[教学设计]北师大版初中数学八年级上册《7.6二元一次方程与一次函数(2)》教案
八年级数学上册《二元一次方程与一次函数》教案、教学设计

3.学生的逻辑思维能力逐渐增强,但部分学生的运算能力和建模能力仍有待提高。
4.学生在学习过程中,对合作交流、讨论分享的学习方式较为感兴趣,有利于培养他们的团队意识和沟通能力。
5.部分学生对数学学习仍存在恐惧心理,需要教师关注个体差异,给予鼓励和指导,提高他们的自信心。
3.教师针对学生的困惑进行解答,强调重点知识,总结解题方法。
4.教师布置课后作业,要求学生复习本节课的知识,并预习下一节课的内容。
五、作业布置
为了巩固学生对二元一次方程与一次函数的理解和应用,特布置以下作业:
1.请同学们完成课本第chapter页的习题,包括以下题型:
a.选择题:旨在检验学生对二元一次方程和一次函数基础知识的掌握;
(3)单元测试:在单元结束后,进行测试,全面评估学生的学习效果。
4.教学策略:
(1)注重分层教学,关注学生个体差异,提高学生的自信心;
(2)鼓励学生积极参与课堂讨论,培养学生的表达能力和思维能力;
(3)关注学生的情感需求,营造轻松、和谐的学习氛围,降低学生的学习压力。
5.教学拓展:
(1)引入实际案例,让学生了解二元一次方程和一次函数在实际生活中的应用;
c.应用题:已知某商品的价格为x元,购买数量为y个,总共花费为20元。请列出相应的二元一次方程并求解。
2.教师对学生的练习情况进行检查,及时解答学生的疑问。
(五)总结归纳,500字
1.教师带领学生回顾本节课的主要内容,包括二元一次方程的定义、解法以及与一次函数的关系。
2.学生分享他们在学习过程中的收获和困惑。
(二)过程与方法
北师大版八年级数学上册《二元一次方程与一次函数》优秀教学设计

北师大版八年级数学上册《二元一次方程与一次函数》优秀教学设计一. 教材分析《二元一次方程与一次函数》是北师大版八年级数学上册的教学内容。
本节课的主要内容是让学生掌握二元一次方程的定义、解法,以及一次函数的图像和性质。
这部分内容是学生学习函数和方程的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了初一、初二数学的基础知识,包括一元一次方程、不等式等。
但是,对于二元一次方程和一次函数的关系,以及如何解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解和掌握二元一次方程和一次函数的基本概念和方法,提高他们解决实际问题的能力。
三. 教学目标1.理解二元一次方程的定义和解法;2.掌握一次函数的图像和性质;3.能够运用二元一次方程和一次函数解决实际问题。
四. 教学重难点1.重难点:二元一次方程的解法,一次函数的图像和性质。
2.难点:如何引导学生理解和掌握二元一次方程和一次函数的关系,以及如何解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作交流的方式,探索和解决问题;2.使用多媒体辅助教学,通过动画、图片等形式,生动形象地展示二元一次方程和一次函数的图像和性质;3.注重实践操作,让学生通过动手操作,加深对二元一次方程和一次函数的理解。
六. 教学准备1.多媒体教学设备;2.PPT课件;3.练习题和答案;4.教学用具(如黑板、粉笔等)。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题,从而引出二元一次方程和一次函数的概念。
2.呈现(15分钟)利用PPT课件,呈现二元一次方程和一次函数的定义、解法和图像。
通过动画、图片等形式,生动形象地展示二元一次方程和一次函数的图像和性质。
3.操练(15分钟)让学生动手操作,解决一些简单的二元一次方程和一次函数问题。
教师巡回指导,解答学生的疑问。
北师大版八年级数学上册《二元一次方程与一次函数》精品教案

《二元一次方程与一次函数》精品教案合方程x+y=5吗?4、以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=5-x 的图象相同吗?总结:方程x+y=5的解有无数个.以方程x+y=5的解为坐标的点组成的图象与一次函数y=5-x 的图象相同,是同一条直线.一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图象相同,是一条直线.活动探究二:想一想,回答下面的问题1.在同一个直角坐标系内分别作出一次函数y=5-x 和y=2x-1的图象,这两个图象有交点吗?2.交点的坐标与方程组的解有什么关系?总结:一般地,从图形的角度看,确定两条直线交点的坐标,相当于求相应的二元一次方程组的解;解一个二元一次方程组相当于确定相应两条直线的交点的坐标.活动探究三:想一想,回答下面的问题在同一直角坐标系内,一次函数y=x+1和y=x-2的图像有怎样的位置关系?方程组解的情况如何?你发现了什么?变式1:直线y=7x+m 与x 轴的交点坐标是(5,0),则关于x 的方程7x+m=0的解是x=______。
变式2:一次函数y=4x+8与y=6x+n 图像交点为m (-4,-8),试确定方程组的解和n 的值.拓展提高:如图,一次函数l1:y=2x+3与一次函数l2:y=px+q 相交于点m( 1.5,5),则关于x 的不等式2x+3≥px+q 的解集为______.通过自主探索,使学生初步体会“数”(二元一次方程)与“形”(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.学生分小组讨论,并相互补充交流生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力.进一步揭示“数”的问题可以转化成“形”来处理,但所求解为近似解.通过例2,让学生深刻感受到由“形”来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把“形”的问题转化成“数”来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.作业布置:必做题:习题5.6第2、3题.选做题:习题5.6第4题.课堂小结1、二元一次方程的解是一次函数上点的坐标;一次函数上每一个点的坐标就是二元一次方程的一组解.2、从图形的角度看,确定两条直线交点的坐标,相当于求相应的二元一次方程组的解;3、解一个二元一次方程组相当于确定相应两条直线的交点的坐标.4、两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解,对应的两直线平行旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.充分展示知识的发生、发展及应用过程.对同学的回答,教师给予点评,对回答得好的学生教师给予表扬、鼓励.板书7.6二元一次方程与一次函数1.二元一次方程与一次函数的图像的关系2.方程组和对应的两条线的关系3.解二元一次方程组的新方法图像法。
初中《二元一次方程与一次函数》教学设计

初中《二元一次方程与一次函数》教学设计一、前言二元一次方程和一次函数是初中数学中非常重要的一部分内容,其基础十分重要,对日后的高中数学和物理学习有着至关重要的作用。
然而,这个知识点难度较大,学生很容易陷入疑惑甚至放弃。
因此,本文档将设计一套初中《二元一次方程与一次函数》的教学方案,希望能够给初中学生带来更加有效的学习体验。
二、教学目标1.掌握二元一次方程和一次函数的基本概念和解题方法;2.能够通过实际问题应用二元一次方程和一次函数;3.培养学生的逻辑思维能力、分析问题的能力与解决问题的能力;4.引导学生对数学学科的理解与兴趣。
三、教学内容1. 二元一次方程1.二元一次方程组的概念;2.解二元一次方程组的方法;3.应用二元一次方程解决实际问题。
2. 一次函数1.一次函数的概念和特点;2.一次函数图像及其性质;3.拟合实际问题中的数据。
四、教学过程1. 二元一次方程1.1 二元一次方程组的概念通过教师示范、教材讲解的方式,让学生了解二元一次方程组的概念和含义。
1.2 解二元一次方程组的方法通过解方程组的实例演示、步骤分解的方式,让学生掌握解二元一次方程组的基本方法。
1.3 应用二元一次方程解决实际问题通过多元方程求解实际问题的实例演示、讲解的方式,让学生能够将所学内容应用到实际问题中。
2. 一次函数2.1 一次函数的概念和特点通过图像展示、实例分析的方式,让学生了解一次函数的概念和特点。
2.2 一次函数图像及其性质通过教材、图像展示的方式,让学生掌握一次函数图像及其性质。
2.3 拟合实际问题中的数据通过实例分析、典型习题解题的方式,让学生能够应用一次函数拟合实际问题中的数据。
五、教学评价1.日常考查:包括课堂小测试、课后作业等;2.综合成绩评定:以期末考试为主要评分依据,期中考试考查学生的知识掌握情况,平时表现加成。
六、总结二元一次方程和一次函数是初中数学中重要的内容,要求学生将数学知识与实际问题相结合,培养学生的逻辑思维能力、分析问题的能力与解决问题的能力。
八年级数学上册第4章《函数》教学设计(北师大版)

函数一、教材分析《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。
教材让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图象的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。
教材中的函数概念就是这样从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。
本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。
同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。
二、学情分析1、对学生已有知识经验分析学生在小学时学到加减乘除运算法则,乘法口诀,就体现了一种对应关系。
还有按规律数火柴棒的经历,也体现了一种对应。
学生在六年级上学期学习圆和扇形时,就初步感知了两个变量的依赖关系;学习数据的表示(统计图表)时,认识数字与图形的联系和对应关系。
六年级下学期学习数轴时,初步接触点与数的对应。
学生在七年级上学期用字母表示数,代数式的值的教学是培养学生对变量的认识、树立初步的函数观念的良好契机。
数、字母、代数式之间的关系实际上就是数、自变数、函数之间的关系。
代数式本身就是代数式所含字母的函数,代数式求值实际上就是给自变数一个确定的值,求对应的函数值。
在七年级下册已学习了《变量之间的关系》,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,对变量间互相依存的关系有了一定的认识。
初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。
上述分析表明,课本在正式引进函数概念之前,早已结合有关知识,渗透了函数的概念和对应的思想:通过代数式的值的概念,可以很好给学生渗透一些变量间的依存关系以及变量的变化范围等方面的初步知识,学习平面上的点和有序实数对间的一一对应关系,为学生学习函数的图形做好了准备,此外,方程(特别是二元一次方程)、等式的学习以及有关几何量的计算,进一步促进学生认识两个量之间是相互关联的,体会到两个变量之间的相互依存关系,都为学生学习函数知识作了很好的准备!2、可能存在的难点分析由常量数学到变量数学的过渡,以函数的引入为标志,宣布了数学问题的研究由处理相对稳定的数学问题进入处理运动、变化的量与量关系的数学问题的领域,抽象层次的再一次提升;由数到形,又到数形结合,研究量与量之间运动、变化过程中表现出的关系,则又是一类研究对象与研究方法的转变而导致的不适应,就出现了由常量数学到变量数学过渡的这一难关。
《二元一次方程与一次函数》教学设计【优秀4篇】

《二元一次方程与一次函数》教学设计【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《二元一次方程与一次函数》教学设计【优秀4篇】教学建议下面是本店铺精心为大家整理的4篇《《二元一次方程与一次函数》教学设计》,可以帮助到您,就是本店铺最大的乐趣哦。
6二元一次方程与一次函数-初中八年级上册数学(教案)(北师大版)

-理解二元一次方程与一次函数的关系,并能应用于实际问题。
举例:
-重点讲解如何将实际问题转化为二元一次方程,并通过具体的例题演示代入法和消元法的应用;
-强调一次函数图像的斜率和截距在实际问题中的意义,通过绘制图像加深理解;
-通过实际案例,展示二元一次方程与一次函数的关系,让学生在实际应用中掌握重点知识。
1.运用逻辑推理分析、解决问题,培养严谨的逻辑思维能力;
2.结合实际问题建立数学模型,提高数学建模素养,增强解决实际问题的能力;
3.利用图像直观地分析一次函数的性质,培养直观想象能力;
4.熟练进行二元一次方程的求解及一次函数的相关运算,提高数学运算素养。
三、教学难点与重点
1.教学重点
-理解并掌握二元一次方程的解法,特别是代入法和消元法;
此外,实践活动中的小组讨论非常热烈,学生们提出了很多有趣的问题和见解,这让我感到很欣慰。我意识到,通过小组合作,学生能够更好地相互学习和启发。不过,我也注意到有些学生在讨论中不够积极,我需要思考如何更好地调动每一个学生的积极性,让每个人都能在小组活动中得到成长。
在学生小组讨论环节,我尝试作为一个引导者,而不是主讲者,这样的角色转变让学生们有了更多的思考和表达机会。但我同样意识到,对于一些开放性问题的引导,我还需要更精准地把握,以帮助学生更有效地思考和解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二元一次方程与一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
《二元一次方程与一次函数》教学设计

5.6二元一次方程与一次函数教学设计深圳市龙岗中学姚颖妍一、教材分析《二元一次方程与一次函数》是北师大版教科书八年级(上)第五章第六节内容。
该节内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。
本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的。
二、学情分析在八年级上册第四章第3节学生已经学习了如何根据已知条件准确画出一次函数的图象,初步掌握了一次函数及其图象的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。
同时,在本章中的第二节“求解二元一次方程组”中学生已经能够正确解方程(组),能够认识和接受函数解析式与二元一次方程之间的互相转换。
在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验。
三、教学目标1、知识目标:(1)初步理解二元一次方程和一次函数的关系。
(2)掌握二元一次方程组和对应的两条直线之间的关系。
(3)掌握二元一次方程组的图象解法。
2、能力目标:(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法。
(2)通过自主探究,进一步发展学生数形结合的意识和能力。
3、情感态度和价值观目标;(1)让学生积极参与数学活动,对数学有好奇心和求知欲,.感受成功的快乐,体验独自克服困难、解决数学问题的过程。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
四、教学重难点1、教学重点:(1)二元一次方程和一次函数的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版初中数学八年级上册《7.6二元一次方程与一次函数(2)》精品教案
一、教学目标
1.进一步理解二元一次方程与一次函数的联系.
2.通过学生的思考和比较,进而获得从图象等信息确定一次函数表达式的方法。
同时培养了学生初步的数形结合的意识和能力.
3.经历应用问题多种解法的探究过程,在探究中学会解决应用问题的一些基本方法和策略. 4.通过学生的自主探索、思考和比较,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.发展学生的合作意识和团队精神,在探究活动中获得成功的体验.
二、教材分析
《二元一次方程与一次函数》是义务教育课程标准北师大版实验教科书八年级(上)第七章《二元一次方程组》第六节,本节内容安排了2个学时完成,本节课为第2学时.主要是通过对作图像方法与代数方法的比较,探索利用二元一次方程组确定一次函数的表达式.这一内容是上一课时内容的自然发展,上一课时探索了函数与方程之间的关系,并获得了方程组的图象解法,本节课研究利用二元一次方程组确定一次函数的表达式,这样更为全面地理解函数与方程、图形与代数表达式之间的关系,从而发展学生数形结合的意识。
教学重点
1.二元一次方程和一次函数的关系.
2.从图象等信息确定一次函数表达式的方法。
教学难点
方程和函数之间的对应关系即数形结合的意识和能力.
教学方法
学生思考和比较——自主探索的方法.
学生通过自己思考,结合新旧知识的联系,自主探索出[议一议]的解题方法。
同时建立了“数”——二元一次方程组与“形”——函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力.
三、学情分析
学生已经熟练掌握了二元一次方程组的解法,同时在第六章也学习了确定一次函数的表达式的基本方法,在上一节课又学习了二元一次方程组的图像解法,这些知识为本节课的学习作好了很好的铺垫.由于上节课的惯性,学生易在图像法上停留,因为图像法很直观,容易接受,因此本节课对代数方法的渗透应有一个循序渐进的过程.
四、教学过程
(一)温故知新
我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B 追赶,如图所示,,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.
(1)15分钟内我边防快艇B能否追上A?
(2)当时间t等于多少分钟时,我边防快艇B能够追赶上A?
意图:通过与第六章知识的的联接,引入新课,进行知识的拓展。
也突出了本节课的重点内容。
(二)典型例题,探究一次函数解析式的确定
例1 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.
(1)写出y与x之间的函数表达式;
(2)最多可免费携带多少千克的行李?
(三)做一做
1. 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.当所挂物体的质量
为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的函数关
系式,并求当所挂物体的质量为4千克时弹簧的长度.
答案:5.
=x
y
5.0+
14
当x=4是,y=5.
16
(四)议一议
A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数.1小时后乙距离A地80千米;2小时后甲距离A地30千米.问经过多长时间两人将相遇?
(1)用图象法解行程问题
可以分别作出两人s与t 之间的关系图象,找出交点的横坐标就行了!
你明白他的想法吗?用他的方法做一做,看看和你的结果一致吗?
你的方法求出的结果精确吗?
(2)用方程解行程问题
1 时后乙距A地80千米,即乙的速度是 20千米/时,
2 时后甲距A 地 30千米,故甲的速度是 15千米/时,由此可求出甲、乙两人的速度和
(3)求出s与t之间的关系式,联立解方程组
对于乙,s是t的一次函数,可设s=kt+b。
当t=0时,s=100;
当t=1时,s=80。
将它们分别代入s=kt+b中,可以求出k、b的值,也即可以求出乙s 与t 之间的函数表达式。
同样可求出甲s与t之间的函数表达式。
再联立这两个表达式,求解方程组就行
意图:通过实际问题情景,进一步加强函数与方程的联系,让学生在多种方法解决问题
的思考和比较中体会作图象方法与代数方法各自的特点,为讲解待定系数法确定一次函数的解析式做好铺垫.同时理解知识之间有着广泛的联系. 通过“小明的方法求出的结果准确吗?”自然过渡到本节课的主要内容。
总结:理解图象方法可以更直观、形象,但缺乏准确,用代数方法虽然准确,但不够形象和直观.
(五) 做一做
1.方程组{ 的解是{ ,
由此可知一次函数y =x-2与y =4-x 的图象必有一个交点,则交点的坐标是 .
2、图中的两条直线,的交点坐标可以看 方程组 的解 3. 解决导入中问题:
意图:强化函数与方程的关系,同时也是利用“二元一
次方程组确定一次函数解析式,进而通过求两直线的交点坐标解决实际问题”这一方法的训练;目的是强化本节知
识的重点“利用二元一次方程组确定一次函数解析式”;目
的在于加强学生数形结合思想的应用,以及从图形中获取有用的信息,同时也是对本节课教学重点的强化.让学生明白新旧知识之间是有着知识上的联系的.用代数方法解决二元一次方程与一次函数的的问题,做到前后呼应,突出了知识的衔接
效果:通过学生的解答和老师的讲解,让学生掌握这类问题解决的一般方法,为课堂小结做好铺垫.
(六) 拓展延伸
A 、
B 两地相距50千米,小明于某日
下午1时骑自行车从A 地出发驶往B 地,他爸爸也于同日下午从A 地出发驶往B 地,图7-8-3中,折线PQR 和线段MN 分别表示小明和他爸爸,所行的里程S 与该日下午时间t 之间的关系。
(1) 小明出发多少小时爸爸才开始出发? (2) 他爸爸行使多少小时就能追上了小明,这时两人离B 地还有多少千米?
七、感悟与收获:
1.掌握利用二元一次方程组确定一次函数的表达式的方法考虑到两种类型:一是利用文字提供的信息,一种是利用图像提供的信息。
2.求两直线的交点坐标,用作图象的方法可以直观地获得问题的结果,但有时却难以准确.为了获得准确的结果,我们一般用代数方法,通过解方程组来解决问题。
3.体会数(二元一次方程组)与形(函数的图象)之间的对应关系及数形结合的思想.
八、作业:
1.某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应
交水费y(元)与用水量x(吨)的函数关系如图所
(1)写出 y与x的函数关系式;
(2)若某用户十月份用水量为10吨,则应
交水费多少元?
(3)若该用户十一月份交了51元的水费,
则他该月用水多少吨?
九、老师寄语
苹果的新鲜和甜美,需要自己来品尝和体会。
学习
的过程除了你自己,没有任何人可以代劳,只有自己不断反省、思考,才会成为自己宝贵的
知识!。