2013年一试初一希望杯试题(本周提高作业)20151220

合集下载

七年级数学第1届“希望杯”第1试试题

七年级数学第1届“希望杯”第1试试题

山东省滨州市无棣县埕口中学七年级数学第1届“希望杯”第1试试题一、选择题(每题1分,共10分)1.若是a,b都代表有理数,而且a+b=0,那么( )A.a,b都是0. B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的选项是 ( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的选项是 ( )A. 有最小的自然数. B.没有最小的正有理数.C.没有最大的负整数. D.没有最大的非负数.4.若是a,b代表有理数,而且a+b的值大于a-b的值,那么( )A.a,b同号. B.a,b异号.C.a>0.D.b>0.5.大于-π而且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不必然大于它本身;乙.正数的立方不必然大于它本身;丙.负数的平方不必然大于它本身;丁.负数的立方不必然大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不必然大于-a.8.在解方程的进程中,为了使取得的方程和原方程同解,能够在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相较的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10.轮船来回于一条河的两码头之间,若是船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船来回一次所用的时刻将( )A .增多.B .减少.C .不变.D .增多、减少都有可能. 二、填空题(每题1分,共10分) 1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.2-2=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________.4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-,b=时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变成含盐40%时,秤得盐水的重是______克.9.制造一批零件,按打算18天能够完成它的13.若是工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.此刻4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题提示:1.令a=2,b=-2,知足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.能够找到正因此C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.因此不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左侧(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方必然大于它本身,因此“负数平方不必然大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.因此选B.7.令a=0,马上能够排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.因此排除A.咱们考察方程x-2=0,易知其根为x=2.假设该方程两边同乘以一个整式x-1,得(x -1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.假设在方程x-2=0两边加上同一个代数式去了原方程x=2的根.因此应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,那个地址所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=××a;第三天杯中水量与第一天杯中水量之比为因此第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,那么来回一次所历时刻为设河水速度增大后为v,(v>v0)那么来回一次所历时刻为由于v-v0>0,a+v0>a-v0,a+v>a-v因此(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所历时刻将增多,选A.二、填空题提示:2.2-2=(+)×(-)=(+)×1=.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-,b=时,a2-b=(-2-=0,b+a+=-+=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即千克,现在,60×30%=×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即。

2012-2013年希望杯初一数学竞赛试题[1]2总结

2012-2013年希望杯初一数学竞赛试题[1]2总结

希望杯第二十三届(2012年)全国数学邀请赛初一第1试一、选择题(每小题4分,共40分)1.计算:4)1(4)2(122-⨯---+=( ) (A)一2 (B)-1 (C)6 (D)42.北京景山公园中的景山的相对高度(即从北京的地平面到山顶的垂直距离)是45.7米,海拔高度是94.2米.而北京香山公园中的香炉峰(俗称“鬼见愁”)的海拔高度是557米.则香炉峰的相对高度是( )米.(A)508.5 (B)511.3 (C)462.8 (D)605.53.If rational numbers a ,b ,and c satisfy a <b <c ,then |a —b|+|b —c|+|c —a|=( )(A)0 (B)2c 一2a (C)2c 一2b (D)2b 一2a4.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则这两次拐弯的角度可能是( )(A)第一次向左拐40°,第二次向右拐40° (B)第一次向右拐50°,第二次向左拐130°(C)第一次向右拐70°,第二次向左拐110° (D)第一班向左拐70°,第二次向左拐1lO °5.某单位3月上旬中的1日至6日每天用水量的变化情况如图1所示.那么这6天的平均用水量是( )吨.(A)33 (B)32.5 (C)32 (D)316.若两位数ab 是质数,交换数字后得到的两位数ba 也是质数,则称ab 为绝对质数.在大于11的两位数中绝对质数有( )个.(A)8 (B)9 (C)10 (D)117.已知有理数x 满足方程20121120121=--x x ,则49200994+-x x =( ) (A)一41 (B)一49 (C)41 (D)498.某研究所全体员工的月平均工资为5500元,男员工月平均工资为6500元,女员工月平均工资为5000元,则该研究所男、女员工人数之比是( )(A)2:3 (B)3:2 (C)1:2 (D)2:l9.如图2,△ABC 的面积是60,AD :DC=1:3,BE :ED=4:l ,EF :FC=4:5.则△BEF 的面积是( )(A)15 (B)16 (C)20 (D)3610.从3枚面值3元的硬币和5枚面值5元的硬币中任意取出1枚或多于1枚,可以得到n 种不同的面值和,则n 的值是( )(A)8. (B)15. (C)23. (D)26.二、A 组填空题(每小题4分,共40分)11.若x=0.23是方程12.051=+mx 的解,则m=__________.12.如图3,梯形ABCD 中.∠DAB=∠CDA=90°,AB=5,CD=2,AD=4.以梯形各边为边分别向梯形外作四个正方形.记梯形ABCD 的面积为S 1,四个正方形的面积和为S 2,则21S S =_____________. 13.若有理数a 的绝对值的相反数的平方的倒数等于它的相反数的立方的321,则a=_______. 14. lf a <-2,-1<b <O, H=-a -b ,O=a 2+b 2 ,P=-a+b 2, and E=a 2-b, then the magnituderelation of the four number H, O, P, and E is________________________.(英汉小词典:magnitude relation 大小关系 )15.某农民在农贸市场卖鸡.甲先买了总数的一半又半只.然后乙买了剩下的一半又半只.最后丙买了剩下的一半又半只 ,恰好买完.则该农民一共卖了___________只鸡.16.若(a 一2b +3c +4)2+(2a 一3b +4c 一5)2≤0,则6a 一10b +14c -3=________________.17.如图4,在直角梯形纸片ABCD 中,AD ∥BC,AB ⊥BC,AB=10,BC=25,AD=15,现以BD 为折痕,将梯形ABCD 折叠,使AD 交BC 于点E .点A 落到点A 1,则△CDE 的面积是_______________.18.代数式5a 2十5b 2—4ab 一32a 一4b 十lO 的最小值是__________.19.如图5,△ABC 中, ∠ACB=90°,AC=lcm .AB=2 cm .以B 为中心,将△ABC 顺时针旋转,使锝点A 落在边CB 延长线上的A 1点,此时点C 落到点C 1,则在旋转中,边AC 变到A 1C 1所扫过的面积为_________cm 2(结果保留π).20.在一条笔直的公路上,某一时刻,有一辆客车在前,一辆小轿车在后,一辆货车在客车与小轿车的正中间同向行驶,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车,此后,再过t 分钟,货车追上了客车,则t=_________________.三、B 组填空题(每小题8分,共40分)21.已知2x 一3y=z +56, 6y=91-4z -x ,则x ,y, z 的平均数是_____________,又知x>0并且(x 一3)2=36,则x=________ ,y=_________,z=__________.22.有长为lcm, 2cm, 3cm, 4cm, 5cm, 6cm 的六根细木条,以它们为边(不准截断或连接)可以构成_______个不同的三角形,其中直角三角形有____________个.23.已知11瓦(0.011千瓦)的节能灯与60瓦(即0.06千瓦)的白织灯的照明效果相同,使用寿命都越过3000小时.而节能灯每只售价为27元,白炽灯每只售价为2.5元.电费为0.5元/千瓦时.若用一只11瓦节能灯照明1500小时,则电费为_________元.对于11瓦的节能灯和60瓦的白炽灯,当照明时间大于_______小时时,买节能灯更划算.24.已知正整数a ,b 的最大公约数是3,最小公倍数是60,若a >b,则abb a 222 =_____________. 25.如图6,在△ABC 中,∠ACB=90°,M 是∠CAB 的平分线AL 的中点.延长CM 交AB 于K ,BK=BC .则∠CAB=_______°,∠KCB∠ACK =_________.第二十三届“希望杯”全国数学邀请赛第1试答案 题号 12 3 4 5 6 7 8 9 10 答案 CA B D C A A C B C题号 1112 13 14 15 16 17 18 19 20 答案238- 51 -2 E O H P <<< 7 -1 6570 -58 125π 15题号21 22 23 24 25 答案79;39;9;349- 7;1 8.25;1000 40399或409 45°;319、(1)面积公式:S=底边×高÷2,直接计算:AD:DC=1:3,高相同,则面积比也为1:3,因此,S △BDC =S △ABC ×3/4,即60×3/4=45。

2013第二十四届初中数学希望杯培训题(七年级)含答案[1]

2013第二十四届初中数学希望杯培训题(七年级)含答案[1]

第二十四届(2013年)“希望杯”全国数学邀请赛培训题“希望杯”命题委员会初中一年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字 母填在每题后面的圆括号内)(1)英国获得金牌数在4个国家中连续两届奥运 会排在第四位;(2) 中国是唯一曾在一届奥运会获得 50块金牌 以上的国家,2008年金牌数排名第一;(3) 俄罗斯三届奥运会获得金牌数都在 20块以 上, 30块以下;(4) 美国连续两届奥运会金牌排名第一; 其中错误的是()A . (1)B . (2)C . (3)D . (4)3、 如果一个三角形的三个内角的度数正好组成公差不为 0的等差数列,则下面命题中 正确的是( )A .这个三角形一定是锐角三角形;B .这个三角形不可能是直角三角形;C .这个三角形不可能是钝角三角形;D .这个三角形不可能是等边三角形;4、 若N 是能够被所有小于8的正整数整除的第二小的正整数,则 N 的各数字之和是 () A . 12 B . 108 D . 65、若 x 2 2x 3,贝U 2x 3 7x 2 2004 ( )A . 2012B . — 2012C . 2013D . —6、 在厶 ABC 中,/ A+ / C=2Z B ,2/ A+ / B=2/ 6则厶 ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形7、 If 2005 — 200.5=x — 20.05,then x equals to ( ) A. 1814.55 B . 1824.55 C . 1774.45 D . 1784.45 &在平面直角坐标系中,若点M(x 2,3 x)不在第一、二象限,则x 的取值范围是( ) A . x 3 B . x 3 C . x 2或 x 3 D . x 2 或 x 3 9、 A ABC 外角的度数之比为3: 4: 5,则与之对应的三个内角度数之比为( ) A . 5: 4: 3 B . 3: 4: 5 C . 3: 2: 1 D . 1: 2: 3999 ,1000 100110、若 a ,b,c,则( )201120122013A . a<b<cB . b<c<aC . c<b<aD . a<c<b11、 爸爸妈妈要重新粉刷两个卧室的墙壁和天花板, 两个卧室分别为长为4米,宽为4.51、若M (1)21( °22,则 M2 ( 1) 1A . 2B . 1C . 1D . 2 2、 根据图 1,有如下的四个表述:( )S?®打二声江・「戸口 21)12 年■忑年 口刘mg 年米;长3.5米,宽4米。

2013年初中希望杯100大题(有答案)

2013年初中希望杯100大题(有答案)

2013年希望杯100大题日期:2013年1月1.计算:34134547⎡⎤⎛⎫÷+⨯=⎪⎢⎥⎝⎭⎣⎦.2.计算:11201220142012201320132014⎛⎫⨯⨯+⎪⨯⨯⎝⎭=.3.计算:1111232349899100+++⨯⨯⨯⨯⨯⨯=.4.计算:495(0.20.345)0.60.789562+⨯⨯⨯=.5.计算:33333333331357911131517192481632641282565121024+++++++++= .6.计算:111111111111111123523572357235⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-++++⨯++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭= .7.兄弟俩都有点傻,以为只有自己过一年长一岁而别人不会长,某天,哥哥对弟弟说:“再过3年我的年龄就是你的2倍。

”弟弟说:“不对,再过3年我和你一样大。

”今年,他们俩分别是 、 岁。

8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒,则原来这堆棋子共有 粒。

9.如图1,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1-S2=,(π取3)10.有一列数:8,18,24,49,55,60,65,77,81,98,100。

它们的最小公倍数是。

(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖。

12.建军路小学有钢琴、小提琴这两个兴趣班,这两个班的学员都是来自A班或B班的。

钢琴班有13来自A班,小提琴班有37来自B班,并且钢琴班的总人数是小提琴班总人数的97倍,那么这两个兴趣班中来自B班的学生人数与总人数的比值是。

13.定义:“如果一个数有12个约数,那么称这样的数为‘好数’”。

则将所有的“好数”由小到大依次排列,第三个是。

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题...... 0错误!未定义书签。

-0204.希望杯第二届(1991年)初中一年级第二试试题...... 0错误!未定义书签。

-0265.希望杯第三届(1992年)初中一年级第一试试题...... 0错误!未定义书签。

-0326.希望杯第三届(1992年)初中一年级第二试试题...... 0错误!未定义书签。

-0407.希望杯第四届(1993年)初中一年级第一试试题...... 0错误!未定义书签。

-0508.希望杯第四届(1993年)初中一年级第二试试题...... 0错误!未定义书签。

-0589.希望杯第五届(1994年)初中一年级第一试试题...... 0错误!未定义书签。

-06610.希望杯第五届(1994年)初中一年级第二试试题..... 0错误!未定义书签。

-07311.希望杯第六届(1995年)初中一年级第一试试题..... 0错误!未定义书签。

-080 12希望杯第六届(1995年)初中一年级第二试试题..... 0错误!未定义书签。

-08713.希望杯第七届(1996年)初中一年级第一试试题..... 0错误!未定义书签。

-09814.希望杯第七届(1996年)初中一年级第二试试题....... 错误!未定义书签。

-10515.希望杯第八届(1997年)初中一年级第一试试题....... 错误!未定义书签。

-11316.希望杯第八届(1997年)初中一年级第二试试题....... 错误!未定义书签。

-12017.希望杯第九届(1998年)初中一年级第一试试题....... 错误!未定义书签。

2015年七年级(初一)数学希望杯竞赛真题含答案(26届第1试)

2015年七年级(初一)数学希望杯竞赛真题含答案(26届第1试)
时点 M 对应的值为 -3; ④ 两个数相加,它们的和一定大于其中一个加数. 其 中 ,正 确 判 断 的 个 数 为 ( )
(A)1.
(B)2.
(C)3.
(D)4.
3.小

带a
元钱
去超

买文
具 ,买
铅笔

去了
所带

数的
1 ,买 3
橡皮

去余
下钱

的1 4
,然 后
他又用剩下的钱数的1 2
买 了 把 尺 子 .这 时 小 明 还 剩 ( )
22.如图7(1),在梯形ABCD 中,BC ∥AD .将梯形沿中位线EF 翻折,使上底和下底所在的直
线重合,如图7(2),未重合部分(图7(2)阴影)的面积是4.将梯形沿对角线 BD 翻折,使点C 落在梯
形内部的点 K 处,如图7(3),重合部分(△BDK)的面积是8.若梯形的下底 AD =8,则 梯 形 的 上 底
第二十六届“希望杯”全国数学邀请赛
初一 第1试试题
一 、选 择 题 (每 小 题 4 分 ,共 40 分 .)
1.若x2
+
x 3
+
x 6
=
-2015,则
x
=
(
)
(A)-2015.
(B)-403.
2.下 面 有 4 个 判 断 :
① 互为相反数的两个数的绝对值相等;
(C)-1.
(D)1.
② 如果n 的绝对值等于n,则n 一定为正数; ③ 点 M 在数轴上距原点2个单位长度,且位于原点右侧.若将 M 向左移动5个单位长度,则此
△DEF 的面积为
.
三、B 组填空题(每小题8分,共40分.) 21.根 据 下 表 所 给 信 息 填 空 ,已 知 甲 车 每 月 行 驶400千 米 ,乙 车 每 月 行 驶350千

2013年希望杯初一1试答案详解

2013年希望杯初一1试答案详解

11、1581046.9365246060103⨯=⨯⨯⨯⨯⨯12、本题考查数的整除、容斥原理67132013=⎥⎦⎤⎢⎣⎡,28772013=⎥⎦⎤⎢⎣⎡,95212013=⎥⎦⎤⎢⎣⎡()1150952876712013=-+-13、本题通过对未知数x,y 数值的分段划分,分四种情况讨论,有可能是多解题。

⑴⎩⎨⎧-=-=⎩⎨⎧=+-=-≥≥不符合假设,舍去因为解之得时当023223720,0 y x y x y x y x⑵ ⎩⎨⎧⎩⎨⎧=-==+-=+≤≥不符合假设条件,舍去解之得时当211423720,0y x y x y x y x⑶不符合假设条件,舍去解之得时当⎩⎨⎧-=-=⎩⎨⎧=+--=-≥≤2114023720,0y x y x y x y x⑷ ⎩⎨⎧⎩⎨⎧-=-==+--=+≤≤符合题意解之得时当3223720,0y x y x y x y x63,2=-=-=xy y x 带入原式得把14、过点E 作线段CD 延长线的垂线EH,交于点H 。

可以证明HDE ADG ∆≅∆,HE AG = 根据勾股定理291322=-=-=ADDGAG所以2=HE321=∙=∆HE CD CDE S15、汉语翻译大致为“一个六位数的各个数字的乘积是1296,在这个六位数中,最小的是多少?”998232129644⨯⨯⨯=⨯=六位数最小,从低位到高位依次为9,9,8,2,用1,1补最前面的两位,所以结果为11289916、设∠EOF=α,则∠FOD=3α,3α=24°,α=8°,∠AOB=8°×8=64°HG EF DCB A17、这道题关键是通过判断弟弟九年前还没出生,先求出弟弟今年年龄8271099,10377729,23436,3649,346599=--=+=-=-=⨯=-岁,,说明小弟今年运用和差知识求大数(),432482=÷+ 18、35=17+1835=5×7 2+5+7=1419、这道题需要用整体带入求解,首先化简8423=+-+c b a化简后23=-+c b a ①14152-=--+c b a 化简后12=-+c b a ②②×(-2)-①的6455-=+--c b a ③把③带入原式得201320196=+-20、解:设最末一位上的数字为x ,则倒数第二位是1+x ,由题意可列方程为()()()()()x x x x x x x ++++++++=++12344110 88887654844,4,所以这个数是=+=x22、通过判断可知和为37的四个质数有5组分别是 2572337+++=① 23131937+++=② 25111937+++=③ 25131737+++=④ 27111737+++=⑤通过比较乘积最大的一组是⑤组2618,乘积最小的一组是第②组1482 23、ABAB BD 923132=⨯=,AB AB CD 9492311=⎪⎭⎫ ⎝⎛--=31=+++++BD CB CD AB AD AC797,9,31931====AB AD AB AB 24、CB利用平行线的性质,先给图形进行等面积分割,结果为2552=则每个小三角形的面积为S251,所以()S Ss 5273251=+=阴影()S SS 2565125131=+=+25、本题是由两个方程组成的三元二次方程组,常规的消元、降次等方法无法解出。

第1-23届希望杯数学竞赛初一七年级真题及答案

第1-23届希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题......................018-0204.希望杯第二届(1991年)初中一年级第二试试题......................024-0265.希望杯第三届(1992年)初中一年级第一试试题......................032-0326.希望杯第三届(1992年)初中一年级第二试试题......................038-0407.希望杯第四届(1993年)初中一年级第一试试题......................048-0508.希望杯第四届(1993年)初中一年级第二试试题......................056-0589.希望杯第五届(1994年)初中一年级第一试试题......................064-06610.希望杯第五届(1994年)初中一年级第二试试题.....................071-07311.希望杯第六届(1995年)初中一年级第一试试题.....................078-080 12希望杯第六届(1995年)初中一年级第二试试题.....................085-08713.希望杯第七届(1996年)初中一年级第一试试题.....................096-09814.希望杯第七届(1996年)初中一年级第二试试题.....................103-10515.希望杯第八届(1997年)初中一年级第一试试题.....................111-11316.希望杯第八届(1997年)初中一年级第二试试题.....................118-12017.希望杯第九届(1998年)初中一年级第一试试题.....................127-12918.希望杯第九届(1998年)初中一年级第二试试题.....................136-13819.希望杯第十届(1999年)初中一年级第二试试题.....................145-14720.希望杯第十届(1999年)初中一年级第一试试题.....................148-15121.希望杯第十一届(2000年)初中一年级第一试试题...................159-16122.希望杯第十一届(2000年)初中一年级第二试试题...................167-16923.希望杯第十二届(2001年)初中一年级第一试试题...................171-17424.希望杯第十二届(2001年)初中一年级第二试试题...................176-17825.希望杯第十三届(2002年)初中一年级第一试试题...................182-18426.希望杯第十三届(2001年)初中一年级第二试试题...................186-18927.希望杯第十四届(2003年)初中一年级第一试试题...................193-19628.希望杯第十四届(2003年)初中一年级第二试试题...................198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题...................213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题...................228-23334.希望杯第十七届(2006年)初中一年级第二试试题...................234-23835.希望杯第十八届(2007年)初中一年级第一试试题...................242-246 26.希望杯第十八届(2007年)初中一年级第二试试题...................248-25137.希望杯第十九届(2008年)初中一年级第一试试题...................252-25638.希望杯第十九届(2008年)初中一年级第二试试题...................257-26239.希望杯第二十届(2009年)初中一年级第一试试题...................263-26620.希望杯第二十届(2009年)初中一年级第二试试题...................267-27121.希望杯第二十一届(2010年)初中一年级第一试试题.................274-27622.希望杯第二十二届(2011年)初中一年级第二试试题.................285-28823.希望杯第二十三届(2012年)初中一年级第二试试题.................288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0. B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B.没有最小的正有理数.C.没有最大的负整数. D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.2-2=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____.7.当a=-,b=时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=××a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.2-2=(+)×(-)=(+)×1=.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-,b=时,a2-b=(-2-=0,b+a+=-+=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即千克,此时,60×30%=×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回离出发地点最远的那辆车一共行驶了多少公里2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.×+×的值是( ) A..B..C..D..7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )11 20;413;316;617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43 x;C. 甲方程的两边都乘以43;D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,,与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( ) A .225. B ..C .. D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. >-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四届“希望杯”全国数学邀请赛
初一 第1试试题
2013年3月17日 上午8:30至10:00
一、选择题(每小题4分,共40分)
1.计算:()()=+----⨯-1
233
113
( )
A .1-
B .1
C .2
D .3
2.已知图1是图2中正方体的表面的展开图,其中有五个面内标注了数字,则图2中涂有阴影的面在图1中标注的数字是( )
A .2
B .3
C .4
D .5
3.若2011999a =
,20121000b =,2013
1001
c =,则( ) A .c b a << B .a c b << C .a b c << D .b c a <<
4.若0232=+-x x ,则10423+--x x x 的值是( )
A .6
B .8
C .10
D .12
5.If the middle one of three consecutive odd number is n ,then their product is ( )
A .n n 663-
B .n n -34
C .n n 43-
D .n n -3
(英语小词典:consecutive 连续的;product 乘积;middle 中间的;odd number 奇数)
6.在△ABC 中,B C A ∠=∠+∠2,2C 2B A ∠=∠+∠,则△ABC 是( )
A .锐角且不等边三角形
B .直角三角形
C .钝角三角形
D .等边三角形 7.图3是某市人口结构的扇形图,据此得到以下四个结论,其中正确的是( ) A .2000年该市的人口数和1999年时一样
B .2000年20岁以下年龄段的人口数量减少
C .2000年20岁到40岁年龄的人口保持不变
D .该市人口趋于老龄化
8.有理数d c b a 、、、满足d c b a <<<<0,并且d a c b <<<,则
d c b a +++的值( )
A .大于0
B .等于0
C .小于0
D .与0的大小关系不确定
9.A 、B 两地相距60千米,甲、乙两人驾车(匀速)从A 地驶向B ,甲的时速为120千米,乙的时速为90千米,如果乙比甲早出发6分钟,则当甲追上乙以后,乙再经过( )分钟可以到达B .
A .25
B .20
C .16
D .10 10.如图4,数轴上的六个点满足AB =BC =CD =D
E =E
F ,则在点B 、C 、D 、E 对应的数中,最接近10-的点是( )
A .点
B B .点
C C .点
D D .点E
54
321图2
图1
20岁至40岁
20岁
以下
41岁至60岁
60岁
以上 20岁至40岁
20岁以下
41岁至60岁
60岁
以上2000年
1999年
图3
-4
-13
F
E D C B A
A 组填空题(40分)
11.天文学中,1光年是光在一年内走过的距离.已知光速约为每秒30万千米,一年按365天计算,那么1光年换成以米为长度单位,用科学记数法表示应为 米.(保留三位有效数字)
12.从1到2013这2013个自然数中,与21互质的数共有 个.
13.已知72-=-y x ,023=+y x ,则=xy .
14.如图5,ABCD 和DEFG 都是正方形,面积分别为9平方厘米和13平方厘米,点G 在线段AB 上.则△CDE 的面积是 平方厘米.
15.If the product of all digits (数字)of a six-digit number is 1296,among such six-digit numbers (六位数),the smallest is .
16.如图6,射线OC 、OD 、OE 、OF 分别平分EOC AOC COB AOB ∠∠∠∠、、、.若︒=∠24FOD ,则=∠AOB .
17.爸爸,妈妈,小慧、小弟,这四人今年的年龄之和是99岁,爸爸比妈妈大4岁,小慧比小弟大3岁,9年前,他们的年龄之和为65岁,由以上条件可知今年爸爸 岁.
18.m 个连续自然数之和为35(1>m ), 则m 的所有可能取的值之和为 .
19.已知当1=x 时,842323=+-+cx bx ax ,并且141522
3-=--+cx bx ax ,那么,当1-=x 时,
201945523+--cx bx ax 的值时 .
20.小光家的电话号码是八位数,它的前四位数字相同,后五位数字是连续的一位自然数,电话号码的数字和等于它的最后两位数,那么,这个电话号码是 .
图5F
E C D A B G
H
图6D F E
C
A B O
三、B 组填空题(每小题8分,共40分)
21.已知:直线AB 与直线CD 交于点O ,︒=∠45BOC , (1)如图7,若AB EO ⊥,则=∠DOE .
(2)如图8,若EO 平分AOC ∠,则=∠DOE .
22.如果四个不同的质数的和为37,那么这样的四个质数乘积的最大值是 ,最小值是 .
23.如图9,已知C 、D 是线段AB 上的两点,且BC BD AB AC 3
1
31==
,,图中一共有 条线段;若所有线段的长度的总和为31,则AD = .
24.如图10,在△ABC 中,AB 和AC 被四条平行于BC 的线段分成了五等分,如果△ABC 的面积是S ,则阴影部分②与④的面积的和是 ;小三角形①与中间的梯形③的面积的和是 .
25.若整数z y x ,,满足方程组⎪⎩⎪⎨⎧=+=+95
94
yz x z xy ,则=xyz 或 .
附加题(每小题10分,共20分)
1.2013名同学在操场上排成一个长方阵,小明站在第一排的最左边,小聪在最后一排的最右边,如果左右相邻或前后相邻的两名同学传递一张纸条需要5秒钟,那么,小明将手中的纸条传给小聪至少需要 秒.
2.已知右表内每一横行中从第二个数起的数都比它左边相邻的数大m ,各竖列中从第二个
数起的数都比它上边相邻的数大n ,则=+n m ,=+zu y x .
图9
D C B
A 2718
12u
z y
x
图8
图7
C
D
B C
D
E
B A
A
O O E
⑤②④

①图10C
B A。

相关文档
最新文档