2018年高考数学总复习第八章立体几何与空间向量第6讲空间向量及其运算课时作业
高考数学一轮复习 第8章 立体几何 第6节 空间向量及其运算课件 理

a=(a1,a2,a3),b=(b1,b2,b3) a+b= 8 _(_a_1_+_b_1_,_a_2_+__b_2,__a_3_+__b_3)_____ a-b= 9 __(_a1_-__b_1,__a_2-__b_2_,__a_3-__b_3_) ____
数量积 共线 垂直
a·b=a1b1+a2b2+a3b3 a∥b⇒ 10 ___a_1=__λ_b_1,__a_2_=_λ_b_2_,_a_3_=__λ_b3____ (λ∈R,b≠0)
a⊥b⇔ 11 ___a_1_b1_+__a_2b_2_+__a3_b_3_=_0____________
夹角公式
a1b1+a2b2+a3b3 cos〈a,b〉= 12 ____a_21_+__a_22_+__a_23___b_21_+__b_22+__b_23_
12/11/2021
第九页,共四十九页。
故选 C.
12/11/2021
第十七页,共四十九页。
2
12/11/2021
课 堂 ·考 点 突 破
第十八页,共四十九页。
考点一 空间向量及其运算
|题组突破|
1.如图所示,在平行六面体 ABCD-A1B1C1D1 中,M 为 A1C1 与 B1D1
的交点.若A→B=a,A→D=b,A→A1=c,则下列向量中与B→M相等的是( )
►常用结论 a1=λb1,
设 a=(a1,a2,a3),b=(b1,b2,b3),则 a∥b(b≠0)⇔a2=λb2,这一形式不能随便 a3=λb3.
写成ab11=ab22=ab33.只有在 b 与三个坐标轴都不平行时,才能这样写,这是因为:若 b 与坐 标平面 xOy 平行,则 b3=0,这样ab33就无意义了.
2018年高考数学总复习-空间向量及其应用

第六节 空间向量及其应用考纲解读1。
空间向量及其运算。
(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;(2)掌握空间向量的线性运算及其坐标表示;(3)掌握空间向量的数量积及其表示,能用向量的数量积判断向量的共线与垂直。
2.空间向量的应用.(1)理解直线的方向向量与平面的法向量;(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系; (3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理);(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用。
命题趋势探究立体几何试题中,证明线面、面面的位置关系一般利用传统方法(非向量法)证明,对于空间角和距离的计算,既可用传统方法解答,也可以用向量法解答,而且多数情况下向量法会更容易一些。
预测在2015年高考对本专题的考查会在解答题中以中档题出现,分值保持在12分左右. 知识点精讲一、空间向量及其加减运算1.空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模。
空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为a 或AB 。
2。
零向量与单位向量规定长度为0的向量叫做零向量,记作0。
当有向线段的起点A 与终点B 重合时,0AB =.模为1的向量称为单位向量。
3.相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a -. 4.空间向量的加法和减法运算(1)OC OA OB a b =+=+,BA OA OB a b =-=-。
如图8-152所示.(2)空间向量的加法运算满足交换律及结合律 a b b a +=+,()()a b c a b c ++=++ 二、空间向量的数乘运算1.数乘运算实数λ与空间向量a 的乘积a λ称为向量的数乘运算.当0λ>时,a λ与向量a 方向相同;当0λ<时,向量a λ与向量a 方向相反。
高考数学一轮复习第八章立体几何8.6空间向量及其运算课件理

几何画板展示
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a,b共面.( √) (2)在向量的数量积运算中(a·b)·c=a·(b·c).( ×) (3)对于非零向量b,由a·b=b·c,则a=c.( ×) (4)两向量夹角的范围与两异面直线所成角的范围相同.( ×) (5)若 A、B、C、D 是空间任意四点,则有A→B+B→C+C→D+D→A=0.( √ )
作 ,即a·ab·b=
.|a||b|cos〈a,b〉
(2)空间向量数量积的运算律 ①结合律:(λa)·b= λ(a·b) ; ②交换律:a·b= ;b·a ③分配律:a·(b+c)= a·b+a·.c 4.空间向量的坐标表示及其应用 设a=(a1,a2,a3),b=(b1,b2,b3).
数量积
向量表示 a·b
跟踪训练2 已知A,B,C三点不共线,对平面ABC外的任一点O,若
点M满足 O→M=13(O→A+O→B+.O→C) (1)判断 M→A,M→B,M→C 三个向量是否共面;解答 由题意知O→A+O→B+O→C=3O→M, ∴O→A-O→M=(O→M-O→B)+(O→M-O→C) 即M→A=B→M+C→M=-M→B-M→C, ∴M→A,M→B,M→C共面.
----→ → BD1 ·AC ----→ →
=
| BD1 ||AC|
6 6.
即B→D1与A→C夹角的余弦值为
6 6.
思想与方法系列18
坐标法在立体几何中的应用
典例 (12分)如图,已知直三棱柱ABC-A1B1C1,在底面 △ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,
N分别是A1B1,A1A的中点. (1)求B→N的模;
高考数学一轮复习第8章立体几何第6课时空间向量及运算课件理

)
→ A.D1B1
→ C.DB1
12/13/2021
→ B.D1B
→ D.BD1
第十三页,共六十三页。
答案 D 解析 B→A+B→C+D→D1=C→D+B→C+D→D1=B→D+D→D1=B→D1, 故选 D.
12/13/2021
第十四页,共六十三页。
3.在平行六面体 ABCD-A1B1C1D1 中,向量D→1A,D→1C,A→1C1
答案 (5,13,-3)
解析 设 D(x,y,z),则A→B=D→C.
∴(-2,-6,-2)=(3-x,7-y,-5-=-6, 解得y=13,
-5-z=-2. z=-3.
∴D(5,13,-3).
12/13/2021
第十七页,共六十三页。
6.若向量 a=(1,λ,2),b=(2,-1,2),且 cos〈a,b〉
第二十七页,共六十三页。
【答案】 M→G=-16O→A+13O→B+13O→C O→G=13O→A+13O→B+13O→C
12/13/2021
第二十八页,共六十三页。
题型二 空间向量的共线、共面问题
已知E,F,G,H分别是空间四边形ABCD的边AB, BC,CD,DA的中点.
12/13/2021
12/13/2021
A.-12a+12b+c C.12a-12b+c
B.12a+12b+c D.-12a-12b+c
第二十四页,共六十三页。
【解析】 由题意知,B→1M=B→1A1+A→1A+A→M=B→1A1+A→1A +12A→C=-a+c+12(a+b)=-12a+12b+c,故应选 A.
【答案】 A
=89,则 λ=( )
A.2
B.-2
2018版高考数学一轮复习第八章立体几何第6讲空间向量及其运算理

第6讲空间向量及其运算一、选择题1以下四个命题中正确的是().A. 空间的任何一个向量都可用其他三个向量表示B. 若{a, b, c}为空间向量的一组基底,则{a + b, b+c, c + a}构成空间向量的另一组基底C. A ABC为直角三角形的充要条件是A B- AC= 0D. 任何三个不共线的向量都可构成空间向量的一组基底解析若a+ b、b+ c、c + a 为共面向量,贝U a+ b=^ ( b+ c) +卩(c+ a), (1 —卩)a=(入) —1 [亠—1)b + (入+卩)c,入,不可能同时为1,设卩工1,贝U a= ■ b + c,贝U a、1 — 1 —b、c为共面向量,此与{a, b, c}为空间向量基底矛盾.答案B2•若向量a= (1,1 , x), b= (1,2,1) , c = (1,1,1),满足条件(c —a) - (2 b) =—2,则x = ( ).A. —4B.—2C. 4D. 2解析•/ a= (1,1 , x) , b= (1,2,1) , c = (1,1,1),••• c —a= (0,0,1 —x) , 2b= (2,4,2).•••(c—a) - (2 b) = 2(1 —x) = —2,「. x= 2.答案D3•若{a, b, c}为空间的一组基底,则下列各项中,能构成基底的一组向量是().A. {a, a+ b, a—b}B. {b, a+ b, a —b}C. {c, a + b, a—b}D. {a + b, a—b, a + 2b}解析若c、a + b、a—b共面,贝U c =入(a+ b) + ma—b)=(入 + m)a+ (入一m)b,贝U a、b、c为共面向量,此与{a, b, c}为空间向量的一组基底矛盾,故c, a+ b, a—b可构成空间向量的一组基底.答案C4.如图所示,已知空间四边形OABC OB= OC且/ AO&Zn A A—,贝y cos〈OA BO的值为31 AOC =A. 0B. 1C.解析设OA= a , OB= b , OC= c ,n由已知条件〈a , b 〉=〈 a , c 〉=—,且 | b | = | c | ,——1 1 ——OA BC= a •( c — b ) = a -c - a -b =空1 a||c | — 2|a||b| = 0,「. cos 〈OA BC 〉= 0.答案 A— — — — 1 — —解析 BMh BB + B i Mh AA + AD- AB1 1 1 =c +2(b — a ) = — q a + q b + c . 答案 A6.如图,在大小为45°的二面角 A- EF — D 中,四边形ABFE CDEF 都是边长为1的正方形, 贝U B,D 两点间的距离是( )A. 3B. .2C. 1D. 3 — »解析 ••• B DT BF + —+ E D , /. |BD D 2= | BF 2+ |用2+ |ED 2+ 2BF- Ffe+ 2F E- ED )+ 2BF- E D=1 + 1 + 1— , 2= 3— 2,故 |BD| = .3 —、2. 答案 D 二、填空题7.设 x, y 乏 R ,向量 a = (x,1 )b =(1, y )c =(2,Y ),且 a 丄 c,b//c ,贝U a + ” = _______交点.若AB= a , AD= b , AA = c ,则下列向量中与 BM 相等 的向量是()•1 1 1 1A .—歹+尹+ cB.q a + -b + c1 1 C.— q a — q b + c 1 1D.q a —qb + c 5•如图所示,在长方体 ABC - ABCD 中,M 为AC 与B D 的答案.108.在空间四边形ABCD中,AB - CD+ AC - DB+ AD - BC=解析如图,设AB= a, AC= b, AD= c,AB- C內AC- DB+ AD- BC= a •( c —b) + b - (a—c) + c - (b-a) = 0.答案09•已知ABC- ABGD 为正方体,①(+ AD^ + A1B1 ) 2=—I T—A A ) = 0;③向量AD1与向量A1B的夹角是60。
2018年高考数学一轮复习 课标通用 第八章立体几何8.6空间向量及其运算和空间位置关系学案理

§8.6 空间向量及其运算和空间位置关系考纲展示►1.了解空间直角坐标系,会用空间直角坐标表示点的位置. 2.会推导空间两点间的距离公式.3.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.4.掌握空间向量的线性运算及其坐标表示.5.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直. 6.理解直线的方向向量与平面的法向量.7.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系. 8.能用向量方法证明有关直线和平面关系的一些定理(包括三垂线定理).考点1 空间向量的线性运算空间向量的有关概念(1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量.(3)共线向量:表示空间向量的有向线段所在的直线互相____________的向量. (4)共面向量:________________的向量. 答案:(1)大小 方向 (2)相同 相等 (3)平行或重合 (4)平行于同一个平面(1)[教材习题改编]已知在空间四边形ABCD 中,G 为CD 的中点,则化简AB →+12(BD →+BC →)=________.答案:AG →解析:AB →+12(BD →+BC →)=AB →+BG →=AG →.(2)[教材习题改编]如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则BM →可用a ,b ,c 表示为________.答案:-12a +12b +c解析:由图可知,BM →=BB 1→+B 1M →=BB 1→+12B 1D 1→=BB 1→+12(A 1D 1→-A 1B 1→)=c +12(b -c )=-12a +12b+c.[典题1] (1)[2017·河南郑州模拟]如图所示,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.[答案] 56[解析] 设OA →=a ,OB →=b ,OC →=c , 则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a , OG →=OM →+MG →=12OA →+23MN →23⎝⎭222=16a +13b +13c . 又OG →=xOA →+yOB →+zOC →, 所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.(2)如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD→=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:①AP →; ②MP →+NC 1→.[解] ①因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .②因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →2⎝⎭2=12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c . [点石成金] 用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立.考点2 共线、共面向量定理的应用空间向量中的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b ⇔存在唯一一个λ∈R ,使a =λb .(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面⇔存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组{x ,y ,z }使得p =x a +y b +z c .空间向量理解的误区:共线;共面. 给出下列命题:①若向量a ,b 共线,则向量a ,b 所在的直线平行; ②若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;③已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c ;④若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.其中为真命题的是________. 答案:④解析:若a 与b 共线,则a ,b 所在的直线可能平行也可能重合,故①不正确;三个向量a ,b ,c 中任两个一定共面,但三个却不一定共面,故②不正确;只有当a ,b ,c 不共面时,空间任意一个向量p 才一定能表示为p =x a +y b +z c ,故③不正确;据向量运算法则可知④正确.[典题2] 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .[证明] (1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →.由共面向量定理知,E ,F ,G ,H 四点共面. (2)EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →. 因为E ,H ,B ,D 四点不共线,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .[点石成金] 应用共线(面)向量定理、证明点共线(面)的方法比较如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).向量MN →是否与向量AB →,AA 1→共面?解:∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1→)+AB → =kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,∴由共面向量定理知,向量MN →与向量AB →,AA 1→共面.考点3 利用向量证明平行与垂直问题向量法证明平行与垂直 (1)两个重要向量 ①直线的方向向量直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有________个.②平面的法向量直线l ⊥平面α,取直线l 的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有________个,它们是共线向量.(2)空间位置关系的向量表示。
高考数学一轮复习第八篇立体几何第6讲空间向量及其运算课件理

第6讲 空间向量及其运算
【2013年高考会这样考】 1.考查空间向量的线性运算及其数量积. 2.利用向量的数量积判断向量的关系与垂直. 3.考查空间向量基本定理及其意义. 【复习指导】 空间向量的运算类似于平面向量的运算,复习时又对比论证, 重点掌握空间向量共线与垂直的条件,及空间向量基本定理的 应用.
面的充要条件是存在实数x,y使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c 不共面 ,那么对 空间任一向量p,存在一个唯一的有序实数组x,y,z, 使 p=xa+yb+zc .
一种方法 用空间向量解决几何问题的一般方法步骤是: (1)适当的选取基底{a,b,c}; (2)用a,b,c表示相关向量; (3)通过运算完成证明或计算问题.
基础梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有 大小 和 方向 的量叫做空间向 量. (2)相等向量:方向 相同 且模相等 的向量. (3)共线向量:表示空间向量的有向线段所在的直线互 相 平行或重合 的向量. (4)共面向量:平行于 同一个平面 的向量.
2.空间向量的线性运算及运算律
→ AD
、
→ AA1
两两的夹角均为60°,且|
→ AB
|=1,|
→ AD
|=2,|
→ AA1
|=
3,则|A→C1|等于( ).
A.5 B.6 C.4 D.8
解析 设A→B=a,A→D=b,A→A1=c,则A→C1=a+b+c, A→C12=a2+b2+c2+2a·b+2b·c+2c·a=25,
因此|A→C1|=5. 答案 A
5.在四面体O-ABC中,O→A=a,O→B=b,O→C=c,D为BC的中 点,E为AD的中点,则O→E=________(用a,b,c表示). 解析 如图,O→E=12O→A+12O→D=12O→A+14O→B+14O→C=12a+14b+ 1 4c. 答案 12a+14b+14c
高考数学大一轮复习第八章立体几何与空间向量8.6空间向量及其运算教案理含解析新人教A版

高考数学大一轮复习第八章立体几何与空间向量8.6空间向量及其运算教案理含解析新人教A版§8.6空间向量及其运算最新考纲考情考向分析1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线和垂直.本节是空间向量的基础内容,涉及空间直角坐标系、空间向量的有关概念、定理、公式及四种运算等内容.一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行、垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力.1.空间向量的有关概念及定理语言描述共线向量(平行向量)如果空间一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量共线向量定理两个空间向量a,b(b≠0),a∥b的充要条件是存在唯一的实数x,使a=x b共面向量定理如果两个向量a、b不共线,则向量c与向量a,b共面的充要条件是,存在唯一的一对实数x,y,使c=x a+y b空间向量分解定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a+y b+z c2.两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则角∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,通常规定0≤〈a ,b 〉≤π. 3.两条异面直线所成的角把异面直线平移到一个平面内,这时两条直线的夹角(锐角或直角)叫做两条异面直线所成的角. 4.数量积及坐标运算 (1)两个向量的数量积: ①a·b =|a||b |cos 〈a ,b 〉; ②a ⊥b ⇔a·b =0(a ,b 为非零向量); ③|a |2=a·a ,|a |=x 2+y 2+z 2. (2)向量的坐标运算:a =(a 1,a 2,a 3),b =(b 1,b 2,b 3) 向量和 a +b =(a 1+b 1,a 2+b 2,a 3+b 3) 向量差 a -b =(a 1-b 1,a 2-b 2,a 3-b 3)数量积 a·b =a 1b 1+a 2b 2+a 3b 3 数乘向量λa =(λa 1,λa 2,λa 3)共线a∥b (b ≠0)⇔a 1=λb 1,a 2=λb 2,a 3=λb 3a ∥b ⇔a 1b 1=a 2b 2=a 3b 3(b 与三个坐标平面都不平行)垂直 a⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0夹角公式cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗?提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( √ )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ ) (6)若a·b <0,则〈a ,b 〉是钝角.( × ) 题组二 教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →) =12+22+12+2(1×2×cos120°+0+2×1×cos120°) =2,∴|EF →|=2,∴EF 的长为 2. 题组三 易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直B.平行C.异面D.相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →, ∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________. 答案 2 6 解析 ∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0, ∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =______. 答案 18解析 ∵P ,A ,B ,C 四点共面, ∴34+18+t =1,∴t =18.题型一 空间向量的线性运算例1 如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)MP →+NC 1→.解 (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P → =a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝ ⎛⎭⎪⎫a +c +12b=12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c . 思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 ∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. (2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( )A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) 答案 B解析 NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ). 题型二 共线定理、共面定理的应用例2 如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH . 证明 (1)连接BG , 则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH → =EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB → =12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .思维升华 证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线 空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点PMP →=xMA →+yMB →对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB →对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →跟踪训练2 如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行? 解 (1)∵AM →=kAC 1→,BN →=kBC →, ∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1—→)+AB → =kB 1A →+AB →=AB →-kAB 1→ =AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面, ∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内; 当0<k ≤1时,MN ∥平面ABB 1A 1. 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值. (1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos60°+a 2cos60°-a 2)=0. ∴MN →⊥AB →,即MN ⊥AB . 同理可证MN ⊥CD .(2)设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p=12⎝ ⎛⎭⎪⎫q 2-12q ·p +r ·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2cos60°+a 2cos60°-12a 2cos60° =12⎝⎛⎭⎪⎫a 2-a 24+a 22-a 24=a22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1, ∴cos〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( )A.(0,3,-6)B.(0,6,-20)C.(0,6,-6)D.(6,6,-6)答案 B解析 由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p=x a +y b +z c .其中正确命题的个数是( ) A.0B.1C.2D.3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32B.-2C.0D.32或-2 答案 B解析 当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m,解得m =-2. 4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为( ) A.(3,0,0) B.(0,3,0) C.(0,0,3) D.(0,0,-3)答案 C解析 设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2, 解得z =3.5.已知a =(1,0,1),b =(x,1,2),且a·b =3,则向量a 与b 的夹角为( ) A.5π6B.2π3 C.π3D.π6答案 D解析 ∵a·b =x +2=3,∴x =1,∴b =(1,1,2), ∴cos〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A.3B.2C.1D.3- 2 答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2, 故|BD →|=3- 2.7.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=________. 答案 -9解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.8.已知a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =________. 答案 (3,-2,2) 解析 因为a ∥b ,所以x-2=4y =1-1, 解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1), 又因为b ⊥c ,所以b ·c =0, 即-6+8-z =0,解得z =2,于是c =(3,-2,2).9.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13VC →,VM →=23VB →,VN →=23VD →.则VA 与平面PMN 的位置关系是________. 答案 平行解析 如图,设VA →=a ,VB →=b ,VC →=c ,则VD →=a +c -b ,由题意知PM →=23b -13c ,PN →=23VD →-13VC →=23a -23b +13c . 因此VA →=32PM →+32PN →,∴VA →,PM →,PN →共面. 又VA ⊄平面PMN , ∴VA ∥平面PMN .10.已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1—→+A 1B 1—→)2=3A 1B 1—→2; ②A 1C →·(A 1B 1—→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________. 答案 ①②解析 ①中,(A 1A →+A 1D 1—→+A 1B 1—→)2=A 1A →2+A 1D 1—→2+A 1B 1—→2=3A 1B 1—→2,故①正确;②中,A 1B 1—→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题意知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M , ∴M ,A ,B ,C 四点共面. ∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点) 解 (1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+(-5)2+52=5 2. (2)令AE →=tAB →(t ∈R ), 所以OE →=OA →+AE →=OA →+tAB → =(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E 点的坐标为⎝ ⎛⎭⎪⎫-65,-145,25.13.(2018·本溪模拟)如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案 56解析 连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a , OG →=OM →+MG →=12OA →+23MN →=12a +23⎝ ⎛⎭⎪⎫12b +12c -12a =16a +13b +13c . 又OG →=xOA →+yOB →+zOC →, 所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.不确定答案 C解析 ∵M 为BC 中点, ∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________. 答案 (1,1,2)解析 由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |, 且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c )·⎝⎛⎭⎪⎫b +12c =12c 2=12|a |2,∴cos〈AC ′→,CE →〉=AC ′→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲 空间向量及其运算基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·台州统考)已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32B.-2C.0D.32或-2 解析 ∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.答案 B2.在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( ) A.19B.459C.259D.23解析 如图,设正方体棱长为2,则易得CM →=(2,-2,1),D 1N →=(2,2,-1),∴cos 〈CM →,D 1N →〉 =CM →·D 1N→|CM →||D 1N →|=-19,∴sin 〈CM →,D 1N →〉=1-⎝ ⎛⎭⎪⎫-192=459. 答案 B3.空间四边形ABCD 的各边和对角线均相等,E 是BC 的中点,那么( ) A.AE →·BC →<AE →·CD →B.AE →·BC →=AE →·CD →C.AE →·BC →>AE →·CD →D.AE →·BC →与AE →·CD →的大小不能比较解析 取BD 的中点F ,连接EF ,则EF 綉12CD ,因为〈AE →,EF →〉=〈AE →,CD →〉>90°,因为AE →·BC→=0,∴AE →·CD →<0,所以AE →·BC →>AE →·CD →.答案 C4.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( ) A.-1B.43C.53D.75解析 由题意得,k a +b =(k -1,k ,2),2a -b =(3,2,-2).所以(k a +b )·(2a -b )=3(k -1)+2k -2×2=5k -7=0,解得k =75.答案 D5.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A.a 2B.12a 2C.14a 2D.34a 2解析 如图,设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=a ,且a ,b ,c 三向量两两夹角为60°. AE →=12(a +b ),AF →=12c ,∴AE →·AF →=12(a +b )·12c=14(a ·c +b ·c )=14(a 2cos 60°+a 2cos 60°)=14a 2. 答案 C 二、填空题6.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.解析 由题意得,(2a +b )·c =0+10-20=-10. 即2a ·c +b·c =-10,又∵a·c =4,∴b·c =-18,∴cos 〈b ,c 〉=b·c |b |·|c |=-1812×1+4+4=-12,∴〈b ,c 〉=120°,∴两直线的夹角为60°. 答案 60°7.(2017·宁波十校联考)已知a =(-2,1,3),b =(-1,2,1),a 与b 夹角的余弦值为________;若a ⊥(a -λb ),则λ=________.解析 ∵a =(-2,1,3),b =(-1,2,1),∴cos 〈a ,b 〉=a ·b |a ||b |=2+2+314×6=216;由题意a ·(a -λb )=0,即a 2-λa ·b =0,又a 2=14,a ·b =7,∴14-7λ=0,∴λ=2.答案2162 8.(2017·北京顺义一模)设A 1,A 2,A 3,A 4,A 5是空间中给定的5个不同的点,则使∑5k =1MA k →=0成立的点M 的个数有________.解析 设M (a ,b ,c ),A k =(x k ,y k ,z k )(k =1,2,3,4,5). 则MA k →=(x k -a ,y k -b ,z k -c ),∴由∑5k =1MA k →=0得⎩⎪⎨⎪⎧x 1+x 2+x 3+x 4+x 5-5a =0,y 1+y 2+y 3+y 4+y 5-5b =0,z 1+z 2+z 3+z 4+z 5-5c =0,∴⎩⎪⎨⎪⎧a =15(x 1+x 2+x 3+x 4+x 5),b =15(y 1+y 2+y 3+y 4+y 5),c =15(z 1+z 2+z 3+z 4+z 5),∴存在唯一点M .答案 1 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)若|c |=3,且c ∥BC →,求向量c . (2)求向量a 与向量b 的夹角的余弦值.解 (1)∵c ∥BC →,BC →=(-3,0,4)-(-1,1,2)=(-2,-1,2), ∴c =mBC →=m (-2,-1,2)=(-2m ,-m ,2m ), ∴|c |=(-2m )2+(-m )2+(2m )2=3|m |=3, ∴m =±1.∴c =(-2,-1,2)或(2,1,-2). (2)∵a =(1,1,0),b =(-1,0,2), ∴a·b =(1,1,0)·(-1,0,2)=-1, 又∵|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a·b |a |·|b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. 10.如图所示,在平面角为120°的二面角α-AB -β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.解 ∵AC ⊥AB ,BD ⊥AB , ∴CA →·AB →=0,BD →·AB →=0.∵二面角α-AB -β的平面角为120°, ∴〈CA →,BD →〉=180°-120°=60°, ∴CD 2=CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB → =3×62+2×62×cos 60°=144, ∴CD =12.能力提升题组 (建议用时:25分钟)11.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( ) A.-1B.0C.1D.不确定解析 如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b ·(a -c )+c ·(b -a ) =a ·c -a ·b +b ·a -b ·c +c ·b -c ·a =0. 答案 B12.若{a ,b ,c }是空间的一个基底,且向量p =x a +y b +z c ,则(x ,y ,z )叫向量p 在基底{a ,b ,c }下的坐标.已知{a ,b ,c }是空间的一个基底,{a +b ,a -b ,c }是空间的另一个基底,一向量p 在基底{a ,b ,c }下的坐标为(4,2,3),则向量p 在基底{a +b ,a -b ,c }下的坐标是( ) A.(4,0,3) B.(3,1,3) C.(1,2,3)D.(2,1,3)解析 设p 在基底{a +b ,a -b ,c }下的坐标为x ,y ,z .则p =x (a +b )+y (a -b )+z c =(x +y )a +(x -y )b +z c ,①因为p 在{a ,b ,c }下的坐标为(4,2,3), ∴p =4a +2b +3c ,②由①②得⎩⎪⎨⎪⎧x +y =4,x -y =2,z =3,∴⎩⎪⎨⎪⎧x =3,y =1,z =3,即p 在{a +b ,a -b ,c }下的坐标为(3,1,3). 答案 B13.(2017·郑州调研)已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是__________. 解析 ∵点Q 在直线OP 上,∴设点Q (λ,λ,2λ),则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=6⎝ ⎛⎭⎪⎫λ-432-23.即当λ=43时,QA →·QB →取得最小值-23. 此时OQ →=⎝ ⎛⎭⎪⎫43,43,83.答案 ⎝ ⎛⎭⎪⎫43,43,8314.如图,在棱长为a 的正方体OABC -O 1A 1B 1C 1中,E ,F 分别是棱AB ,BC 上的动点,且AE =BF =x ,其中0≤x ≤a ,以O 为原点建立空间直角坐标系O -xyz .(1)写出点E ,F 的坐标; (2)求证:A 1F ⊥C 1E ;(3)若A 1,E ,F ,C 1四点共面,求证:A 1F →=12A 1C 1→+A 1E →.(1)解 E (a ,x ,0),F (a -x ,a ,0). (2)证明 ∵A 1(a ,0,a ),C 1(0,a ,a ), ∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ), ∴A 1F →·C 1E →=-ax +a (x -a )+a 2=0, ∴A 1F →⊥C 1E →, ∴A 1F ⊥C 1E .(3)证明 ∵A 1,E ,F ,C 1四点共面, ∴A 1E →,A 1C 1→,A 1F →共面.选A 1E →与A 1C 1→为在平面A 1C 1E 上的一组基向量,则存在唯一实数对(λ1,λ2),使A 1F →=λ1A 1C 1→+λ2A 1E →,即(-x ,a ,-a )=λ1(-a ,a ,0)+λ2(0,x ,-a ) =(-a λ1,a λ1+x λ2,-a λ2), ∴⎩⎪⎨⎪⎧-x =-a λ1,a =a λ1+x λ2,-a =-a λ2,解得λ1=12,λ2=1.于是A 1F →=12A 1C 1→+A 1E →.15.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EG 的长;(3)异面直线AG 与CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c ,EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a·c =14,(2)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22.(3)AG →=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.。