九上数学期中考试模拟试题(1)
2024-2025学年沪科版初中九年级数学上学期期中模拟考试卷(一)

2024-2025学年九年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪科版九上第21~22.3章(二次函数与反倒函数+比例线段+相似三角形判定与性质)。
5.难度系数:0.65。
第一部分(选择题共40分)一、选择题(本大题共10个小题,每小题4分,满分40分.在每个小题给出的四个选项中,只有一项符合题目要求的)A .B ADE ∠=∠B .C ∠5.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A .123,1x x =-=-B .121,3x x =-=C .121,3x x ==D .123,1x x =-=A .16B .24.点P ,点Q 是线段AB 的黄金分割点,若A .2B .6-8.如图,是二次函数2y ax bx c =++(,,a b c 是常数,且0a ≠)的图象,虚线是抛物线的对称轴.则一次函数y acx b =+的图象经过()A .第二三四象限.如图1,点A 、B 在反比例函数延长线段AB 交x 轴于点函数()220k y k x=≠的图象上,过点A .2B .2-C .10.二次函数2y ax bx c =++()0a ≠与一次函数y x c =-+(都在坐标轴上,两图象与x 轴交于点M ,二次函数y =若12ON OM =,求b 的值()二、填空题(本大题共4小题,每小题5分,满分20分).如图,ABC 是等边三角形,点交于点F ,连接DE ,则下列结论:正确的结论有三、解答题(本大题共9个小题,共90分,其中15~18题每题8分,19~20题每题10分,21~22题每题12分,第23题14分.解答应写出文字说明,证明过程或演算步骤)(1)求该曲线对应的函数解析式;C℃的取值范围.(2)若6t≥,求温度(),是反比例函数y(8分)如图,A B线段AB的延长线交x轴于点C.(1)求a的值和该反比例函数的函数关系式;(2)求直线AB的函数关系式.19.(10分)九(1)班数学课外活动小组利用阳光下的影子来测量教学楼顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该教学楼OB的影长OC为12米,OA的影长OD为15米,测量者的⊥,影长FG为1.2米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO OD ⊥.已知测量者的身高EF为1.8米,求旗杆的高AB.EF FG.(10分)我省某风景区统计了近三年国庆节的游客人数.据统计,2023年国庆节游客人数约为(1)求2021年到2023年该风景区国庆节游客人数的年平均增长率;(2)已知该风景区有A,B(1)求抛物线的解析式;(2)如图,点C 为第四象限抛物线上的一个动点,直线AC 与y 轴交于点D ,连接BC .当90ACB ∠=︒时,求点C 的坐标.22.(12分)如图,在ABC 中,90B ∠=︒,8cm AB =,12cm BC =,点P 从点A 开始沿AB 向点B 以2cm /s 的速度运动,点Q 从点B 开始沿BC 向点C 以4cm /s 的速度运动,如果P ,Q 分别从A ,B 同时出发,4秒后停止运动,设运动时间为t 秒.(1)求BP ,BQ 的长度;(2)当t 为何值时,PBQ 的面积为212cm(3)是否存在某一时间t ,使得PBQ 和ABC 相似?若存在,请求出此时t 的值,若不存在,请说明理由.23.(14分)在平面直角坐标系xOy 中(如图),已知抛物线2y ax x c =++经过()2,0A -和()0,4B ,与x 轴的另一个交点为C .(1)求该抛物线的表达式及顶点M 的坐标;(2)将抛物线2y ax x c =++先向右平移2个单位,再向下平移m (0m >)个单位后得到的新抛物线与y 轴交于点()0,1P -,新抛物线的顶点为M ';①求新抛物线的表达式及顶点M '的坐标;②点N 是新抛物线对称轴上的一点,且'M MN ACB ∠=∠,当ABC 与MM N '△相似时,求点N 的坐标.2024-2025学年九年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
广东深圳2024-2025学年九年级上学期期中数学模拟试题(解析版)

2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A. 0 B. 2C. 0 或 2D. 无解【答案】C 【解析】【详解】解:移项可得:22x 0x −=, 因式分解可得:x (x -2)=0, 解得:x=0或x=2, 故选C .2. 一元二次方程2230x x +−=的两根分别为12x x 、,则12x x ⋅的值为( ) A. 2 B. 2−C. 3−D. 3【答案】C 【解析】【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:∵该一元二次方程为2230x x +−=,∴12331cx x a −⋅===−. 故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程20(a 0)++=≠ax bx c 根与系数的关系:12b x x a +=−和12c x x a⋅=是解题关键. 3. 关于x 的一元二次方程()21230k x x −−+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠【答案】B 【解析】【分析】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.根据题意可得()1044310k k −≠ =−×−>再解不等式组,从而可得答案;【详解】解: 关于x 的一元二次方程()21230k x x −−+=有两个不相等的实数根, ()1044310k k −≠ ∴ =−×−>解得:43k <且1k ≠ , 故选:B .4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1 B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠0【答案】B 【解析】【分析】根据一元二次方程根有实数根,可得ΔΔ≥0,代入系数解不等式,需要注意k ≠0. 【详解】∵一元二次方程有实数根 ∴()()2=2410k ∆−−⋅−≥ ,解得1k ≥−,又∵一元二次方程二次项系数不为0,∴0k ≠, ∴k 的取值范围是1k ≥−且0k ≠. 故选B.【点睛】本题考查一元二次方程的定义和根的判别式,当0∆>时,方程有两个不相等的实数根,当=0∆时,方程有两个相等的实数根,当∆<0时,方程无实数根,熟记概念是解题的关键.5. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( )A.1813B.139C.32D. 2【答案】A 【解析】【分析】先根据要求画图,设AF =x ,则CF =23x ,根据勾股定理列方程可得结论. 【详解】解:在菱形上建立如图所示的矩形EAFC , 设AF =x ,则CF =23x , 在Rt △CBF 中,CB =1,BF =x -1, 由勾股定理得:BC 2=BF 2+CF 2, 12=(x −1)2+(23x )2, 解得:x =1813或0(舍), 则该菱形的宽是1813,故选A .【点睛】本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.6. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−【答案】A 【解析】【分析】根据题目中的新定义的运算规则,将所求方程化为一元二次方程方程,解方程即可解答. 【详解】解:∵2a b a ab =+ , ∴x △(x-2)=x 2 +x (x-2)=12, 整理得:2x 2-2x-12=0, 解得:x 1=-2,x 2=3. 故选A.【点睛】本题考查了新定义运算及一元二次方程的解法,根据新定义的运算规则将所求方程化为一元二次方程方程是解决本题的关键.7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9 B. 12C. 12或15D. 15【答案】D 【解析】【分析】把x =3代入已知方程求得a 的值,然后求出该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可. 【详解】解:把x =3代入方程得:220x ax a −+=, 解得a =9,则原方程为29180x x −+=,解得:123,6x x ==, 因为这个方程的两个根恰好是等腰△ABC 的两条边长, ①当△ABC 的腰为3,底边为6时,不符合三角形三边关系②当△ABC 的腰为6,底边为3时,符合三角形三边关系,△ABC 的周长为6+6+3=15, 综上所述,△ABC 的周长为15. 故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了解一元二次方程、等腰三角形的性质以及三角形三边关系..8. .如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )A.B.C.D.【答案】B 【解析】【分析】利用黄金矩形的定理求出ADAB= ,再利用矩形的性质得1AE AB BE AB AD AB AD AD AD AD−−===−,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB , ∵BE BC =,∴11AE AB BE AB AD ABAD AD AD AD −−===−=−= 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________. 【答案】16【解析】【分析】蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画出树状图,找出颜色恰好都发生变化的等可能情况和所有等可能情况,根据概率公式进行求解即可.【详解】解:蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画树状图如下:∵颜色恰好都发生变化的是取到B D 、的情况有两种,共有12种等可能情况, ∴颜色恰好都发生变化的概率是21126=, 故答案为:16【点睛】此题考查了树状图或列表法求概率,找出所有等可能情况数是解题的关键.10. 一元二次方程()()2311x x +−=的解为 __.【答案】1x =,2x =【解析】【分析】先化为一般形式,再用一元二次方程求根公式即可得到答案.【详解】解:()()2311x x +−=, 化为一般形式得:2240x x +−=, ()2142433=−××−=△,∴x =∴1x =2x =故答案为:1x =2x = 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的求根公式. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 【答案】212【解析】【分析】本题考查了根与系数的关系,牢记“两根之和等于ba −、两根之积等于c a”是解题的关键.由a 、b 满足的条件可得出a 、b 为方程22510x x −+=的两个实数根,根据根与系数的关系可得出52a b +=、12ab =,将其代入()22a b ab b a a b ab+−+=中可求出结论. 【详解】解: a b ≠,且满足22510a a −+=,22510b b −+=,∴a 、b 为方程22510x x −+=的两个实数根,52a b ∴+=,12ab =,()222212221212252a b ab b a a b a b ab ab−× +−+ ∴+==== 故答案为:212. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______.【答案】13 【解析】【分析】连接PD ,DE,易得17DE ,4EB AB AE =−=,由翻折可得4PE EB ==,由EP DP DE +≥可知,当E ,P ,D 三点共线时,DP 最小,进而可得出答案.【详解】解:连接PD ,DE ,四边形ABCD 为矩形, 90A ∴∠=°,15AD = ,8AE=,17DE ∴=,12AB = ,4EB AB AE ∴=−=,由翻折可得PE EB =,4PE ∴=, EP DP DE +≥ ,∴当E ,P ,D 三点共线时,DP 最小, 17413DP DE EP ∴=−=−=最小值.故答案:13.【点睛】本题考查翻折变换(折叠问题)、矩形的性质,熟练掌握翻折的性质是解答本题的关键.三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.【答案】该厂家一月份到三月份的口罩产量的月平均增长率为30%. 【解析】【分析】设该厂家一月份到三月份的口罩产量的月平均增长率为x ,根据一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,列出方程,解方程即可得到答案. 【详解】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x , 由题意得,()230150.7x +=解得10.3x =,1 2.3x =−(不合题意,舍去)∴该厂家一月份到三月份口罩产量的月平均增长率为30%.【点睛】此题考查了一元二次方程的应用,读懂题意,准确列出方程是解题的关键.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋. (1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为为的了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼销售单价为多少元? 【答案】(1)每袋鳕鱼的售价为85元时,每分钟的销量为150袋. (2)鳕鱼的销售单价为70元. 【解析】【分析】本题考查一元一次方程和一元二次方程的应用,解题的关键是根据题意,找到等量关系,列出方程,进行解答.(1)设每袋鳕鱼的售价为x 元,根据题意,则()1090100150x −+=,解出x ,即可; (2)设此时鳕鱼的销售单价为y 元,根据题意,则方程为()()5010901005005500y y −×−+−=,解出方程,即可. 【小问1详解】解:设每袋鳕鱼的售价为x 元,每分钟的销售量为150袋,∴()1090100150x −+=, 解得:85x =,答:每袋鳕鱼的售价为85元时,每分钟的销售量为150袋. 【小问2详解】解:设此时鳕鱼的销售单价为y 元,∴()()5010901005005500y y −×−+=, 解得:170y =,280y =, ∵要最大限度让利消费者, ∴70y =,答:此时鳕鱼的销售单价为70元.15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答) 【答案】20% 【解析】【分析】本题考查了一元二次方程应用中的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键;根据该公司10月份和12月份的营业额,即可得到关于x 的一元二次方程,解方程取其正值即可. 【详解】解:设该公司11月、12月两个月营业额的月均增长率是x ,根据题意得:的的()2250013600x +=解得:10.220%x ==,2 2.2x =−(不合题意,舍去), 答:该公司11月、12月两个月营业额的月均增长率是20%.16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长. 【答案】(1)见解析 (2)4 【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD AD BD ==,进而证明四边形DCEF 是平行四边形,根据平行四边形的性质即可得证;(2)根据直角三角形斜边上的中线等于斜边的一半求得CD ,根据中位线的性质求得DE ,根据平行四边形的性质即可求解. 【小问1详解】证明:90ACB ∠=° ,点D 是AB 中点,CD AD BD ∴==,DAC DCA ∴∠=∠,CEF A ∠=∠ , CEF DCE ∴∠=∠,CD EF ∴∥,点E 是AC 中点,DE CF ∴∥,∴四边形DCEF 是平行四边形, DE CF ∴=;【小问2详解】解:1BC = ,3AB =,AD BD = ,AE CE =,1122DE BC CF ∴===, 3AB = ,四边形DCEF 是平行四边形,1322CD EF AB ∴===, ∴四边形DCFE 的周长为132422 +×=. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论. 【答案】(1)见解析;(2)四边形ACDF 是矩形,理由见解析.【解析】【分析】(1)先根据平行四边形的性质和平行线的性质得出FAG GDC ∠=∠,然后利用ASA 即可证明;(2)首先根据全等三角形的性质得出AF CD =,进而可证四边形ACDF 是平行四边形,然后利用平行四边形的性质和角度之间的关系得出AFG 是等边三角形,则有AG GF =,进而得出AD FC =,最后利用对角线相等的平行四边形是矩形即可证明.【详解】()1证明: 四边形ABCD 是平行四边形,//AB CD ∴,FAG GDC ∴∠=∠.点G 是AD 的中点,GA GD ∴=.又AGF DGC ∠=∠ ,()AGF DGC ASA ∴≅ ;()2解:四边形ACDF 是矩形.理由:AGF DGC ≌,AF CD ∴=,FG CG =.又//AB CD ,∴四边形ACDF 是平行四边形.四边形ABCD 是平行四边形,AB CD ∴=, AB AF ∴=.又AG AB = ,AG AF ∴=.120BAD ∠=° ,60FAG ∴∠=°,AFG ∴ 是等边三角形,AG GF ∴=.2,2AD AG FC FG == ,AD FC ∴=,∴四边形ACDF 是矩形.【点睛】本题主要考查平行四边形的判定及性质,矩形的判定,全等三角形的判定及性质,等边三角形的判定及性质,掌握矩形的判定,全等三角形的判定及性质是解题的关键.。
安徽省安庆市大观区安庆市第四中学2024-2025学年九年级上学期11月期中数学试题

安庆四中2024-2025学年第一学期九年级数学期中考试试卷一.选择题(本大题共10小题,每小题4分,满分40分)1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x22.如果,那么的值是()A.B.C.D.3.下列各组中的四条线段成比例的是()A.1,1,2,3B.3,6,4,7C.5,6,7,8D.2,3,6,9 4.对于抛物线y=(x﹣1)2﹣1,下列说法正确的是()A.抛物线的开口向下B.有最大值,最大值是﹣1C.抛物线的顶点坐标是(1,1)D.当x>3时,y随x的增大而增大5.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:那么方程x2+3x﹣5=0的一个近似根是()A.1.4B.1.1C.1.2D.1.36.观察下列每组三角形,不能判定相似的是()7.在反比例函数的图象上有三个点(﹣2,y1),(﹣1,y2),,则y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y3<y2C.y1<y2<y3D.y3<y2<y18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=﹣2,记m=a+b,n=a﹣b,则下列选项中一定成立的是()A.m=n B.m<n C.m>n D.n﹣m<39.如图,在△ABC中,AD是BC边上中线,F是AD上一点,且AF:FD=1:5,连接CF并延长交AB 于E,则AE:EB等于()A.1:6B.1:8C.1:9D.1:1010.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或B.﹣3<n<﹣1或C.n≤﹣1或D.﹣3<n<﹣1或n≥1二.填空题(本大题共4小题,每小题5分,满分20分)11.若点C是线段AB的一个黄金分割点,AB=2,AC>BC,则AC的长为12.已知一条抛物线的形状与抛物线y=2x2+3形状相同,与另一条抛物线y=﹣(x+1)2﹣2的顶点坐标相同,这条抛物线的表达式为.13.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的对称轴为直线x=2,与x轴的一个交点为(1,0),则关于x的不等式ax2+bx+c>0的解集为.14.如图,矩形OABC顶点A、C分别在x、y轴上,双曲线分别交BC、AB于点D、E,连接DE并延长交x轴于点F,连接AC.下列结论:①DE∥CA;②S四边形ACDF=k;③若BD=2CD,则AE=2BE;④若点E为DF的中点,且S△AEF=3,则k=12;其中正确的有.(填写所有正确结论的序号)三.解答题(本大题共9小题,满分90分)15.(本题8分)已知线段a、b满足a:b=3:2,且a+2b=42.(1)求线段a、b的长;(2)若线段c是线段a、b的比例中项,求线段c的长.16.(本题8分)如图,在△ABC中,D、E、F分别是AB、BC上的点,且DE∥AC,AE∥DF,,BF=9cm,求EF和FC的长.17.(本题8分)综合与实践:【问题情景】某生物小组探究“酒精对人体的影响”,资料显示,一般饮用低度白酒100毫升后,血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似的用如图所示的图象表示.国家规定,人体血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.【实践探究】(1)求部分双曲线BC的函数表达式;【问题解决】(2)参照上述数学模型,假设某人晚上20:00喝完100毫升低度白酒,则此人第二天早上9:00能否驾车出行?请说明理由.18.(本题8分)如图,等腰直角△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点E是CA 延长线上一点,点F是AB上一点,且∠EDF=45°.(1)求证:△BFD∽△CDE;(2)若BF=3,CE=8,求AB的长.19.(本题10分)以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,=;(填两数字之比)(2)如图②,在线段AB上找一点P,使=(利用网格和无刻度的直尺作图,保留痕迹,不写作法);(3)如图③,大小4×4的正方形方格中,△ABC的顶点A,B,C都在小正方形的格点上,请在图中画出与△ABC相似且面积不相等的一个三角形.20.(本题10分)已知二次函数y=x2﹣2ax+3﹣2a.(1)当抛物线过点(2,1),①求该抛物线的表达式.②当﹣1<x<4时,求y的范围.(2)若函数图象上有两个不同的点A(x1,y1),B(x2,y2),且x1+x2=﹣2,求证:y1+y2>8.21.(本题12分)综合与实践:利用正方形硬纸板设计制作带盖长方体盒子四边形ABCD是边长均为30cm的正方形硬纸片,“睿智小组”设计出不同方式的带盖长方体包装盒,并画出了示意图(图①,图③)及折合成的带盖长方体盒子(图②、图④),其中,实线表示剪切线,虚线表示折痕(设计、折合及计算过程中,纸板厚度及剪切接缝处损耗忽略不计),请你观察、操作、验证并思考完成该小组提出的问题.设计方案一:如图①,将正方形硬纸片ABCD的四个角分别剪去大小相同的两个正方形和两个长方形(阴影部分所示),再沿虚线折合得到一个底面为长方形MNQP的包装盒(如图②所示).(1)若底面积MNQP为162cm2,求MG的长.设计方案二:如图③,将正方形硬纸板ABCD切去四个全等的等腰直角三角形(阴影部分所示),其中点E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图④所示),形成有一个底面为正方形GHMN的包装盒,设GF=x cm.(2)请直接写出线段BF的长(用含x的代数式表示);(3)求长方体盒子的侧面积为S(cm2)与x的函数关系式.22.(本题12分)如图(1),点P是菱形ABCD对角线BD上的一点,连接AP,以AP为腰在AP的右侧作等腰三角形APE,且使∠APE=∠ABC,AP=PE.(1)当点E在菱形ABCD内,=1时,=;(2)如图(2),当点E在菱形ABCD内,=k(k≠1),其他条件不变时,求值;(3)如图(3),当点E在菱形ABCD外,=,BP=6,菱形ABCD的面积为8,其他条件不变,请直接写出△DCE的面积.23.(本题14分)如图,抛物线y=ax2+bx÷4经过点A(﹣2,0),点B(4,0),与y轴交于点C,过点C作直线CD∥x轴,与抛物线交于点D,作直线BC,连接AC.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD+∠CAO=90°的点E的坐标;(3)点M在y轴上,且位于点C的上方,点N在直线BC上,点P为直线BC上方抛物线上一点,是否存在点N使四边形CMPN为菱形,如果存在,请直接写出点N的坐标.如果不存在,请说明理由.。
北师大版九年级数学(上册)期中复习测试题(1)(含答案详解)

期中检测题(本试卷满分120分,时间:120分钟)一、选择题(每小题3分,共30分)1.已知等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 n -B.90°-2 nC.2n D.90°-n °2.如图,已知AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8,BE =3,那么AC 的长为( ) A.8B.5C.3D.343.如图,在△ABC 中,AB =AC ,D 、E 两点分别在AC 、BC 上,BD 是∠ABC 的平分线,DE //AB ,若BE =5 cm ,CE =3 cm ,则△CDE 的周长是( )A.15 cmB.13 cmC.11 cmD.9 cm 4.一元二次方程,用配方法解该方程,配方后的方程为( )A. B.C.D.5.已知一等腰三角形的底和腰是方程的两根,则这个三角形的周长为( )A.8B.10C.8或10D.不能确定 6.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A.a =cB.a =bC.b =cD.a =b =c7.以不在同一直线上的三个点为顶点作平行四边形,最多能作( ) A.4个 B.3个 C.2个 D.1个8.如图,点E 是平行四边形ABCD 的边AD 的中点,CE 与BA 的延长线交于点F .若∠FCD =∠D ,则下列结论不成立的是( )A.AD=CFB.BF=CFC.AF=CDD.DE=EF 9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A.当AB=BC 时,它是菱形B.当AC ⊥BD 时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD 时,它是正方形10. 如图所示,在正方形ABCD 中,E 为CD 上一点,延长BC 至F ,使CF=CE ,连接DF ,BE 与DF 相交于点G ,则下面结论错误的是( ) A. BE=DF B. BG ⊥DF C.∠F +∠CEB=90° D.∠FDC +∠ABG=90°二、填空题(每小题3分,共24分)11.三角形的三条中位线围成的三角形的周长为10 cm ,则原三角形的周长是_______cm. 12.已知直角三角形两直角边长分别是5 cm 、12 cm ,其斜边上的高是_______. 13.已知方程没有实数根,则的最小整数值是_____.14.已知方程04322=-+x x 的两根为1x ,2x ,那么2221x x += . 15.已知方程23(1)532m x mx m +-+=的两根互为相反数,则m 的值为_________. 16.已知(x 2+y 2)(x 2-1+y 2)-12=0,则x 2+y 2的值是_________。17.如图,在梯形ABCD 中,AB ∥CD ,AD=CD ,E 、F 分别是AB 、BC 的中点,若∠1=35°, 则∠D =_____.18.已知菱形的两条对角线长分别为6和8,则此菱形的周长为______,面积为______.三、解答题(共66分)19.(8分)已知:如图,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .20.(8分)如果关于的一元二次方程有实数根,求的取值范围.21.(8分)如图,E 、F 是平行四边形ABCD 的对角线AC 上的点,CE=AF ,请你猜想:线段BE 与线段DF 有怎样的关系?并对你的猜想加以证明.22.(8分)(2013·山东菏泽中考)已知m 是方程x 2-x -2=0的一个实数根,求代数式的值.23.(8分)已知关于x 的方程041222=+-n mx x ,其中n m ,分别是一个等腰三角形的腰和底的长,求证这个方程有两个不相等的实数根.24.(8分)如图,在四边形ABCD 中,DB 平分∠ADC ,∠ABC =120°,∠C =60°,∠BDC =30 ;延长CD 到点E ,连接AE ,使得∠E =12∠C . (1)求证:四边形ABDE 是平行四边形; (2)若DC =12,求AD 的长.25.(8分)如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥DC ,AB =BC ,且AE ⊥BC . ⑴ 求证:AD =AE ;⑵ 若AD =8,D C =4,求AB 的长.26.(10分)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多的进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2008年底全市汽车拥有量为15万辆,而截止到2010年底,全市的汽车拥有量已达21.6万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护环境,缓解汽车拥堵状况,从2011年起,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过23.196万辆;另据统计,该市从2011年起每年报废的汽车数量是上年底汽车拥有量的10%.假定在这种情况下每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.期中检测题参考答案1.C 解析:如图,当△ABC 为锐角三角形时,已知∠A = n °,则∠C =2180n -.所以∠DBC =2218090n n =--.当△ABC 为钝角三角形时,同理可得.2.D 解析:因为CB=BE=3,所以 BD=BA=8-3=5,所以AC=34925=+.3.B 解析:因为AB=AC ,所以∠ABC =∠C .因为DE //AB ,所以∠DEC =∠ABC =∠C ,所以DE =DC . 因为BD 是∠ABC 的平分线,所以∠ABD =∠DBE .又由DE //AB ,得∠ABD =∠BDE ,所以∠DBE =∠BDE , 所以BE=DE=DC =5 cm ,所以△CDE 的周长为DE +DC +EC =5 cm+5 cm +3 cm=13 cm ,故选B. 4.B 解析:移项得,配方得,即,故选B.5.B 解析:解方程得,.由题意可得等腰三角形三边长分别为2,4,4,所以三角形周长为10,故选B. 6. A 解析:由方程满足,知方程有一个根是.又方程有两个相等的实数根,所以由根与系数的关系知,所以b =-2a ,a =c ,故选A.7.B 解析:分别以任意两点的连线为对角线都可以画出平行四边形,因此可以画出三个平行四边形.8.B 解析:由AB ∥CD , ∠FCD =∠D ,得∠FCD =∠D =∠F =∠FAD ,所以AE=EF ,EC=ED. 又AE=ED ,所以△FAE ≌△CDE ,所以AF=CD ,AE=EF=EC=ED ,所以AD=CF.故A 、C 、D 都正确,只有B 不正确. 9.D 解析:根据菱形、矩形、正方形的定义进行判断.10.C 解析:由题意可知△FDC ≌△EBC ,从而∠FDC =∠EBC , ∠F =∠CEB , BE=DF ,∵∠CEB +∠EBC =90︒,∴∠F +∠GBF =90︒,∴ BG ⊥DF. ∵∠ABG +∠EBC =90︒,∴∠ABG + ∠FDC =90︒,∴ 只有选项C 是错误的.11.20 解析:由三角形中位线的性质,三角形的中位线等于三角形第三条边长的一半,所以该三角形的周长应为2×10=20(cm ). 12.1360 cm 解析:可知该直角三角形的斜边长为13 cm ,由三角形的面积公式可得斜边上的高为136013125=⨯ (cm ) .13. 2 解析:当时,方程为一元一次方程,有一个根;当时,方程为一元二次方程,此时由根的判别式可知当方程没有实数根时的取值范围为,所以的最小整数值是2.14.425 解析:由根与系数的关系可知2321-=+x x ,122x x =- ,所以4254492)(212212221=+=-+=+x x x x x x . 15.0 解析:由根与系数的关系可知0)1(35=+m m,解得0=m .16.4 解析:将x 2+y 2看作一个整体m ,得012)1(=--m m ,整理得0122=--m m ,解得4=m 或3-=m ,由于m 是大于零的数,所以3-=m 舍去.17.110° 解析:因为EF 为△ABC 的中位线,所以∠1=∠CAB =35°,而AB ∥CD ,所以∠CAB=∠DCA =35°.又AD=CD ,△ADC 为等腰三角形,所以由三角形内角和定理 知∠D =180°-35°×2=110°.18.20,24 解析:根据菱形的对角线互相垂直平分可得. 19.证明:因为AD 是∠BAC 的平分线,所以∠CAD =∠DAB .又因为DE ⊥AB , DE 是∠ADB 的平分线,所以△ADE ≌△BDE , 所以AD=DB ,∠DAB =∠B .所以∠CAD =∠DAB =∠B =30°, 所以CD =21AD =21DB . 20.解:由于方程是一元二次方程,所以,解得.由于方程有实数根,因此,解得.因此的取值范围是且.21.解:猜想:BE ∥DF 且BE=DF .证明:∵ 四边形ABCD 是平行四边形, ∴ CB=AD ,CB ∥AD . ∴ ∠BCE=∠DAF .在△BCE 和△DAF 中,⎪⎩⎪⎨⎧=∠=∠=,,,AF CE DAF BCE AD CB∴ △BCE ≌△DAF ,∴ BE=DF ,∠BEC=∠DFA ,∴ BE ∥DF ,即BE=DF 且BE ∥DF .22. 分析:利用方程根的定义,把根代入方程,然后用整体代入法求代数式的值.解法1:∵ m 是方程x 2-x -2=0的一个根, ∴ m 2-m -2=0.∴ m 2-m =2,m 2-2=m . ∴ 原式=(m 2-m )+1)=2×(+1)=2×2=4.解法2:解方程x 2-x -2=0得其根为:x =-1或x =2,故m =-1或m =2, 当m =-1时,(m 2-m )+1)=4;当m =2时,(m 2-m )+1)=4.故代数式(m 2-m ) 21m m-+⎛⎫ ⎪⎝⎭的值为4.23.证明:因为n m ,分别是一个等腰三角形的腰和底的长, 根据三角形的三边关系,有n m >2,即224n m >. 对于方程041222=+-n mx x , 其根的判别式04414)2(2222>-=⨯--n m n m ,所以方程有两个不相等的实数根.24.(1)证明:∵ ∠ABC =120°,∠C =60°, ∴ ∠ABC +∠C =180°, ∴ AB ∥DC ,即AB ∥ED . 又∵ ∠C =60°,∠E =12∠C ,∠BDC =30°, ∴ ∠E =∠BDC =30°,∴ AE ∥BD . ∴ 四边形ABDE 是平行四边形.(2)解:由(1)得AB ∥DC ,AB ≠DC , ∴ 四边形ABCD 是梯形.∵ DB 平分∠ADC ,∠BDC =30°, ∴ ∠ADC =∠C =60°.∴ 四边形ABCD 是等腰梯形, ∴ BC =AD .∵ 在△BCD 中,∠C =60°,∠BDC =30°, ∴ ∠DBC =90°.又已知DC =12,∴ AD =BC =12DC =6. 25.(1)证明:如图,连接AC , ∵ AB ∥CD ,∴ ∠ACD =∠BAC. ∵ AB =BC ,∴ ∠ACB =∠BAC ,∴ ∠ACD =∠ACB . ∵ AD ⊥DC ,AE ⊥BC , ∴ ∠D =∠AEC =90° . 又∵ AC=AC ,∴ △ADC ≌△AEC ,∴ AD=AE . (2)解:由(1)知:AD=AE ,DC=EC .设AB =x , 则BE =x -4,AE =8.在Rt △ABE 中,∠AEB =90°, 由勾股定理得:222AB BE AE =+ ,即2228(4)x x +-=,解得:x =10.∴ AB =10. 26.解:(1)设该市汽车拥有量的年平均增长率为x ,根据题意,得6.21)1(152=+x ,解得%202.01==x ,2.22-=x (不合题意,舍去).(2)设全市每年新增汽车数量为y 万辆,则2011年底全市的汽车拥有量为(21.6×90%+y )万辆,2012年底全市的汽车拥有量为万辆.根据题意得:(21.6×90%+y )×90%+y ≤23.196,解得y ≤3. 答:该市每年新增汽车数量最多不能超过3万辆.。
24-25九年级数学期中模拟卷(深圳专用,北师大版九上第1~5章)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(深圳专用)(考试时间:90分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大九上第一章特殊平行四边形+第二章一元二次方程+第三章概率+第四章图形的相似+第五章投影与视图。
5.难度系数:0.68。
第一部分(选择题 共24分)一、选择题(本大题共8小题,每小题3分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.笔、墨、纸、砚是中国传统的文房四宝,是中国书法的必备用具,如图是寓意“规矩方圆”的一方砚台,它的俯视图是( )A .B .C .D .2.下列方程中,关于x 的一元二次方程是( )A .2(1)2(1)x x +=+B .21120x x +-=C .20ax bx c ++=D .2221x x x +=-3.根据下列表格中的对应值,可以判断关于x 的一元二次方程20ax bx c ++=的一个解x 的范围是( )x 00.51 1.522ax bx c ++15-8.75-2- 5.2513A .00.5x <<B .0.51x <<C .1 1.5x <<D .1.52x <<4.如图,已知直线a b c ∥∥,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 和B 、D 、F ,4AC =,6CE =,3BD =,DF =( )A .7B .7.5C .8D .4.55.如图,在平面直角坐标系xOy 中,以点O 为位似中心,把△AOB 放大到原来的2倍,得到A OB ¢¢△,若点B 的对应点B ¢的坐标是(4,﹣2),则点B 的坐标是( )A .(2,1)B .(2,﹣1)C .(﹣2,1)D .(﹣2,﹣1)6.顺次连接矩形ABCD 各边中点所得四边形必定是( )A .平行四边形B .菱形C .正方形D .矩形7.如图,用长为20m 的篱笆,一面利用墙(墙的最大可用长度为11m ),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1m 的两扇小门,若花圃的面积刚好为240m ,则此时花圃AB 段的长为( )m .A .4或103B .103C .4D .108.如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下结论:①ABF DBE Ð=Ð;②ABF DBE V V ∽;③AF BD ^;④22BG BH BD =×,你认为其中正确的有( )A .1个B .2个C .3个D .4个第二部分(非选择题 共76分)二、填空题(本大题共5小题,每小题3分,满分15分)9.已知23a cb d ==,若b+d≠0,则ac bd ++= .10.若1x ,2x 是方程2620230x x --=的两个实数根,则代数式211242x x x -+的值等于 .11.如图,菱形ABCD 的边长为2.5cm ,60ABC Ð=°,E ,F 分别是BC BD ,上的动点,且CE DF =,则AE AF +的最小值为 .12.在平面直角坐标系xOy 中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第n 个正方形的面积为 .13.如图,正方形ABCD 和正方形BEFG 的边长分别为1和3,点C 在边BG 上,线段DF 、EG 交于点M ,连接DE 、BM ,则BM = .三、解答题(本大题共7小题,满分61分.解答应写出文字说明,证明过程或演算步骤)14.(8分)解方程:(1)2230x x --=(用配方法求解)(2)()()121x x x =--15.(7分)如图,在网格图中(小正方形的边长为1),⊿ABC 的三个顶点都在格点上.(1)把⊿ABC 沿着x 轴向右平移6个单位得到111A B C △,请你画出111A B C △;(2)请你以坐标系的原点O 点为位似中心在第一象限内画出⊿ABC 的位似图形222A B C △,使得⊿ABC 与222A B C △的位似比为1:2;(3)请你直接写出222A B C △三个顶点的坐标.16.(7分)小汤对九年级学生参与“力学”“热学”“光学”“电学”四个类别的物理实验情况进行了抽样调查,每位同学只能选其中一个类别,根据调查结果绘制了如图所示的不完整的频数分布表和扇形统计图(图1),请根据图表提供的信息,解答下列问题:(1)m=________,热学对应的圆心角=_________.(2)如图2,当小汤随机闭合A、B、C、D这4个开关中任意2个时,请用树状图或列表法求出灯泡亮的概率.17.(8分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2020年春节长假期间,共接待游客达20万人次,预计在2022年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2020至2022年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2022年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?18.(8分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE AC ∥,且12DE AC =,连接AE 、CE .(1)求证:四边形OCED 为矩形.(2)若菱形ABCD 中,6DB =,8AC =,求EF 的长.19.(11分)【初步尝试】(1)如图①,在三角形纸片ABC 中,90ACB Ð=°,将ABC V 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为 ;【思考说理】(2)如图②,在三角形纸片ABC 中,6AC BC ==,10AB =,将ABC V 折叠,使点B 与点C 重合,折痕为MN ,求AM BM的值.【拓展延伸】(3)如图③,在三角形纸片ABC 中,9AB =,6BC =,2ACB A Ð=Ð,将ABC V 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B ¢处,折痕为CM .①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB ¢上的一个动点,将APM △沿PM 折叠得到A PM ¢V ,点A 的对应点为点A ¢,A M ¢与CP 交于点F ,求PF MF 的取值范围.20.(12分)某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边△ABC中,点P是边BC上任意一点,连接AP,以AP为边作等边△APQ,连接CQ.求证:BP = CQ;(2)变式探究:如图2,在等腰△ABC中,AB=BC,点P是边BC上任意一点,以AP为腰作等腰△APQ,使AP =PQ,ÐAPQ =ÐABC,连接CQ.判断∠ABC和∠ACQ的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC中,点P是边BC上一点,以AP为边作正方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为6,CQ=ADBC的边长.。
【5套打包】上海市初三九年级数学上期中考试单元测试卷及答案

新九年级(上)数学期中考试一试题( 含答案 )(1)一、选择题(本大题共 10 小题,共 30.0 分)1.以下运算中,结果正确的选项是()A.B. C.D.2.若是对于 x . y 的方程 2x-y+2a=0 的一个解,则常数 a 为()A. 1B. 2C. 3D. 43.以下由左到右边的变形中,是因式分解的是()A.B.C.D.4. 如图,直线 a ∥b , ∠1=120 °,则 ∠2 的度数是()A. B. C. D.5.m n m n 的值为()已知 a =6 , a =3,则 a 2 -3A.B.C. 2D. 96.以下代数式变形中,是因式分解的是()A. B.C.D.7.已知 4y 2 +my+9 是完整平方式,则 m 为()A. 6B.C.D. 128.3)整除.80 -80 能被(A. 76B. 78C. 79D. 829.假如 x=3m +1 ,y=2+9 m ,那么用 x 的代数式表示y 为()A.B.C.D.10. 已知对于 x , y 的方程组,则以下结论中正确的选项是( )① 当 a=5 时,方程组的解是;② 当 x ,y 的值互为相反数时, a=20 ;③ 不存在一个实数 a 使得 x=y ;2a-3y7,则 a=2.④ 若 2 =2A.B.C.D.二、填空题(本大题共 6 小题,共24.0 分)11. 在方程 4x-2y=7 中,假如用含有 x 的式子表示 y ,则 y=______. 12. 将方程 3x+2 y=7 变形成用含 y 的代数式表示 x ,获取 ______ .13. 若要( a-1) a-4 =1 成立,则 a=______.14.如图,将△ABC 平移到△A′B′C′的地点(点 B′在 AC 边上),若∠B=55 °,∠C=100 °,则∠AB′A′的度数为 ______ °.15.有若干张以下图的正方形 A 类、 B 类卡片和长方形 C 类卡片,假如要拼成一个长为( 2a+b),宽为( a+2 b)的大长方形,则需要 C 类卡片 ______张.16.若x+y+z=2,x2-(y+z)2=8时,x-y-z=______.三、计算题(本大题共 2 小题,共20.0 分)17.计算:(1)( 8a3b-5a2b2)÷4ab(2)( 2x+y)2-( 2x+3y)( 2x-3y)18.我县某包装生产公司承接了一批上海世博会的礼物盒制作业务,为了保证质量,该公司进行试生产.他们购得规格是170cm×40cm 的标准板材作为原资料,每张标准板材再按照裁法一或裁法二裁下 A 型与 B 型两种板材.如图 1 所示,(单位:cm)( 1)列出方程(组),求出图甲中 a 与 b 的值.( 2)在试生产阶段,若将30 张标准板材用裁法一裁剪, 4 张标准板材用裁法二裁剪,再将获取的 A 型与 B 型板材做侧面和底面,做成图 2 的竖式与横式两种无盖礼物盒.①两种裁法共产生 A 型板材 ______张, B 型板材 ______张;② 设做成的竖式无盖礼物盒x 个,横式无盖礼物盒的y 个,依据题意达成表格:竖式无盖(个)横式无盖(个)礼物盒板材x yA 型(张)4x3yB 型(张)x③做成的竖式和横式两种无盖礼物盒总数最多是______个;此时,横式无盖礼物盒可以做 ______个.(在横线上直接写出答案,无需书写过程)四、解答题(本大题共 5 小题,共36.0 分)19.化简:(1)( 2a2)4÷3a2(2)( 1+a)( 1-a) +a( a-3)20.先化简,再求值:(2x+3)( 2x-3) -( x-2)2-3x( x-1),此中x=2.21.已知 a-b=7, ab=-12 .(1)求 a2b-ab2的值;(2)求 a2+b2的值;(3)求 a+b 的值.22.如图 a 是长方形纸带,∠DEF =20°,将纸带沿 EF 折叠成图 b,再沿 BF 折叠成图 c,则图 c中的∠CFE 的度数.23.已知:如图, AB∥CD , BD 均分∠ABC,CE 均分∠DCF ,∠ACE=90°.(1)请问 BD 和 CE 能否平行?请你说明原因.(2)AC 和 BD 的地点关系如何?请说明判断的原因.答案和分析1.【答案】 A【分析】解:A 、x 3?x 3=x6,本选项正确;B 、3x 2+2x 2=5x 2,本选项错误 ;23 6选项错误;C 、(x )=x ,本 222D 、(x+y )=x +2xy+y ,本选项错误 ,应选:A .A 、利用同底数幂的乘法法 则计算获取结果,即可做出判断;B 、归并同类项获取结果,即可做出判断;C 、利用幂的乘方运算法 则计算获取结果,即可做出判断;D 、利用完整平方公式睁开获取 结果,即可做出判断.本题考察了完整平方公式,归并同 类项,同底数幂的乘法,以及 幂的乘方,娴熟掌握公式及法 则是解本题的重点.2.【答案】 B【分析】解:将x=-1,y=2 代入方程 2x-y+2a=0 得:-2-2+2a=0, 解得:a=2.应选:B .将 x=-1,y=2 代入方程中 计算,即可求出 a 的值 .本题考察了二元一次方程 组的解,方程组的解即 为能使方程 组中双方程成立的未知数的 值.3.【答案】 D【分析】解:A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误 ;B 、x 2-1=(x+1)(x-1),故此选项错误 ;C 、x 2-4+3x=(x+4)(x-1),故此选项错误 ;2D 、x -4=(x+2)(x-2),正确.直接利用因式分解的意 义分别判断得出答案.本题主要考察了因式分解的意 义,正确掌握定义是解题重点.4.【答案】 C【分析】解:∵a ∥b ∴∠3=∠2,∵∠3=180 °-∠1,∠1=120 °, ∴∠2=∠3=180 °-120 =60° °,应选 C .如图依据平行 线的性质能够 ∠2=∠3,依据邻补角的定义求出 ∠3 即可.本题考察平行线的性质,利用两直线平行同位角相等是解 题的重点,记着平行 线的性质,注意灵巧应用,属于中考常考题型.【答案】 A5.【分析】a m n解:∵ =6 ,a =3,m 2n 3∴原式 =(a )),÷(a =36÷27= 应选:A .原式利用同底数 幂的除法法 则及幂的乘方运算法 则变形,将已知等式代入 计算即可求出 值.本题考察了同底数 幂的除法,以及幂的乘方与 积的乘方,娴熟掌握运算法 则是解本题的重点.6.【答案】 D【分析】解:A 、是整式的乘法,故 A 错误;B 、左侧不等于右 边,故B 错误;C 、没把一个多项式转变成几个整式乘 积的形式,故 C 错误;D 、把一个多项式转变成几个整式乘 积的形式,故 D 正确;应选:D .依据因式分解是把一个多 项式转变成几个整式乘 积的形式,可得答案.本题考察了因式分解的意 义,把一个多项式转变成几个整式乘 积的形式是解 题重点.7.【答案】 C【分析】2解:∵4y +my+9 是完整平方式,应选:C .原式利用完整平方公式的 构造特色求出 m 的值即可.本题考察了完整平方式,娴熟掌握完整平方公式是解本 题的重点.8.【答案】 C【分析】解:∵803-80=80 ×(802-1)=80×(80+1)×(80-1)=80×81×79.∴803-80 能被 79 整除.应选:C .先提取公因式80,再依据平方查公式进行二次分解,即可得803-80=80 ×81×79,既而求得答案.本题考察了提公因式法,公式法分解因式.注意提取公因式后,利用平方差公式进行二次分解是关 键.9.【答案】 C【分析】解:x=3m +1,y=2+9m,3m=x-1,m 2y=2+(3 ),2y=(x-1 )+2, 应选:C .依据移项,可得3m 的形式,依据幂的运算,把 3m代入,可得答案.本题考察了幂的乘方与 积的乘方,先化成要求的形式,把 3m代入得出答案.10.【答案】 D【分析】解: 把 a=5 代入方程 组得:,解得:选项错误 ;,本由 x 与 y 互为相反数,获取 x+y=0 ,即y=-x ,代入方程 组得:,选项 正确;解得:a=20,本若 x=y ,则有 ,可得 a=a-5,矛盾,故不存在一个实数 a 使得 x=y ,本选项正确;方程组解得:,由题意得:2a-3y=7,把 x=25-a ,y=15-a 代入得:2a-45+3a=7,解得:a= ,本选项错误 ,则正确的选项有,应选:D .把 a=5代入方程组求出解,即可做出判断;依据题意获取 x+y=0 ,代入方程组求出 a 的值,即可做出判断;若是 x=y,获取 a 无解,本选项正确;依据题中等式获取 2a-3y=7,代入方程组求出 a 的值,即可做出判断.本题考察了二元一次方程组的解,方程组的解即为能使方程组中双方程都成立的未知数的值.11.【答案】【分析】解:4x-2y=7,解得:y=.故答案为:将 x 看做已知数求出y 即可.本题考察认识二元一次方程,解题的重点是将 x 看做已知数求出y.12.【答案】x=【分析】解:由题意可知:x=故答案为:x=依据等式的性质即可求出答案.本题考察等式的性质,解题的重点是娴熟运用等式的性质,本题属于基础题型.13.【答案】4,2,0【分析】a-4解:a-4=0,即a=4 时,(a-1) =1,a-1=1a=2时a-1 a-4当,即,()=1.时a-4当 a-1=-1,即a=0 ,(a-1) =1故 a=4,2,0.故答案为:4,2,0.依据任何非 0 的数的 0 次幂等于 1,以及 1 的任何次 幂等于 1、-1 的偶次幂等于 1即可求解.本题考察了整数指数 幂的意义,正确进行议论是重点.14.【答案】 25【分析】解:∵∠B=55°,∠C=100°,∴∠A=180 °-∠B- ∠C=180 °-55 °-100 =25° °, ∵△ABC 平移获取 △A ′ B ′,C ′ ∴AB ∥A ′ B ,′∴∠AB ′ A ′=∠A=25 °.故答案为:25.依据三角形的内角和定理求出 ∠A ,再依据平移的性 质可得 AB ∥A ′B ,′而后依据两直线平行,内错角相等可得 ∠AB ′A ′=∠A .本题考察了平移的性 质,三角形的内角和定理,平行 线的性质,熟记平移的性 质获取 AB ∥A ′B 是′解题的重点.15.【答案】 5【分析】解:长方形的面 积=(2a+b )(a+2b )=2a 2+5ab+b 2,所以要拼成一个 长为(2a+b ),宽为(a+2b )的大长方形,则需要 A 类卡片 2 张,B 类卡片 1张,C 类卡片 5 张.故答案为 5.计算长方形的面 积获取(2a+b )(a+2b ),再利用多项式乘多 项式睁开后归并,而后确立 ab 的系数即可获取需要 C 类卡片的张数.本题考察了多项式乘多 项式相乘:多项式与多项式相乘,先用一个多 项式的每一项乘此外一个多 项式的每一 项,再把所得的积相加.16.【答案】 4【分析】解:∵x 2 ( 2,)- y+z =8 ∴(x-y-z )(x+y+z )=8, ∵x+y+z=2,∴x-y-z=8 2=4÷,故答案为:4.第一把 x 2 ( 2 的左侧 分解因式,再把 x+y+z=2 代入即可获取答案.)- y+z =8此 题主要考 查了因式分解的 应键 练掌握平方差公式分解因式.平方差用,关 是熟公式:a 2-b 2=(a+b )(a-b ).217.【答案】 解:( 1)原式 =2a - ab ;( 2)原式 =4 x 2+4xy+y 2-4x 2+9y 2=10y 2+4xy .【分析】(1)原式利用多项式除以单项式法例计算即可求出 值;(2)原式利用完整平方公式,以及平方差公式 计算,去括号归并即可获取 结果.本题考察了整式的混淆运算,熟 练掌握运算法 则是解本题的重点.18.38 20 16或 17或 18【答案】 64 【分析】题,解:(1)由 意得: 解得:,答:图甲中 a 与 b 的值分别为:60、40.(2)由图示裁法一 产生 A 型板材为:2×30=60,裁法二产生 A 型板材为:1×4=4,所以两种裁法共 产生 A 型板材为 60+4=64(张),由图示裁法一 产生 B 型板材为:1×30=30,裁法二产生 A 型板材为,2×4=8,所以两种裁法共 产生 B 型板材为 30+8=38(张),故答案为:64,38.由已知和 图示得:横式无盖礼物盒的 y 个,每个礼物盒用 2张 B 型板材,所以用B 型板材 2y 张 .竖 横式无盖(个)礼物盒板 材式无盖(个)x y 张4x 3y A 型()B 型(张)x2y由上表可知横式无盖样式共 5y 个面,用 A 型 3y 张,则 B 型需要 2y 张 .则做两款盒子共需要 A 型 4x+3y 张,B 型 x+2y 张.则 4x+3y ≤64;x+2y ≤38.两式相加得 5x+5y ≤102.则 x+y ≤20.4.所以最多做 20 个.两式相减得 3x+y ≤26.则 2x ≤5.6,解得 x ≤2.8.则 y ≤18.则横式可做 16,17 或 18 个.故答案为:20,16 或 17 或 18.(1)由图示列出对于 a 、b 的二元一次方程 组求解.(2)依据已知和图示计算出两种裁法共产生 A 型板材和 B 型板材的 张数,相同由图示达成表格,并达成 计算.本题考察的知识点是二元一次方程 组的应用,重点是依据已知先列出二元一次方程组求出 a 、b 的值,再是依据图示解答.4 82.19.【答案】 解:( 1)原式 =2 a ÷3a =22(2)原式 =1- a +a -3a=1-3a .(1)依据单项式的幂的乘方法 则和除法法 则进行计算.(2)依据多项式的乘法法 则以及单项式乘多项式的法例进行计算.本题考察单项 式的乘方法 则、单项式除以 单项式的法 则、乘法公式等知 识,正确运用法例是解题的重点.20.【答案】 解:( 2x+3)( 2x-3) -( x-2) 2-3x ( x-1)2 2 2=4x -9- x +4x-4-3x +3x =7x-13,当 x=2 时,原式 =7×2-13=1.【分析】利用平方差及完整平方公式化 简,再把x=2 代入求解即可.本题主要考察了整式的化 简求值,解题的重点是正确的化 简.21.【答案】 解:( 1) ∵a-b=7, ab=-12 ,2 2∴ab-ab =ab (a-b ) =-12 ×7=-84;( 2) ∵a-b=7 , ab=-12 ,2∴(a-b ) =49 ,22∴a +b -2ab=49,( 3) ∵a 2+b 2=25 ,2∴(a+b ) =25+2ab=25-24=1 ,【分析】(1)直接提取公因式 ab ,从而分解因式得出答案;(2)直接利用完整平方公式从而求出答案;(3)直接利用(2)中所求,联合完整平方公式求出答案.本题主要考 查了完整平方公式以及提取公因式法分解因式,正确应用完整平方公式是解 题重点.22.【答案】 解: ∵AD ∥BC ,∴∠DEF =∠EFB=20 °,在图 b 中 ∠GFC =180°-2∠EFG =140°, 在图 c 中 ∠CFE =∠GFC -∠EFG=120°.【分析】由平行线的性质知∠DEF=∠EFB=20°,从而获取图 b 中∠GFC=140°,依照图 c 中的∠CFE=∠GFC-∠EFG 进行计算.本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题 ( 本大题共 10 个小题,每题 3 分,共 30 分.在每个小题给出的四个选项中,只有一项切合题目要求)题号12345678910答案A D B B C C D D D A1.抛物线 y=2x2- 1 的极点坐标是 (A)A. (0 ,- 1)B.(0 , 1)C.( -1,0)D.(1,0)2.假如A. 2x=- 1 是方程 x2- x+ k= 0 的解,那么常数B .1 C.-1D.-2k 的值为 (D)3.将抛物线y= x2 向右平移 2 个单位长度,再向上平移 1 个单位长度,所得抛物线的分析式是 (B)A. y= (x +2)2+1B.y=(x-2)2+1C.y=(x+2)2-1D.y=(x-2)2-14.小明在解方程x2- 4x-15= 0 时,他是这样求解的:移项,得 x2- 4x= 15,两边同时加4,2+ 4=19,∴ (x - 2)2∴ x- 2=±1= 2+2=2-19. 这类解方得 x - 4x= 19.19. ∴ x19, x程的方法称为 (B)A.待定系数法 B .配方法C.公式法D.因式分解法5.以下图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=- 2x2+ x 经过 A( - 1,y1) 和 B(3 ,y2) 两点,那么以下关系式必定正确的是(C)A. 0< y2< y1B.y1<y2<0C.y2<y1<0D.y2<0<y17.已知 a, b, c 分别是三角形的三边长,则方程(a +b)x 2+ 2cx +(a + b) =0 的根的状况是(D)A.有两个不相等的实数根B.有两个相等的实数根C.可能有且只有一个实数根D.没有实数根8.如图,将矩形ABCD绕点 A 顺时针旋转到矩形 AB′ C′D′的地点,旋转角为α (0°<α<90° ) .若∠ 1= 112°,则∠ α的大小是 (D)A. 68° B .20° C .28° D .22°29.已知二次函数y= ax + bx+ c 的图象以下图,则以下结论正确的选项是(D)10.如图,将△ ABC绕着点 B 顺时针旋转60°获取△ DBE,点 C 的对应点 E 恰巧落在AB的延PB2长线上,连结AD, AC与 DB交于点 P,DE与 CB交于点 Q,连结 PQ.若 AD= 5 cm,AB=5,则PQ的长为 (A)A. 2 cm B.57cm C . 3 cm D.cm 22二、填空题 ( 本大题共 5 个小题,每题 3 分,共 15 分)11.在平面直角坐标系中,点A(0, 1)对于原点对称的点是(0,- 1).12.方程 x(x + 1) = 0 的根为 x1=0, x2=- 1.13.某楼盘2016 年房价为每平方米8 100元,经过两年连续降价后,2018 年房价为7 600元.设该楼盘这两年房价均匀降低率为x,依据题意可列方程为8__100(1 -x) 2= 7__600.14.二次函数y= ax2+bx+c(a≠0) 中x,y的部分对应值以下表:x- 1012y6323则当 x=- 2 时, y 的值为 11.15. 如图,射线 OC与 x 轴正半轴的夹角为30°,点 A 是 OC上一点, AH⊥ x 轴于 H,将△AOH绕着点 O逆时针旋转 90°后,抵达△ DOB的地点,再将△ DOB沿着 y 轴翻折抵达△ GOB的地点.若点 G恰幸亏抛物线 y=x2 (x > 0) 上,则点 A 的坐标为 (3 , 3) .三、解答题 ( 本大题共 8 个小题,共75 分.解答应写出文字说明,证明过程或演算步骤) 16. ( 共题共 2 个小题,每题 5 分,共 10 分 )(1) 解方程: x(x + 5) = 5x+ 25;解: x(x + 5) = 5(x +5) , x(x + 5) - 5(x + 5) = 0,∴(x - 5)(x + 5) = 0. ∴ x- 5=0 或 x+5= 0.∴x1= 5, x2=- 5.(2)已知点 (5 , 0) 在抛物线 y=- x2+ (k +1)x - k 上,求出抛物线的对称轴.解:将点 (5 , 0) 代入 y=- x2+ (k + 1)x -k,得 0=- 52+ 5× (k + 1) - k,解得 k= 5. ∴ y=- x2+6x- 5.6∴该抛物线的对称轴为直线x=-2×(- 1)=3.17.( 本题 6分) 以下图的是一桥拱的表示图,它的形状近似于抛物线,在正常水位时,该桥下边宽度为20 米,拱顶距离水面 4 米,成立平面直角坐标系以下图.求抛物线的分析式.解:设该抛物线的分析式为2 y=ax .由图象可知,点 B(10,- 4) 在函数图象上,代入y= ax2,得1,100a=- 4,解得 a=-25∴该抛物线的分析式为 y=-1x2.2518. ( 本题 7 分 ) 如图,在平面直角坐标系中,有一Rt △ABC,已知△ A1AC1是由△ ABC绕某点顺时针旋转 90°获取的.(1) 请你写出旋转中心的坐标是(0 ,0);(2)以 (1) 中的旋转中心为中心,画出△ A1AC1顺时针旋转 90°, 180°后的三角形.解:如图,△ B1A1C2,△ BB1C3即为所求作图形.19. ( 本题 7 分 )(1) 求二次函数y= x2+ x- 2 与 x 轴的交点坐标;(2) 若二次函数y=- x2+ x+ a 与 x 轴只有一个交点,求 a 的值.2解: (1) 令 y= 0,则有 x + x- 2= 0.∴二次函数y= x2+ x-2 与 x 轴的交点坐标为(1 , 0) , ( - 2,0) .(2)∵二次函数 y=- x2+ x+ a 与 x 轴只有一个交点,∴令 y= 0,即- x2+ x+a= 0 有两个相等的实数根.1∴Δ= 1+ 4a= 0,解得 a=- .420.( 本题 7 分) 如图,已知在 Rt △ABC中,∠ ABC= 90°,先把△ ABC绕点 B顺时针旋转 90°至△ DBE后,再把△ ABC沿射线 AB 平移至△ FEG, DE, FG订交于点 H.(1)判断线段 DE, FG的地点关系,并说明原因;(2)连结 CG,求证:四边形 CBEG是正方形.解: (1)FG ⊥ DE,原因以下:∵把△ ABC绕点 B 顺时针旋转 90°至△ DBE,∴∠ DEB=∠ ACB.∵把△ ABC沿射线平移至△FEG,∴∠ GFE=∠ A.∵∠ ABC= 90°,∴∠ A+∠ ACB= 90° . ∴∠ DEB+∠ GFE= 90° . ∴∠ FHE= 90° .∴FG⊥ DE.(2)证明:依据旋转和平移可得∠ GEF=90°,∠ CBE= 90°, CG∥ EB, CB= BE,∵CG∥ EB,∴∠ BCG=∠ CBE=90° . ∴四边形 CBEG是矩形.又∵ CB= BE,∴四边形 CBEG是正方形 .21.( 本题 12 分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为 60 元,每日可售出 20 件,为迎接“双十一” ,专卖店决定采纳适合的降价举措,以扩大销售量,经市场检查发现,假如每件童装降价 1 元,那么均匀每日可多售出2件.设每件童装降价x 元 (x > 0)时,均匀每日可盈余 y元.(1)写出 y 与 x 的函数关系式;(2)依据 (1) 中你写出的函数关系式,解答以下问题:①当该专卖店每件童装降价 5 元时,均匀每日盈余多少元?②当该专卖店每件童装降价多少元时,均匀每日盈余400 元?③该专卖店要想均匀每日盈余600 元,可能吗?请说明原因.解: (1) 依据题意,得 y=2 (20 + 2x)(60 - 40- x) = (20 + 2x)(20 - x) = 400+40x - 20x - 2x=- 2x2+ 20x+ 400.2∴y=- 2x +20x + 400.(2) ①当 x= 5 时, y=- 2× 52+20× 5+ 400= 450,∴当该专卖店每件童装降价5 元时,均匀每日盈余450 元.②当 y= 400 时, 400=- 2x2+ 20x+ 400,整理,得x2-10x = 0,解得 x1= 10, x2= 0( 不合题意,舍去) ,∴当该专卖店每件童装降价10 元时,均匀每日盈余400 元.③该专卖店均匀每日盈余不行能为600 元.原因:当y= 600 时, 600=- 2x2+20x+400,整理,得x2- 10x+ 100=0,∵Δ= ( - 10) 2- 4× 1×100=- 300< 0,∴方程没有实数根.故该专卖店均匀每日盈余不行能为600 元.22. ( 本题12 分 ) 综合与实践:问题情境:(1) 如图1,两块等腰直角三角板△ABC和△ ECD以下图摆放,此中∠ACB=∠ DCE= 90°,点 F,H, G分别是线段 DE, AE,BD的中点, A,C, D 和 B, C, E 分别共线,则 FH 和 FG 的数目关系是 FH= FG,地点关系是 FH⊥FG;合作研究:(2)如图 2,若将图 1 中的△ DEC绕着点 C顺时针旋转至 A,C,E 在一条直线上,其余条件不变,那么 (1) 中的结论还成立吗?若成立,请证明;若不行立,请说明原因;(3) 如图 3,若将图 1 中的△ DEC绕着点 C 顺时针旋转一个锐角,那么(1) 中的结论能否还成立?若成立,请证明;若不行立,请说明原因.解: (2)(1)中的结论还成立.证明:延伸AD交 BE于点 M.∵CD= CE,AC= BC,∠ ACD=∠ BCE= 90°,∴△ ACD≌△ BCE(SAS).∴ AD= BE,∠ CAD=∠ CBE.∵∠ CBE+∠ CEB= 90°,∴∠ CAD+∠ CEB= 90° . ∴∠ AME= 90° . ∴AD⊥ BE.∵F, H, G分别是 DE, AE, BD的中点,11∴F H=2AD, FH∥ AD,FG=2BE, FG∥ BE.∴ FH= FG.∵AD⊥ BE,∴ FH⊥ FG.∴ (1) 中结论还成立.(3)(1)中的结论仍成立.证明:连结AD, BE,两线交于点Z, AD交 BC于点 X.11同(2) 可得 FH=2AD,FH∥ AD,FG=2BE, FG∥ BE.∵△ ECD,△ ACB都是等腰直角三角形,∠ECD=∠ ACB= 90°,∴ CE= CD, AC= BC.∴∠ ACD =∠ BCE.∴△ ACD ≌△ BCE(SAS).∴ AD = BE ,∠ EBC =∠ DAC.∴FH = FG.∵∠ DAC +∠ CXA = 90°,∠ CXA =∠ DXB ,∴∠ DXB +∠ EBC = 90° . ∴∠ BZA = 180°- 90°= 90° . ∴ AD ⊥ BE.∵ F H ∥ AD ,FG ∥ BE ,∴ FH ⊥ FG.∴ (1) 中的结论仍成立.23. ( 本题 14 分 ) 综合与研究:如图,二次函数 y =-14x2+32x + 4 的图象与x 轴交于点 B新人教版九年级数学上册期中考试一试题(含答案)一. 选择题(每题3 分,总分 36 分)1.以下方程中,对于 x 的一元二次方程是( )A .( x +1) 2= 2( x +1)B .C . ax 2+bx +c = 0D . x 2+2x = x 2﹣ 12.若对于 x 的一元二次方程( m ﹣ 2)x 2﹣ 2x +1= 0 有实根,则 m 的取值范围是()A . <3B . ≤3C . <3且 ≠2D . ≤3且 ≠2mm mmmm3.方程 ( ﹣ 1)= x 的根是()x xA . x =2B . x =﹣ 2C . x 1=﹣ 2, x 2= 0D .x 1= 2, x 2 =04.以下方程中以 1,﹣ 2 为根的一元二次方程是()A .( x +1)( x ﹣ 2)= 0B .( x ﹣ 1)( x +2 )= 1C .( x +2 ) 2= 1D .5.把二次函数 y = 3x 2 的图象向左平移 2 个单位,再向上平移1 个单位,所获取的图象对应的二次函数表达式是( )A . y =3( x ﹣ 2) 2 +1B . y = 3( x +2) 2﹣ 1C . y =3( x ﹣ 2) 2 ﹣ 1D . y = 3( x +2) 2+1 6.函数 y =﹣ x 2﹣ 4x +3 图象极点坐标是()A .( 2,﹣ 7)B .( 2, 7)C .(﹣ 2,﹣ 7)D .(﹣ 2, 7)7.抛物线 y = (x +2) 2+1 的极点坐标是()A .( 2, 1)B .(﹣ 2, 1)C .( 2,﹣ 1)D .(﹣ 2,﹣ 1)8.y=(x﹣ 1)2+2 的对称轴是直线()A.x=﹣ 1B.x=1C.y=﹣ 1D.y= 1 9.假如x1, x2是方程x2﹣2x﹣1=0的两个根,那么x1+x2的值为()A.﹣ 1B. 2C.D.10.当a>0, b<0, c>0时,以下图象有可能是抛物线y= ax2+bx+c 的是()A.B.C.D.11.无论x 为什么值,函数y=ax2++(≠0)的值恒大于0 的条件是()bx c aA.a>0,△> 0B.a>0,△< 0C.a< 0,△< 0D.a< 0,△> 0 12.某班同学毕业时都将自己的照片向全班其余同学各送一张表示纪念,全班共送1035 张照片,假如全班有 x 名同学,依据题意,列出方程为()A.x(x+1)= 1035B.x(x﹣ 1)= 1035× 2C.x(x﹣ 1)= 1035D. 2x(x+1)= 1035二. 填空题(每题 3 分,总分18 分)13.若对于x的一元二次方程x2﹣3x+m=0有实数根,则m的取值范围是.14.方程x 2﹣ 3 +1= 0 的解是.x15.以下图,在同一坐标系中,作出①y=3x2② y=x2③ y= x2的图象,则图象从里到外的三条抛物线对应的函数挨次是(填序号).16.抛物线y=﹣ x2+15有最点,其坐标是.17.水稻今年一季度增产 a 吨,此后每季度比上一季度增产的百分率为x,则第三季度化肥增产的吨数为.18.已知二次函数y=+5x﹣ 10,设自变量的值分别为x1, x2, x3,且﹣3<x1<x2< x3,则对应的函数值y1,y2, y3的大小关系为三. 解答题(本大题共8 个小题,)19.( 6 分)解方程x2﹣4x+1=0x( x﹣2)=4﹣2x;20.( 6 分)抛物线y= ax2+bx+c 的极点为(2,4),且过(1,2)点,求抛物线的分析式.21.( 8 分)已知对于x 的一元二次方程x2﹣3x+m=0有两个不相等的实数根x1、 x2.(1)求m的取值范围;(2)当x1= 1 时,求另一个根x2的值.22.( 8 分)已知:抛物线y=﹣x2+x﹣(1)直接写出抛物线的张口方向、对称轴、极点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x为什么值时,y随x的增大而增大?23.( 9 分)百货商铺服饰柜在销售中发现:某品牌童装均匀每日可售出20 件,每件盈余40元.为了迎接“六一”国际小孩节,商场决定采纳适合的降价举措,扩大销售量,增添盈余,减少库存.经市场检查发现:假如每件童装降价 1 元,那么均匀每日便可多售出2件.要想均匀每日销售这类童装盈余1200元,那么每件童装应降价多少元?24.( 9分)某广告公司要为客户设计一幅周长为12m的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得依据这个方案所确立的广告牌的长和宽能使获取的设计费最多,设计费最多为多少元?25.( 10分)如图,对称轴为直线x=2的抛物线y= x2+bx+c与x 轴交于点 A 和点B,与y 轴交于点 C,且点 A 的坐标为(﹣1,0)(1)求抛物线的分析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)26.(10 分)某片果园有果树80 棵,现准备多种一些果树提升果园产量,可是假如多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果 y(千克),增种果树x(棵),它们之间的函数关系以下图.(1)求y与x之间的函数关系式;(2)在投入成本最低的状况下,增种果树多少棵时,果园能够收获果实6750 千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?参照答案一. 选择题1.以下方程中,对于x 的一元二次方程是()A.(x+1)2= 2(x+1)B.C.ax2+bx+c= 0D.x2+2x=x2﹣ 1【剖析】利用一元二次方程的定义判断即可.解:以下方程中,对于x 的一元二次方程是(x+1)2=2( x+1),应选: A.【评论】本题考察了一元二次方程的定义,娴熟掌握一元二次方程的定义是解本题的重点.2.若对于x 的一元二次方程(﹣ 2)x2﹣ 2 +1= 0 有实根,则的取值范围是()m x mA.<3B.≤3C.<3且≠2D.≤3且≠2 m m m m m m【剖析】因为x 的一元二次方程(﹣ 2)2﹣2x+1= 0 有实根,那么二次项系数不等于0,m x而且其鉴别式△是非负数,由此能够成立对于m的不等式组,解不等式组即可求出m的取值范围.解:∵对于x 的一元二次方程(m﹣2) x2﹣2x+1=0有实根,∴m﹣2≠0,而且△=(﹣2)2﹣ 4(m﹣ 2)= 12﹣ 4m≥ 0,∴m≤3且 m≠2.应选: D.【评论】本题考察了根的鉴别式的知识,总结:一元二次方程根的状况与鉴别式△的关系:(1)△> 0? 方程有两个不相等的实数根;(2)△= 0? 方程有两个相等的实数根;(3)△< 0? 方程没有实数根.本题牢记不要忽视一元二次方程二次项系数不为零这一隐含条件.3.方程x( x﹣1)= x 的根是()A.x=2B.x=﹣ 2C.x1=﹣ 2,x2= 0D.x1= 2,x2=0【剖析】先将原方程整理为一般形式,而后利用因式分解法解方程.解:由原方程,得x2﹣2x=0,∴x( x﹣2)=0,∴x﹣2=0或 x=0,解得, x1=2, x2=0;应选: D.【评论】本题考察了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要依据方程的特色灵巧采纳适合的方法.4.以下方程中以1,﹣ 2 为根的一元二次方程是()A.(x+1)(x﹣ 2)= 0B.(x﹣ 1)(x+2)= 1C.(x+2)2= 1D.【剖析】依据因式分解法解方程对 A 进行判断;依据方程解的定义对 B 进行判断;依据直接开平方法对C、 D进行判断.解: A、 x+1=0或 x﹣2=0,则 x1=﹣1, x2=2,所以 A 选项错误;B、 x=1或 x=﹣2不知足( x﹣1)( x+2)=1,所以 B 选项错误;C、 x+2=±1,则 x1=﹣1, x2=﹣3,所以 C选项错误;、+=±,则x1= 1,=﹣ 2,所以D选项正确.D x x2应选: D.【评论】本题考察认识一元二次方程﹣因式分解法:先把方程的右边化为0,再把左侧经过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转变为解一元一次方程的问题了(数学转变思想).也考察了直接开平方法解一元二次方程,5.把二次函数y= 3x2的图象向左平移 2 个单位,再向上平移 1 个单位,所获取的图象对应的二次函数表达式是()A.y=3(x﹣ 2)2 +1B.y= 3(x+2)2﹣ 1C.y=3(x﹣ 2)2﹣ 1D.y= 3(x+2)2+1【剖析】变化规律:左加右减,上加下减.解:依照“左加右减,上加下减”的规律,y = 3 2的图象向左平移 2 个单位,再向上平移 1 x个单位获取y = 3(x+2)2+1.应选.D【评论】考察了抛物线的平移以及抛物线分析式的性质.6.函数=﹣2﹣ 4+3 图象极点坐标是()y xxA.( 2,﹣ 7)B.( 2, 7)C.(﹣ 2,﹣ 7)D.(﹣ 2, 7)【剖析】先把二次函数化为极点式的形式,再得出其极点坐标即可.解:∵原函数分析式可化为:y=﹣( x+2)2+7,∴函数图象的极点坐标是(﹣2, 7).应选: D.【评论】本题考察的是二次函数的性质,依据题意把二次函数的分析式化为极点式的形式是解答本题的重点.7.抛物线y=(x+2)2+1的极点坐标是()A.( 2, 1)B.(﹣ 2, 1)C.( 2,﹣ 1)D.(﹣ 2,﹣ 1)【剖析】已知分析式是抛物线的极点式,依据极点式的坐标特色,直接写出极点坐标.解:因为 y=(x+2)2+1是抛物线的极点式,由极点式的坐标特色知,极点坐标为(﹣2,1).应选: B.【评论】考察极点式y= a( x﹣h)2+k,极点坐标是(h, k),对称轴是x=h.要掌握极点式的性质.8.y=(x﹣ 1)2+2 的对称轴是直线()A.x=﹣ 1B.x=1C.y=﹣ 1D.y= 1【剖析】二次函数的一般形式中的极点式是:y= a( x﹣ h)2+k( a≠0,且 a,h,k 是常数),它的对称轴是x= h,极点坐标是(h, k).解: y=( x﹣1)2+2的对称轴是直线x=1.应选:B.【评论】本题主要考察二次函数极点式中对称轴的求法.9.假如x1, x2是方程x2﹣2x﹣1=0的两个根,那么x1+x2的值为()A.﹣ 1B. 2C.D.【剖析】能够直接利用两根之和获取所求的代数式的值.解:假如 x1, x2是方程 x2﹣2x﹣1=0的两个根,那么 x1+x2=2.应选: B.【评论】本题考察一元二次方程ax2+bx+c=0的根与系数的关系即韦达定理,两根之和是,两根之积是.10.当a>0,b< 0,c> 0 时,以下图象有可能是抛物线y= ax2+bx+c 的是()A.B.C.D.【剖析】依据二次函数的图象与系数的关系可知.解:∵ a>0,∴抛物线张口向上;∵b<0,∴对称轴为x=>0,∴抛物线的对称轴位于y 轴右边;∵c>0,∴与 y 轴的交点为在 y 轴的正半轴上.应选: A.【评论】本题考察二次函数的图象与系数的关系.11.无论x 为什么值,函数y=ax2+bx+c( a≠0)的值恒大于0 的条件是()A.a>0,△> 0 B.a>0,△< 0 C.a< 0,△<【剖析】依据二次函数的性质可知,只需抛物线张口向上,且与0D.a< 0,△>x 轴无交点即可.解:欲保证x 取一确实数时,函数值y 恒为正,则一定保证抛物线张口向上,且与x 轴无交点;则 a>0且△<0.应选:B.【评论】当 x 取一确实数时,函数值y 恒为正的条件:抛物线张口向上,且与x 轴无交点;当 x 取一确实数时,函数值y 恒为负的条件:抛物线张口向下,且与x 轴无交点.12.某班同学毕业时都将自己的照片向全班其余同学各送一张表示纪念,全班共送1035张照片,假如全班有x 名同学,依据题意,列出方程为()A.x(x+1)= 1035B.x(x﹣ 1)= 1035× 2C.x(x﹣ 1)= 1035D. 2x(x+1)= 1035【剖析】假如全班有x 名同学,那么每名同学要送出(x﹣1)张,共有 x 名学生,那么总合送的张数应当是x( x﹣1)张,即可列出方程.解:∵全班有x 名同学,∴每名同学要送出( x﹣1)张;又∵是互送照片,∴总合送的张数应当是x( x﹣1)=1035.应选: C.【评论】本题考察一元二次方程在实质生活中的应用.计算全班共送多少张,第一确立一个人送出多少张是解题重点.二. 填空题(每题 3 分,总分18 分)13.若对于x 的一元二次方程x2﹣3x+m=0有实数根,则 m的取值范围是m≤.【剖析】在与一元二次方程相关的求值问题中,一定知足以下条件:在有实数根下一定知足△= b2﹣4ac≥0.解:一元二次方程x 2﹣ 3+ = 0 有实数根,x m△= b2﹣4ac=9﹣4m≥0,解得 m.【评论】总结:一元二次方程根的状况与鉴别式△的关系:(1)△> 0? 方程有两个不相等的实数根;(2)△= 0? 方程有两个相等的实数根;(3)△< 0? 方程没有实数根.14.方程x2﹣ 3x+1= 0 的解是x1=,x2=.【剖析】察看原方程,可用公式法求解;第一确立a、 b、c 的值,在b2﹣4ac≥0的前提条件下,代入求根公式进行计算.解: a=1,b=﹣3,c=1,2b ﹣4ac=9﹣4=5>0,x=;。
福建省福州市第一中学2023-2024学年九年级上学期期中模拟数学试题(含答案解析)

福建省福州市第一中学2023-2024学年九年级上学期期中模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....A .13x -<<B .3x >C .1x <-D .3x >或1x <-6.如图,在ABC 中,65ABC ∠=︒,BC AC >,将ABC 绕点A 逆时针旋转得到ADE V ,点B 的对应点D 恰好落在BC 边上,C 的对应点为E .则下列结论一定正确的是()A .AB AD =B .AC DE =C .65CAE ∠=︒D .ABC AED∠=∠7.抛物线y =ax 2﹣2ax+4(a >0),下列判断正确的是()A .当x >2时,y 随x 的增大而增大B .当x <2时,y 随x 的增大而增大C .当x >1时,y 随x 的增大而增大D .当x <1时,y 随x 的增大而增大8.如图,ABC 中,50A ∠=︒,以BC 为直径作O ,分别交AB 、AC 于D 、E 两点,分别过D 、E 两点作O 的切线,两条切线交于P 点,则P ∠=()A .70︒B .80︒C .90︒D .100︒9.某商品的进价为每件60元,现在的售价为每件80元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是()A .20010y x=-B .()()200108060y x x =---C .()()200108060y x x =+--D .()()200108060y x x =--+10.已知抛物线223y x ax a -=-与x 轴有两个交点,其中一个交点的横坐标大于1,另二、填空题15.若m ,n 为一元二次方程16.如图,等边ABC 线段BM 点B 逆时针旋转的最小值是三、解答题17.解方程:23720x x -+=.18.已知关于x 的方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)若0x =是方程的一个根,求方程的另一个根.19.受各方面因素的影响,最近两年来某地平均房价由10000元/平方米,下降到8100元/平方米,如果在这两年里,年平均下降率相同.(1)求年平均下降率;(2)按照这个年平均下降率,预计下一年房价每平方米多少元?四、证明题20.如图,AB 是O 的直径,C 是O 上的一点,直线MN 经过点C ,过点A 作直线MN 的垂线,垂足为点D ,且AC 平分BAD ∠.(1)求证:直线MN 是O 的切线;(2)若4=AD ,5AC =,求O 的半径.五、作图题21.如图,在88⨯的正方形网格中(每个小正方形的边长均为1)有一个ABC ,其顶点均在小正方形顶点上,请按要求画出图形.(1)将ABC 绕点C 顺时针旋转90︒得到CDE (点A 、B 的对应点分别为D 、E ),画出CDE ;(2)在正方形网格的格点上找一点F ,连接BF FE BE 、、,使得FBE 的面积等于BCE 的面积.(画出一种情况即可)六、解答题22.某抛物线形拱桥的截面图如图所示.某数学小组对这座拱桥很感兴趣,他们利用测量工具测出水面的宽AB 为8米.AB 上的点E 到点A 的距离1AE =米,点E 到拱桥顶(1)求该抛物线所对应的函数表达式.(2)求拱桥顶面离水面AB 的最大高度.(1)判断ABC 的形状,并证明你的结论.(2)若57PB PC ==,,求PA 的长24.在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理,如图,已知 AB ,作图过程.(1)尺规作图(保留作图痕迹,不写作法)①作线段AC 的垂直平分线DE ②以点D 为圆心,DA 长为半径作弧,交参考答案:()2y a x h k =-+中,对称轴为x h =,顶点坐标为(),h k .4.D【分析】此题考查切线的性质,直角三角形30︒角的性质,解题中遇切线,有交点要连半径得垂直,无交点要作垂直证半径,直角三角形30︒所对的直角边等于斜边的一半,正确理解性质定理并应用是解题的关键.【详解】解:连接OC ,∵PC 是O 的切线,∴90OCP ∠=︒,∵OA OC =,∴30OAC OCA ∠=∠=︒,∴60COP OAC OCA ∠=∠+∠=︒,∴30P ∠=︒,∴210OP OC ==∴1055BP OP OB =-=-=,故选:D .5.A【详解】由图象可以看出:二次函数与x 轴的两个交点()()1,0,3,0.-0y <时,图象在x 轴的下方,此时13x -<<.故选:A.6.A【分析】由旋转可知ABC ADE △≌△,由全等的性质可知AB AD =,故选项A 正确;由全等可知BC DE =,结合BC AC >,可得DE AC >,故选项B 不正确;根据等边对等角可知65ABC ADB ∠=∠=︒,所以18050BAD ABC ADB ∠=︒-∠-∠=︒,由全等可知BAC DAE ∠=∠,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小;故选:C.【点睛】此题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答.8.D【分析】本题考查了切线的性质:圆的切线垂直于过切点的半径和三角形的内角和定理以及四边形的内角为360︒,解题的关键是连接圆心和切点得到90︒的角和挖掘出隐藏条件圆的半径处处相等.连接OD,OE,根据切线的性质:圆的切线垂直于过切点的半径和三角形的内角和定理以∠的度数.及四边形的内角和即可求出P【详解】解:连接OD,OE,,PD是圆的切线,PE⊥,∴⊥,OE PEOD PD∠=∠=︒,PDO PEO90P∴∠=︒-︒-︒-∠=︒-∠,360909051805,=OD OB∴∠=∠,12∠∠,同理:3=4∠=︒,A50∴∠+∠=︒-∠=︒,A24180130()∴∠=︒-∠-∠=︒-︒-∠+∠=︒,5180180[360224]80DOB EOC∴∠=︒-︒=︒.P18080100故选:D.9.DOA OC = ,OAC OCA ∴∠=∠,∵AC 平分BAD ∠,CAB DAC ∴∠=∠,DAC OCA ∴∠=∠,∥OC AD ∴,∵OCN ADC ∠∠=,(1)(2)【分析】本题考查了作图:旋转变换,三角形的面积问题.()1根据旋转的性质可知,对应角都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形;()2三角形面积相等时,本题要充分利用等底等高的三角形面积相等这一性质即可构造.【详解】(1)利用网格特点和旋转的性质,画出点A、B的对应点D、E即可,如下图:(2)平移BE使它过点C,则可得到格点F,顺次连接B、E、F可得FBE.如下图:∴AMP ANB ∠=∠,∵APB APC PA PA ∠=∠=,,∴()AAS PAN PAM ≌,∴AM AN PN PM ==,,∵AB AC =,∴()Rt Rt HL ABN ACM ≌△△,∴CM BN =,∴5PM PB BN PB CM =+=+=∵7PM PC CM CM =-=-,。
2023-2024学年湖北省武汉市青山区九年级上学期期中数学质量检测模拟试题(含解析)

2023-2024学年湖北省武汉市青山区九年级上学期期中数学质量检测模拟试题第I 卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.一元二次方程223x x -=化成一般形式后,二次项系数和常数项分别是()A.2,3B.2,-3C.-2,-3D.2,-12.搭载神舟十六号载人飞船的长征二号F 遥十六运载火箭于2023年5月30日成功发射升空,景海鹏、朱杨柱、桂海潮3名航天员开启“太空出差”之旅,展现了中国航天科技的新高度,下列图标中,其文字上方的图案是中心对称图形的是()A. B.C. D.3.用配方法解一元二次方程2890x x ++=,此方程可化为()A.()249x +=- B.()247x +=- C.()2425x += D.()247x +=4.将抛物线2y x =向下平移3个单位长度,再向左平移5个单位长度,得到新抛物线的解析式为()A.()235y x =-+ B.()253y x =+-C.()235y x =+- D.()253y x =-+5.一元二次方程2250x x --=的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定6.如图,点A ,B ,C 在O 上,若90C ∠=︒,则ABO ∠的度数为()A.30°B.40°C.50°D.60°7.如图,在64⨯的方格纸中,格点ABC △(三个顶点都是格点的三角形)经过旋转后得到格点DEF △,则其旋转中心是()A.格点MB.格点NC.格点PD.格点Q8.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降价的百分率为x ,根据题意列出的方程是()A.()2250013200x += B.()2500123200x +=C.()2320012500x -= D.()3200122500x -=9.如图,四边形ACBD 是O 内接四边形,延长BC ,DA 交于点E ,延长CA ,BD 交于点F ,30E F ∠=∠=︒,CD 是ACB ∠的角平分线,若CD =AF 的长为()+ B.2+ C.3 D.410.关于x 的二次函数2221y x mx m m =-+++,在12x -≤≤时的最大值与最小值的差大于15,则m 的取值范围是()A.5m > B.2m <-或3m >C.23m -<< D.2m <-第II 卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卡的指定位置.11.点()4,5A -关于原点成中心对称的点的坐标为_______.12.已知一元二次方程2280x x --=的两根为1x ,2x ,则12x x +=_______.13.如图,AB 为O 的直径,弦CD AB ⊥于点E ,若6CD =,2EB =,则OA 的长为_______.14.如图,在一幅长为60cm ,宽为40cm 的亚运会吉祥物图画的四周镶一条相同宽度的纸边,制成一幅矩形挂图,若要使整个挂图的面积是23500cm ,则纸边的宽为________cm.15.如图,抛物线()20y ax bx c a =++≠与x 轴交于点()1,0x ,()2,0,且101x <<.下列四个结论:①0abc <;②0a b c ++>;③230b c +<;④不等式22cax bx c x c ++<-+的解集为02x <<.其中一定正确的是_________.(填写序号).16.如图,在菱形ABCD 中,120BAD ∠=︒,E 、F 分别为AD 、CD 边上的点,30EBF ∠=︒,CF m =,AE n =.则EF =_______.(用含m ,n 的代数式表示)三、解答题(共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分8分)解方程.2240x x --=18.(本题满分8分)如图,在ABC △中,108BAC ∠=︒,将ABC △绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在边BC 上,且AB CB ''=,求C '∠的度数.19.(本题满分8分)某商店以每件20元的价格购进一批商品,若每件商品售价a 元,则每天可卖出()80010a -件,如果商店计划要每天恰好盈利8000元,并且要使每天的销售量尽量大......,求每件商品的售价是多少元?20.(本题满分8分)如图,四边形ABCD 内接于O ,AC 为O 的直径,B 为 AC 的中点.(1)试判断ABC △的形状,并说明理由;(2)若6AD CD +=,求BD 的长.21.(本题满分8分)如图,是由边长为1的小正方形组成的77⨯网格,每个小正方形的顶点叫做格点,BC ,AC 是O 的两条弦,且点A ,B ,C 都是格点,点D 是O 与格线的交点.仅用无刻度的直尺在给定的网格中完成画图,画图过程用虚线表示,画图结果用实线表示.图1图2(1)在图1中,先画出圆心O ,再画 AC 的中点E ;(2)在图2中,先在O 上画点F (异于点C ),使BF BC =,再过点D 作//DG CF 交O 于点G.22.(本题满分10分)要修建一个圆形喷水池,在池中心O 处竖直安装一根水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之上下平移,水柱落地点A 与点O 在同一水平面,安装师傅调试发现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九上数学期中考试模拟试题(1)
一、选择题(每小题3分,共30分)
1.下列4个图案中,既是轴对称图形又是中心对称图形的有()
A . 1个
B .2个
C .3个
D .4个 2.一元二次方程2
x x =的根为() A .x =1 B .x =0
C .1x =±
D .1x =0,
2x =1
3.如图,圆心角100AOC ∠=︒,则圆周角ABC ∠=( ) A .100︒ B .50︒ C .80︒ D .130︒ 4.用配方法解方程2
630x x --=,此方程可变形为( ) A .2
2
(3)12x -= B .2
(3)6x += C .2(3)12x -= D .2(3)9x +=
5.二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122
+-=x x y ,则b 与c 分别等于( )
A .6,4
B .-8,14
C .-6,6
D .-8,-14
6.判断方程25750x x -+=的根的情况是( )
A .有两个相等的实数根
B .有两个不相等的实数根
C .只有一个实数根
D .无实数根
7.武汉市某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD 上修建三条同样宽的人行道,使其中两条与
AB 平行,另一条与AD 平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米.设人行道的宽为x 米,下列方程:
①(36-2x )(20-x )=96×6;②2×20x +(36-2x )x=36×20-96×6;③(18-x )(10-2
x
)=
14
×96×6,其中正确的个数为( ) A .0个B .1个C .2个D .3个
8.四边形ABCD 是圆内接四边形,那么:::A B C D ∠∠∠∠可
能是( )
A .2:3:4:5
B .5:4:3:2
C .3:4:5:2
D .4:5:3:2
9.如图4,⊙O 的半径为5,弦AB ,CD 交于AB 的中点E ,
8AB =,:4:9CE ED =,则弦CD 的弦心距为( )
A .
289 B
C
D .80
9
10. 已知:G 是⊙O 的半径OA 的中点,OA =3,GB ⊥OA 交⊙O 于B ,弦AC ⊥OB 于F ,交BG 于D ,连接DO 并延长交⊙O 于E .下列结论:
①∠CEO =45º;②∠C =75º;③CD =2;④CE
其中一定成立的是( ) A. ①②③④ B.①②④C.①③④D.②③④ 二、填空题(每小题3分,共18分)
11.关于x 的方程2
30x x m +-=的两根为1x 和2x ,则1x +2x =_______
12.点A (-3 ,m )和点B (n ,2)关于原点对称,则m+n =_____________ 13.函数x x y +-=22有最____值,最值为_______
14.关于x 的方程2(1)230m x mx m +++-=有实数根,则m 的取值为____________ 15.如图,在⊙O 中,OE 为半径,点D 为OE 的中点,AB 是过点D 且垂直于OE 的弦,点C 是优弧ACB 上任意一点, 则∠ACB 度数是
16.如图,某广场用地砖铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有个正三角形. 三、解答题
17.(6分)解方程;2
210x x +-=
18.(6分)二次函数k h x a y +-=2
)(的图象经过点(-2,0)和(1,3),且对称轴为直线x=1,试确定此二次函数解析式。
19.(6分)如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,求EC 的长。
20.(9分)如图,已知ABC △的顶点A B C ,,的坐标分别是A (-1,-1)B (-5,-4)C (-5,-1). (1)、作出ABC △关于点P(0,-2)中心对称的图形111A B C △,并直接写出顶点A 1、B 1、C 1的坐标. (2)、将ABC △绕原点O 按顺时针方向旋转90°后得到△A 2B 2C 2,画出△A 2B 2C 2,并直接写出顶点A 2、B 2、C 2的坐标. (3)、将ABC △沿着射线BA 的方向平移10个单位,后得到△A 3B 333画出△A 3B 3C 3,并直接写出顶点A 3、B 3、C 3的坐标.
21.(7分)求证关于x 的方程23147022x m x m m +-+--=()对任意实数m ,永远有两个不相等的实数根。
22. (8分)如图,ABC ∆外角EAC ∠平分线为AD ,AD 与三角形外接圆交于点D , (1)求证:DB DC =;
(2)设AC AB ,作DF AC ⊥于F ,求证:2AC AB AF -=。
23. (8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y (件)与价格x (元/件)之间满足一次函数关系. (1)试求y 与x 之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
24. (10分)如图,R t △ABC 中,AC =BC ,∠ACB =90°,点E 在线段AB 上,CF ⊥CE ,CE =CF ,EF 交AC 于G ,连结AF .
(1)填空:线段BE 、AF 的数量关系为_____________,位置关系为_____________; (2)当
AE BE =21时,求证:FG
EG
=2.
(3)若当
AE BE =n 时,GF
EG
=2,请直接写出n 的值.
25.(12分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2
-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;
(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标; (3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CO(端点C 、O 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.
G
F
C
B
E A
九年级上学期期中考试复习题答题卡班级姓名得分
一、选择题
二、填空题
11. 12. 13.
14. 15. 16.
三、解答题
17.(6分)
18.(6分)
19.(7分)
22.(8分)
24. (10分)
G
F
C
B
E A。