江苏省扬州市高邮市车逻镇2018届中考数学一轮复习第37课时从数到式学方法教案
江苏省扬州市高邮市车逻镇2018届中考数学一轮复习 第36课时 新定义型问题导学案(无答案)

第36课时 新定义型问题姓名 班级学习目标:1、 能结合已有知识、能力理解并应用新定义、新法则解决新问题。
2、 能根据问题情境的变化合理进行思想方法的迁移,结合具体题目应用新的知识解决问题。
学习重、难点:能结合已有知识、能力理解并应用新定义、新法则解决新问题。
学习过程:1、与“数与式”有关的新定义型问题(中考指要例1)(2017 重庆)对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F n ().例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以1236F =().(1)计算:243617F F (),(); (2)若s t ,都是“相异数”,其中10032150s x t y =+=+,(19x ≤≤,19y ≤≤,x y ,都是正整数),规定:F s k F t =()(),当18F s F t +=()()时,求k 的最大值.例2(2016•重庆)我们知道,任意一个正整数n 都可以进行这样的分解:n p q ⨯= (p q 、是正整数,且p q ≤).在n 的所有这种分解中,如果p 与q 之差的绝对值最小,那么我们称p q ⨯是n 的最佳分解,并规定:()F n p q=.例如12可以分解成112⨯、26⨯或34⨯,因为1216243>>---,所以34⨯是12的最佳分解.所以()3124F =。
(1) 如果一个正整数a 是另外一个正整数b 的平方,那么我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有()1F m =. (2) 如果一个两位正整数1019()t x y x y x y ≤≤≤=+,、为自然数,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中()F t 的最大值.2、与“方程、不等式”有关的新定义型问题例、对于实数a 、b ,定义一种新运算“⊗”: 21b b a a =⊗-,这里等式的右边是实数运算.例如211=18133⊗-=-,则方程()2421x x ⊗--=-的解是( ) .4A x = .5B x = .6C x = .7D x =3、与“统计与概率”有关的新定义型问题例、(2015·泰安)十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( )2.1A3.1B 5.2C 5.3D 4、与“函数”有关的新定义型问题例、 (2015·衢州)小明在课外学习时遇到这样一个问题.定义:如果二次函数2111y a x b x c =++ 11110()a a b c ≠,、、是常数与2222y a x b x c =++22220()a a b c ≠,、、是常数满足120a a +=,12b b =,120c c +=,那么称这两个函数互为“旋转函数”.求函数y =-x 2+3x -2的“旋转函数”. 小明是这样思考的:由函数232y x x =-+-可知,111132a b c =-,=,=-.根据120a a +=,12b b =,120c c +=,求出222a b c 、、的值,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1) 写出函数232y x x =-+-的“旋转函数”;(2) 若函数2 432y x mx =-+-与22y x nx n =-+互为“旋转函数”,求2015()m n +的值; (3) 已知函数1()()214y x x =-+-的图象与x 轴交于点A 、B(点A 在点B 左侧),与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是点111A B C 、、,求证:图象经过点111A B C 、、的二次函数与函数1()()214y x x =-+-互为“旋转函数”5、与“图形的认识”有关的新定义型问题例、(2016·湖州)定义:若点()P a b ,在函数1y x =的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数2y ax bx =+称为函数1y x =的一个“派生函数”. 例如:点122⎛⎫ ⎪⎝⎭,在函数1y x =的图象上,则函数2212y x x =+称为函数1y x=的一个“派生函数”.现给出以下两个命题:① 存在函数1y x =的一个“派生函数”,其图象的对称轴在y 轴的右侧;② 函数1y x=的所有“派生函数”的图象都经过同一点,则下列判断正确的是( ) A.命题①与命题②都是真命题 B. 命题①与命题②都是假命题C. 命题①是假命题,命题②是真命题D. 命题①是真命题,命题②是假命题1. (2014·泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组的是( ). 123A ,, B C . 12D 6、与“图形的变换”有关的新定义型问题例1(中考指要例2) (2016·宁波)从三角形(不是等腰三角形)的一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线(1) 如图①,在△ABC 中,CD 为角平分线,40A ∠︒=,60B ∠︒=,求证:CD 为△ABC 的完美分割线.(2) 在△ABC 中,48A ∠︒=,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求ACB ∠的度数.(3) 如图②,在△ABC 中,2AC =,BC CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形.求完美分割线CD 的长例2(中考指要例3)(2017 济宁)定义:点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,PBC A ∠=∠,PCB ABC ∠=∠,则△BCP ∽△ABC ,故点P 为△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M 是曲线C :y x =()0x >上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,点P 是OM 上一点,ONP M ∠=∠, 试说明点P 是△MON 的自相似点; 当点N的坐标是),点N 的坐标是)时,求点P 的坐标;(2)如图3,当点M 的坐标是(,点N 的坐标是()2,0时,求△MON 的自相似点的坐标;(3)是否存在点M 和点N ,使△MON 无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.四、反思总结1.本节课你复习了哪些内容?2.通过本节课的学习,你还有哪些困难?五、达标检测1、(2015•铜仁)定义一种新运算:x 2y x y x +*=,如2212122+⨯*== , 则()4*2*()1-=________.2、(2016·广州)定义运算:(*)1a b a b =-.若a 、b 是方程()21400x x m m <-+=的两根,则 **b b a a -的值为( ).0A .1B .2C .D m 与有关3、(2016·岳阳)对于实数a b 、,我们定义符号{}max a b ,的意义为:当a b ≥时,{}max a b a ,=;当a b <时,{}max a b b ,=.如:}24{4max ,-=,33{}3max ,=.若关于x 的函数为{31}y max x x =+,-+,则该函数的最小值是( ). 0A . 2B . 3C . 4D4、(自我评估1)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例: 224= 根据上表规律,某同学写出了三个式子:2164log =①,5255log =②,212log =③﹣.其中正确的是( ) A .①② B .①③ C .②③ D .①②③5.(自我评估2)规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是 .(写出所有正确说法的序号)①当x=1.7时,[x]+(x )+[x )=6;②当x=﹣2.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.6.(自我评估3)(2017 扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC 中,AO 是BC 边上的中线,AB 与AC 的“极化值”就等于22AO BO ﹣的值,可记为22AB AC AO BO =﹣.(1)在图1中,若90BAC ∠=︒,8AB =,6AC =,AO 是BC 边上的中线,则AB AC = ,OC OA = ;(2)如图2,在△ABC 中,4AB AC == ,120BAC ∠=︒,求AB AC 、BA BC 的值;(3)如图3,在△ABC 中,AB AC =, AO 是 BC 边上的中线,点N 在AO 上,且13ON AO =.已知14AB AC =,10BN BA =,求△ABC 的面积.7. (自我评估3)(2017 绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1 ,等腰直角四边形=,90ABCD AB BC ABC ︒∠=, .①若1,AB CD ==AB CD ,对角线BD 的长.②若AC BD ⊥ ,求证:AD CD =.(2)如图2 ,矩形ABCD 中,5,9,AB BC == 点P 是对角线BD 上一点. 且2BP PD = ,过点P 作直线分别交,AD BC 于点,E F ,使四边形ABEF 是等腰直角四边形.求AE 的长.8.(自我评估3)(2016 北京)在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x =3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O ,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.。
江苏省扬州市高邮市车逻镇2018届中考数学一轮复习 第4课时 分式导学案(无答案)

第4课时分式姓名班级学习目标:1.了解分式、最简分式、最简公分母的意义,会用分式的基本性质进行约分和通分。
2.掌握分式加、减、乘、除的运算法则、会进行简单的分式混合运算。
学习重难点:分式的约分、通分学习方法:学习过程:一、【复习指导】(一)、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式注意:①:若则分式AB无意义②:若分式AB=0,则应且(二)、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。
1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。
约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的注意:①最简分式是指② 约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的,应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项(三)、分式的运算:1、分式的乘除①分式的乘法:ba.dc= ②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:b a ±c a = ②异分母分式相加减:b a ±d c = 注意:①分式乘除运算时一般都化为 法来做,其实质是 的过程 ②异分母分式加减过程的关键是3、分式的乘方:应把分子分母各自乘方:即(b a)m = ①分式的混合运算:应先算 再算 最后算 有括号的先算括号里面的。
②分式求值:①先化简,再求值。
②由值的形式直接化成所求整式的值③分式中字母表示的数隐含在方程的题目条件中注意:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先 此类题目解决过程中要注意整体代入二、精典题例例1 计算:(1)1201420152||⎛⎫+ ⎪⎝⎭﹣﹣﹣﹣;(2)2111a a a ⎛⎫-⎛⎫+÷ ⎪ ⎪⎝⎭⎝⎭例2 先化简,再求值:22211()22a ab b a b b a-+÷--,其中1a =,1b =.例3(2014扬州)对x y ,定义一种新运算T ,规定:2ax by T x y x y+=+(,)(其中a b 、均为非零常数),这里等式右边是通常的四则运算,例如:0101=201a b T b ⨯+⨯=⨯+(,) (1)已知()112421T T ==,-﹣,(,).①求a ,b 的值; ②若关于m 的不等式组25432T m T m m m -≤⎧>⎨⎩-(,)4(,)4恰好有3个整数解,求实数p 的取值范围;(2)若T x y T y x =(,)(,)对任意实数x ,y 都成立(这里T x y T y x =(,)(,)均有意义),则a ,b 应满足怎样的关系式?三、课堂练习1.代数式12,,,13x a m x x b π+中,分式的个数是( ). A .1B .2C .3D .4 2.把分式方程12112x x x----=的两边同时乘以(2)x -,约去分母,得( ). A .1()11x --= B .1()11x +-= C .12(1)x x --=- D .12(1)x x +-=- 3.下列计算中,正确的是( ).A .22112()2m n m m n n -----+=++ B .212()m n m n --= C .339(2)8x x --= D .11(4)4x x --= 4.已知A ,C 两地相距40千米,B ,C 两地相距50千米,甲、乙两车分别从A ,B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程是________________________.5.(1)当x =_____时,分式11x x +-有意义;当x =____时,分式2x x x -的值为0. 6.计算:(1)x x y ++y y x +=________;(2)()b b a aa b a ÷--=________.7.(1)当x =____时,121x -=;(2)当12x =-,1y =时,分式1xy xy +的值为____. 8.有一大捆粗细均匀的钢筋,现要确定其长度,先称出这捆钢筋的总质量为m 千克,再从中截出5米长的钢筋,称出它的质量为n 千克,那么这捆钢筋的总长度为____米.9.对于非零的两个实数a b ,,规定11a b b a ⊕=-.若1()11x ⊕+=,则x 的值为_____.12.计算:23933a a a a a a -⎛⎫- ⎪-+⎝⎭13.已知2016x =,求()(61)93x x x x ÷---的值.14.解分式方程:(1) 5111xx x --=-;(2) 223120+2x x x x --=.15.已知113x y -=,求分式21422y yx x x y y x ---++的值.。
江苏省扬州市高邮市车逻镇2018届中考数学一轮复习 第31课时 函数与方程思想导学案(无答案)

第31课时 函数与方程思想班级: 姓名:学习目标:1.探索实际生活中的数量关系和变化规律. 2.利用函数的性质或方程理论解决有关实际问题. 重难点:利用函数的性质或方程理论解决有关实际问题. 学习过程 一.知识梳理 一次函数:一次函数y kx b =+ ()0k ≠的图像与x 轴的交点坐标为 ,与y 轴的交点坐标为 当0k >时,y 随x 的增大而 ,图象一定经过第 象限; 当0k <时,y 随x 的 而减小,图象一定经过第 象限. 二次函数:抛物线2y ax bx c =++,当0y =时,抛物线转化为一元二次方程 , 该方程的根是抛物线2y ax bx c =++与 的交点横坐标。
变式:抛物线2y ax bx c =++,当y k =时,抛物线转化为一元二次方程 , 该方程的根是抛物线2y ax bx c =++与 的交点横坐标。
二、典型例题1.函数与方程、不等式(1)如图,正比例函数1y 与反比例函数2y 相交于点12E -(,),若120y y >>,则x 的取值范围在数轴上表示正确的是( )A .B .C .D .(2)如图,函数x y =1,34312+=x y .当21y y >时,x 的范围是( ) A..1x -< B .12x -<< C .12x x -<或> D .2x >(3)如图,是二次函数2y ax bx c =++图象的一部分,其对称轴为直线1x =,若其与x 轴一交点为30A (,),则由图象可知,不等式20ax bx c ++<的解集是 . (4)如图是二次函数20y ax bx c a =++≠()的图象,且关于x 的一元二次方程2ax bx c m ++-=没有实数根,则m2.函数的实际应用(中考指要例1)(2017湖州)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本). (1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值;(2)设这批淡水鱼放养t 天后的质量为m kg (),销售单价为/y kg 元.根据以往经验可知:m 与t 的函数关系为200000501001500050100t m t t ≤≤⎧=⎨+≤⎩()(<);y 与t 的函数关系如图所示.①分别求出当050t ≤≤和50100t ≤<时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)三、中考预测(2016黄冈)东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t (天)之间的函数关系式为130124414825482t t t P t t t ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩(,为整数)(,为整数),且其日销售量()y kg 与时间t (天)的关系如下表:(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润9n (<)给“精准扶贫”对象。
江苏省扬州市高邮市车逻镇2018届中考数学一轮复习 第29课时 统计导学案(无答案)

第29课时统计班级:姓名:学习目标1. 能结合具体的情境理解平均数、中位数和众数的区别与联系,并能根据具体问题,选择合适的统计量表示数据的集中程度;2. 掌握极差和方差概念,会计算极差和方差,并理解其统计意义;学习重难点利用相关知识点解决实际问题学习过程:一、知识梳理1.总体、个体、样本及样本容量的含义?2. 统计图的具体种类3.平均数:中位数:众数:4. 方差:设一组数据为:x1、x2、x3、…、x n,平均数为则这组数据的方差为: S2 =一组数据方差越大,说明这组数据的离散程度越;一组数据的方差越小,说明这组数据的离散程度越。
二、典型例题1.数据在我们周围.问题1:一批灯泡共有2万个,为了考察这批灯泡的使用寿命,从中抽查了50个灯泡的使用寿命,在这个问题中,总体是,个体是 , 样本容量是__________.问题2:甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图10所示.根据图中信息,回答下列问题:(1)甲的平均数是_ _,乙的中位数是_ __;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?问题3:某市实行中考改革,需根据该市中学生体能的实际状况重新制订中考体育标准。
为此,抽取了50名初中毕业的女学生进行一分钟仰卧起坐次数测试,测试情况制成表格如下:12 15 18 20 25 27 30 32 3(1(2)根据这一样本数据的特点,你认为该市中考女生一分钟仰卧起坐项目测试的合格标准次数应定为多少次较为合适?请简要说明理由。
(3)如果该市今年有3万名初中毕业女生参加体育中考,根据(2)中你认为合格的标准,试估计该市中考女生一分钟仰卧起坐项目测试的合格人数是多少?2.数据的集中和离散123n123ax n+b的平均数为、方差是。
问题6:一组数据1,2,a的平均数为2,另一组数据-1,a,1,2,b的唯一众数为-1,则数据-1,a,1,2,b的中位数为_____________.问题7:某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上为合格,达到9分以上(含9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:平均分(2明是组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.三、中考预测问题8:班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)请根据图1,回答下列问题:这个班共有______名学生,发言次数是5次的男生有______人、女生有______人;男、女生发言次数的中位数分别是______次和______次.(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数..的扇形统计图如图2四、反思总结1.本节课你复习了哪些内容?2.通过本节课的学习,你还有哪些困难?五、达标检测1.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是 ( )A.选取该校一个班级的学生B.选取该校50名男生C.选取该校50名女生D.随机选取该校50名九年级学生2. 期末统考中,A 校优秀人数占20%,B 校优秀人数占25%,比较两校优秀人数 ( ) A.A 校多于B 校 B.B 校多于A 校 C.A ,B 两校一样多 D.无法比较3.如果x 1与x 2的平均数是4,那么x 1+1与x 2+5的平均数是_______.4.已知一组数据10,8,9,x ,5的众数是8,则这组数据的方差是( )A. 2.8B. 143C. 2D. 55.为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.节目新闻 娱乐 动画 图二:成年人喜爱的节目统计图新闻 娱乐 动画108°(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”);(2)写出折线统计图中A、B所代表的值;A:_____________;B:_____________;(3)求该地区喜爱娱乐类节目的成年人的人数.6.某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔,每位女生的身高 (cm)统计如下,部分统计量如下表:(1)求甲队身高的中位数;(2)求乙队身高的平均数及身高不小于1.70米的概率;(3)如果选拔标准是身高越整齐越好,那么甲乙两个队哪个队被录取?请说明理由.。
江苏省扬州市高邮市车逻镇2018届中考数学一轮复习第6课时一次方程组导学案无答案20180723395

第6课时一次方程(组)姓名班级学习目标:1.了解方程,一元一次方程及二元一次方程组的基本概念,会解一元一次方程及二元一次方程组。
2.能根据具体问题中的数量关系,列出方程,并求解。
学习重难点:利用方程解决有关数学问题学习方法:学习过程:【复习指导】1.等式及其性质(1)用等号“=”来表示相等关系的式子,叫做等式.(2)等式的性质:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.2.解法:(1)解一元一次方程主要有以下步骤:__________;__________;__________;__________;未知数的系数化为1;(2)解二元一次方程组的基本思想是________,有 ___________与___________.即把多元方程通过________、________、换元等方法转化为一元方程来解.3.列方程(组)解应用题列方程(组)解应用题的一般步骤(1)把握题意,搞清楚条件是什么,求什么;(2)设未知数;(3)找出能够包含未知数的等量关系(一般情况下设几个未知数,就找几个等量关系);(4)列出方程(组);(5)求出方程(组)的解(注意排除增根);(6)检验(看是否符合题意);(7)写出答案(包括单位名称).列方程(组)解应用题的关键是:二、精典题例例1 解方程(组)(1)541113412x x x--+-=-(2)2232x yx y=⎧⎨-=⎩(3)323,5623.x yx y+=⎧⎨-=-⎩例2已知21xy=⎧⎨=⎩是二元一次方程组71mx nynx my+=⎧⎨-=⎩的解,求3m n+的值.例3 我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?例4某工厂工人的工作时间为每月25天,每天8小时,该厂生产A、B两种产品。
江苏省扬州市高邮市车逻镇2018届中考数学一轮复习 微专题 路径与最值导学案(无答案)

微专题 路径与最值班级: 姓名:学习目标:1.掌握动点运动过程中,产生的运动路径类型,及与之相关的最值问题2.通过学习,进一步培养分析问题,解决问题的能力。
重难点: 用轨迹的观点看问题学习过程:一、圆弧型路径:1.圆定义到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
例1:如图,OA OB ⊥,P Q 、分别是射线OA OB 、上两个动点,点P 在OA 上由A 向O 运动,同时点Q 由O 向B 运动,且4PQ =,点C 是线段PQ 的中点,在运动过程中,点C 所经过的路径长为2.定边对直角 A B 、为两个定点,平面内动点P 满足90APB ∠=︒,则点P 的轨迹是以AB 为直径的圆(A B 、点除外) 例2:(2016安徽)如图,Rt △ABC 中,AB BC ⊥,6AB =,4BC =,P 是△ABC 内部的一个动点,且满足PAB PBC ∠=∠,则线段CP 长的最小值为3:定边对定角A B 、为两个定点,平面内动点P 满足APB α∠=︒,则点P 的轨迹是以AB 为弦所对的的弧APB (A B 、点除外)例3:(2016·省锡中二模)如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,AC AP ⊥交直线PB 于点C ,则△ABC 的最大面积是( )A. 1B. 2C.二、直线型路径:1.定距离得平行线:到定直线l 的距离等于定长d 的志向的点的轨迹,是平行于直线l ,并且到直线l 的距等于定长d 的两条直线。
例4:如图,在△ABC 中,8BC =,M 是边BC 上一动点,连接AM ,取AM 的中点P ,当点M从点B 运动到点C ,则动点P 的路径长为2.定夹角得直线:已知直线l 与定点A ,若直线BA 与直线l 的夹角α不变,则动点B 始终在定直线AB 上,即:点A 的运动轨迹为直线型。
例5:如图,正方形ABCD 的边长为2,动点E 从点A 出发,沿边AD 向终点D 运动,以DE 为边作正方形DEFG (点D E F G 、、、按顺时针方向排列).求出整个运动过程中,点F 经过的路径长.3:解析法:建立直角坐标系,用函数知识来解决问题。
江苏省扬州市高邮市车逻镇2018届中考数学一轮复习 第6课时 一次方程(组)导学案(无答案)

第6课时一次方程(组)姓名班级学习目标:1.了解方程,一元一次方程及二元一次方程组的基本概念,会解一元一次方程及二元一次方程组。
2.能根据具体问题中的数量关系,列出方程,并求解。
学习重难点:利用方程解决有关数学问题学习方法:学习过程:【复习指导】1.等式及其性质(1)用等号“=”来表示相等关系的式子,叫做等式.(2)等式的性质:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.2.解法:(1)解一元一次方程主要有以下步骤:__________;__________;__________;__________;未知数的系数化为1;(2)解二元一次方程组的基本思想是________,有 ___________与___________.即把多元方程通过________、________、换元等方法转化为一元方程来解.3.列方程(组)解应用题列方程(组)解应用题的一般步骤(1)把握题意,搞清楚条件是什么,求什么;(2)设未知数;(3)找出能够包含未知数的等量关系(一般情况下设几个未知数,就找几个等量关系);(4)列出方程(组);(5)求出方程(组)的解(注意排除增根);(6)检验(看是否符合题意);(7)写出答案(包括单位名称).列方程(组)解应用题的关键是:二、精典题例例1 解方程(组)(1)541113412x x x--+-=-(2)2232x yx y=⎧⎨-=⎩(3)323,5623.x yx y+=⎧⎨-=-⎩例2已知21xy=⎧⎨=⎩是二元一次方程组71mx nynx my+=⎧⎨-=⎩的解,求3m n+的值.例3 我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?例4某工厂工人的工作时间为每月25天,每天8小时,该厂生产A、B两种产品。
扬州市高邮市车逻镇2018届中考数学一轮复习第37课时从数到式学方法教案

第37课时 从数到式学方法 课 题 第37课时 从数到式学方法 教学时间教学目标: 1。
经历从数到式的过程,在具体题型变化中,体验掌握恰当方法的必要性和简便性2.引导学生主动思考、探究和尝试 ,学会选择恰当的解法,提高学生解决代数综合问题的能力教学重、难点:体验分析解题过程,提炼数学思想方法 教学方法:自主探究 合作交流 讲练结合 教学媒体:电子白板【教学过程】: 探究一(南京)计算:复 备 栏 )51413121)(61514131211()6151413121)(514131211(+++------++++----探究二(扬州改编)已知a 是 230x x --=的一个根,则代数式3223115a a a +-+的值是____。
探究三(扬州改编)设122018a a a ⋯⋯,,,是从-1、0、1 这三个数中取值的一列数,若122018122a a a ++⋯⋯+=-,()2221220181113564a a a ++++⋯⋯++=()(),则 1a ,2a ,……,2018a 中为0的个数是 .探究四(内江改编)已知实数a b ,满足:211a a += ,211b b += ,则 2018a b - =________。
四、课堂小结五、反馈练习1.已知点(,)P a b 是反比例函数1y x =图象上异于点(1,1)--的一个动点,则1111a b +=++( ).2A .1B 3.2C 1.2D2.已知菱形的周长为 45,两条对角线的和为6,则菱形的面积为 .3.设223()121a a A a a a a -=÷-+++.(1)化简A ;(2)当a =3时,记此时A 的值为f (3);当a =4时,记此时A 的值为f (4);…解关于x 的不等式:27(3)(4)(11)24x xf f f ---≤++⋅⋅⋅⋅⋅⋅+,并将解集在数轴上表示出来.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知点是反比例函数图象上异于点的一个动点,则( )
2.已知菱形的周长为,两条对角线的和为,则菱形的面积为.
3.设.
(1)化简A;
(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…
解关于x的不等式:,并将解集在数轴上表示出来.
复备栏
第37课时从数到式学方法
课题
第37课时从数到式学方法
教学时间
教学目标:
1.经历从数到式的过程,在具体题型 变化中,体验掌握恰当方法的必要性和简便性
2.引导学生主动思考、探究和尝试,学会选择恰当的解法,提高学生解决代数综合问题的能力
教学重、难点:
体验分析解题过程,提炼数学思想方法
教学方法:
自主探究合作交流讲练结合
教学媒体:
Байду номын сангаас电子白板
【教学过程】:
探究一(南京)计算:
探究二(扬州改编)已知 是 的 一个根 ,则代数式 的值是____.
探究三(扬州改编)设 是从-1、0 、1这三个数中取值的一列数,若 , ,则 , ,……, 中为0的个数是.
探究四(内江改编)已知实数 满足: , ,
则 =________.
四、课堂小 结