命题(3)是假命题. 所以,命题(1)(2)中的q是p的必要条件.
新课
复习
新课
小结
作业
例4 、 判断下列问题中,p是q成立的什么条件? p q (1) x2>1 x<-1 (2) |x-2|<4 -x2+4x+5>0 (3) xy≠0 x≠0或y≠0
(1)、(2) p (3)p q ,q q ,q p p (原问题 q p)
新课
复习
新课
小结
作业
判别充分与必 要条件问题的
新课
如果命题“若p则q”为真,则记作p
如果命题“若p则q”为假,则记作p
复习
新课
小结
作业
q(或q
q。
p)。
则说p不是q的充分条件,
q不是p的必要条件。
新课
从集合角度理解:
•P足以导致q,也就是 说条件p充分了; •q是p成立所 必须具 备的前提。
P q 或 P、 q
p
q,相当于P q ,即
根据四种命题之间的关系,命题“p q” 的逆否命题也是真命题。这就是说,如果 q不成立,那么p也不成立。也就是说, 若p成立,则q必须成立。所以说q是p的 必要条件。
6 判别步骤: ① 认清条件和结论。 ② 考察p q 和q p的真假。
7 判别技巧:
① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。
小结
定 义:
复习
新课
小结
作业
如果已知p
q,则说p是q的充分条件,
q是p的必要条件。 判别步骤: ① 认清条件和结论。② 考察p 判别技巧: ① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。 q 和q p的真假。
复习
新课
小结
作业
复习引入
复习
新课
小结
作业
1、命题: 可以判断真假的陈述句,可写成:若p则q。 2、四种命题及相互关系: 原命题 若p则q
互 否 互逆
逆命题 若q则p互 否互为逆否否命题 若 p则 q
互逆
逆否命题 若 q则 p
复习引入
复习
新课
小结
作业
例
判断下列命题是真命题还是假命题?
(1)若x>a2+b2,则x>2ab。
(2)若ab=0,则a=0。
(3)有两角相等的三角形是等腰三角形。
(4)若a2>b2,则a>b。
(1)、(3)为真命题。
(2)、(4)为假命题。
新课
复习
新课
小结
作业
如果命题“若p则q”为真,则记作p
q(或q
p)。
定义:如果 p q ,则说p是q的充分条件 (sufficient condition),
q是p的必要条件(necessary condition).
新课
复习
新课
小结
作业
例1、 下列“若p,则q”形式的命题中,哪 些命题中的p是q的充分条件? (1)若 x=1,则x2-4x+3=0; (2)若f(x)=x,则f(x)在(-∞,+∞)上为增函数; (3)若x为无理数,则x2为无理数 .
解:命题(1)(2)是真命题,命题(3)是假命题. 所以,命题(1)(2)中的p是q的充分条件.
新课
复习
新课
小结
作业
例3、 判断下列命题中前者是后者的什么条件? (1)若a>b,c>d,则a+c>b+d。 (2)ax2+ax+1>0的解集为R,则0<a<4。 (3)若a2>b2,则a>b。
(1) p (2) p (3) p
q,q q,q q,q
p 前者是后者的充分不必要条件。 p 前者是后者的必要不充分条件。 p 前者是后者的既不充分也不必要条件。