1997年、1998年、1999年全国硕士研究生入学统一考试数学一真题合集

合集下载

1998年考研数学一真题及答案

1998年考研数学一真题及答案

1998 年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.)(1) 22limx x→= . (2) 设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2zx y∂=∂∂ .(3) 设L 为椭圆221,43x y +=其周长记为a ,则22(234)L xy x y ds ++=⎰ . (4) 设A 为n 阶矩阵,0A ≠,*A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值λ,则*2()A E +必有特征值 . (5) 设平面区域D 由曲线1y x=及直线20,1,y x x e ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为 _ .二、选择题(本题共5小题,每小题3分,共15分.)(1) 设()f x 连续,则220()xd tf x t dt dx -=⎰ ( ) (A) 2()xf x (B) 2()xf x - (C) 22()xf x (D) 22()xf x - (2) 函数23()(2)f x x x x x =---不可导点的个数是 ( )(A) 3 (B) 2 (C) 1 (D) 0 (3) 已知函数()y y x =在任意点x 处的增量2,1y xy x α∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于 ( ) (A) 2π (B) π (C) 4e π (D) 4e ππ(4) 设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==--- ( )(A) 相交于一点 (B) 重合 (C) 平行但不重合 (D) 异面(5) 设A B 、是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有( )(A) (|)(|)P A B P A B = (B) (|)(|)P A B P A B ≠ (C) ()()()P AB P A P B = (D) ()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z L --==-在平面:210x y z ∏-+-=上的投影直线0L 的方程,并求0L 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数λ,使在右半平面0x >上的向量42242(,)2()()A x y xy x y i x x y j λλ=+-+为某二元函数(,)u x y 的梯度,并求(,)u x y .五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为(0)k k >.试建立y 与v 所满足的微分方程,并求出函数关系式()y =y v .六、(本题满分7分)计算212222(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半球面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭八、(本题满分5分)设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11()1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1) 试证存在0(0,1)x ∈,使得在区间[]00,x 上以0()f x 为高的矩形面积,等于在区间[]0,1x 上以()y f x =为曲边的梯形面积. (2) 又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=,可以经过正交变换x y P z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦化为椭圆柱面方程2244ηζ+=,求,a b 的值和正交矩阵P .十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数k ,使线性方程组0kA x =有解向量α,且10k A α-≠, 证明:向量组1,,,k A A ααα-是线性无关的.十二、(本题满分5分)已知线性方程组1111221,222112222,221122,220,0,()0n n n n n n n n n a x a x a x a x a x a x I a x a x a x ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩的一个基础解系为11121,221222,212,2(,,,),(,,,),,(,,,)T T T n n n n n n b b b b b b b b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,试写出线性方程组1111221,222112222,221122,220,0,()0n n n n n n n n n b y b y b y b y b y b y II b y b y b y ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩的通解,并说明理由.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大?附表:标准正态分布表22()t zz dt -Φ=⎰十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程. 附表:t 分布表{()()}p P tn t n p ≤=1998年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x→=24x →-=)221lim4x x →=2220112112lim 24x xx x →-- =-.方法2:采用洛必达法则.原式)()022limxx →''洛0x →=x →=0lim 4x x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x→-++=14=-. (2)【答案】()()()yf xy x y y x y ϕϕ'''''++++【分析】因为1()(),,z f xy y x y f xϕϕ=++具有二阶连续导数,利用混合偏导数在连续的条件下与求导次序无关,先求z x ∂∂或z y∂∂均可,但不同的选择可能影响计算的繁简. 方法1:先求z x∂∂. 211()()()()()z y f xy y x y f xy f xy y x y x x x x x ϕϕ∂∂⎡⎤''=++=-+++⎢⎥∂∂⎣⎦, 2221()()()11()()()()()11()()()()()()()().z y f xy f xy y x y x y y x x yf xy x f xy f xy x x y y x y x x xf xy f xy yf xy x y y x y x xyf xy x y y x y ϕϕϕϕϕϕϕ∂∂⎛⎫''=-+++ ⎪∂∂∂⎝⎭'''''''=-++++++'''''''=-++++++'''''=++++ 方法2:先求z y∂∂. 11()()()()()()()(),z f xy y x y f xy x x y y x y y y x xf xy x y y x y ϕϕϕϕϕ∂∂⎡⎤''=++=++++⎢⎥∂∂⎣⎦''=++++ []22()()()()()().z z f xy x y y x y x y y x xyf xy x y y x y ϕϕϕϕ∂∂∂''==++++∂∂∂∂∂'''''=++++ 方法3:对两项分别采取不同的顺序更简单些:()[][][]21()()1()()()()()()().z f xy y x y x y x y x y x f xy x y x y x x y f xy y x y x yyf xy x y y x y ϕϕϕϕϕ⎡⎤∂∂∂∂∂⎛⎫⎡⎤=++ ⎪⎢⎥⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦⎣⎦∂∂⎡⎤''=++⎢⎥∂∂⎣⎦∂∂''=++∂∂'''''=++++ 评注:本题中,,f ϕ中的中间变量均为一元,因此本题实质上是一元复合函数的求导,只要注意到对x 求导时,y 视为常数;对y 求导时,x 视为常数就可以了. (3)【答案】12a【解析】L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上,22222213412(34)1212.43L L x y x y x y ds ds a +=⇒+=⇒+==⎰⎰因此, 原式222(34)12LLxyds xy ds a =++=⎰⎰.【相关知识点】对称性:平面第一型曲线积分(),lf x y ds ⎰,设(),f x y 在l 上连续,如果l 关于y 轴对称,1l 为l 上0x ≥的部分,则有结论:()()()()12,,,,0,l lf x y ds f x y x f x y ds f x y x ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. 类似地,如果l 关于x 轴对称,2l 为l 上0y ≥的部分,则有结论:()()()()22,,,,0,l lf x y ds f x y y f x y ds f x y y ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. (4)【答案】 21A λ⎛⎫+ ⎪⎝⎭【解析】方法1:设A 的对应于特征值λ的特征向量为ξ,由特征向量的定义有,(0)A ξλξξ=≠.由0A ≠,知0λ≠(如果0是A 的特征值0A ⇔=),将上式两端左乘A *,得A A A A A ξξλξλξ***===,从而有 *,AA ξξλ=(即A *的特征值为Aλ).将此式两端左乘A *,得()22**AA A A ξξξλλ⎛⎫== ⎪⎝⎭.又E ξξ=,所以()()22*1A A E ξξλ⎛⎫⎛⎫ ⎪+=+ ⎪ ⎪⎝⎭⎝⎭,故*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.方法2:由0A ≠,A 的特征值0λ≠(如果0是A 的特征值0A ⇔=),则1A -有特征值1λ,O1 2A *的特征值为Aλ;*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.【相关知识点】1.矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘1A -,得1A αλα-=. 因为0α≠,故0λ≠,于是有11Aααλ-=.按特征值定义知1λ是1A -的特征值.若AX X λ=,则()()A kE X AX kX k X λ+=+=+.即若λ是A 的特征值,则A kE +的特征值是k λ+.2.矩阵A 可逆的充要条件是0A ≠,且11AA A-*=. (5)【答案】14【解析】首先求(,)X Y 的联合概率密度(,)f x y .21(,)|1,0D x y x e y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭,区域D 的面积为22111ln 2.e e D S dx x x===⎰1,(,),(,)20, x y D f x y ⎧∈⎪=⎨⎪⎩其他.其次求关于X 的边缘概率密度.当1x <或2x e >时,()0X f x =;当21x e ≤≤时,1011()(,)22x X f x f x y dy dy x+∞-∞===⎰⎰. 故1(2).4X f =二、选择题(本题共5小题,每小题3分,共15分.) (1)【答案】(A)【解析】为变限所定义的函数求导数,作积分变量代换22,u x t =-2:0:0t x u x →⇒→,()222du d x t tdt =-=-12dt du t⇒=-,222022220001()()211()(),22xx xx tf x t dt u x t tf u dt t f u du f u du ⎛⎫-=-- ⎪⎝⎭=-=⎰⎰⎰⎰()2220022221()()211()()2(),22x x d d tf x t dt f u du dx dx f x x f x x xf x -='=⋅=⋅=⎰⎰选(A).【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t ft t f t ββαα'''=⋅-⋅.(2)【答案】(B)【解析】当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是分段函数.22()(2)1f x x x x x =---,当0,1x ≠±时()f x 可导,因而只需在0,1x =±处考察()f x 是否可导.在这些点我们分别考察其左、右导数.由 22222222(2)(1),1,(2)(1),10,()(2)(1),01,(2)(1),1,x x x x x x x x x x f x x x x x x x x x x x ⎧---<-⎪----≤<⎪=⎨---≤<⎪⎪---≤⎩⇒ ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x ---→-→-------'-===++, ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x +++→-→-------'-===++,即()f x 在1x =-处可导.又()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x ---→→-----'===,()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x+++→→-----'===-, 所以()f x 在0x =处不可导.类似,函数()f x 在1x =处亦不可导.因此()f x 只有2个不可导点,故应选(B).评注:本题也可利用下列结论进行判断:设函数()()f x x a x ϕ=-,其中()x ϕ在x a =处连续,则()f x 在x a =处可导的充要条件是()0a ϕ=. (3)【答案】(D) 【解析】由2,1y x y x α∆∆=++有2.1y y x x xα∆=+∆+∆令0,x ∆→得α是x ∆的高阶无穷小,则0lim0x xα∆→=∆,0limx y x ∆→∆∆20lim 1x y x x α∆→⎛⎫=+ ⎪+∆⎝⎭200lim lim 1x x y x x α∆→∆→=++∆21y x =+ 即21dy y dx x =+. 分离变量,得2,1dy dx y x =+ 两边积分,得 ln arctan y x C =+,即arctan 1.xy C e =代入初始条件(0),y π=得()arctan0110.y C e C π===所以,arctan x y e π=.故 arctan 1(1)xx y eπ==arctan1eπ=4.e ππ=【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (4)【答案】(A) 【解析】设3331121212:x a y b z c L a a b b c c ---==---,1112232323:x a y b z c L a a b b c c ---==---,题设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则由行列式的性质,可知 11112121222223232333333312230a b c a a b b c c a b c a a b b c c a b c a b c ------≠行减行,行减行, 故向量组121212(,,)a a b b c c ---与232323(,,)a a b b c c ---线性无关,否则由线性相关的定义知,一定存在12,k k ,使得11212122232323(,,)(,,)0k a a b b c c k a a b b c c ---+---=,这样上面行列式经过初等行变换值应为零,产生矛盾.121212(,,)a a b b c c ---与232323(,,)a a b b c c ---分别为12,L L 的方向向量,由方向向量线性相关,两直线平行,可知12,L L 不平行.又由333121212x a y b z c a a b b c c ---==---得333121212111x a y b z c a a b b c c ----=-=----,即()()()312312312121212x a a a y b b b z c c c a a b b c c ---------==---. 同样由111232323x a y b z c a a b b c c ---==---,得111232323111x a y b z c a a b b c c ---+=+=+---,即 ()()()123323323232323x a a a y b b b z c c c a a b b c c -+--+--+-==---, 可见12,L L 均过点()213213213,,a a a b b b c c c ------,故两直线相交于一点,选(A). (5)【答案】C【分析】由题设条件(|)(|)P B A P B A =,知A 发生与A 不发生条件下B 发生的条件概率相等,即A 发生不发生不影响B 的发生概率,故,A B 相互独立.而本题选项(A)和(B)是考虑(|)P A B 与(|)P A B 是否相等,选项(C)和(D)才是事件A 与B 是否独立.【解析】由条件概率公式及条件(|)(|),P B A P B A =知{}{}{}{}{}{}{}1P AB P AB P B P AB P A P A P A-==-, 于是有 {}{}{}{}{}1P AB P A P A P B P AB -=⋅-⎡⎤⎡⎤⎣⎦⎣⎦, 可见 {}{}{}P AB P A P B =. 应选(C).【相关知识点】条件概率公式:{}{}{}|P AB P B A P A =.三、(本题满分5分)【解析】方法1:求直线L 在平面∏上的投影0L :方法1:先求L 与∏的交点1N .以1,:,1x t L y t z t =+⎧⎪=⎨⎪=-⎩代入平面∏的方程,得(1)2(1)101t t t t +-+--=⇒=.从而交点为1(2,1,0)N ;再过直线L 上点0(1,0,1)M 作平面∏的垂线11:112x y z L --'==-,即1,,12.x t y t z t =+⎧⎪=-⎨⎪=+⎩并求L '与平面∏的交点2N :1(1)()2(12)103t t t t +--++-=⇒=-,交点为2211(,,)333N .1N 与2N 的连接线即为所求021:421x y zL --==-. 方法2:求L 在平面∏上的投影线的最简方法是过L 作垂直于平面∏的平面0∏,所求投影线就是平面∏与0∏的交线.平面0∏过直线L 上的点(1,0,1)与不共线的向量(1,1,1)l =- (直线L 的方向向量)及(1,1,2)n =-(平面∏的法向量)平行,于是0∏的方程是111110112x y z ---=-,即3210x y z --+=. 投影线为 0210,:3210.x y z L x y z -+-=⎧⎨--+=⎩下面求0L 绕y 轴旋转一周所成的旋转曲面S 的方程.为此,将0L 写成参数y 的方程:2,1(1).2x y z y =⎧⎪⎨=--⎪⎩ 按参数式表示的旋转面方程得S 的参数方程为,,.x y y z θθ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩消去θ得S 的方程为()222212(1)2x z y y ⎡⎤+=+--⎢⎥⎣⎦,即2224174210.x y z y -++-=四、(本题满分6分)【解析】令42(,)2(),P x y xy x y λ=+242(,)(),Q x y x x y λ=-+则(,)((,),(,))A x y P x y Q x y =在单联通区域右半平面0x >上为某二元函数(,)u x y 的梯度Pdx Qdy ⇔+在0x >上∃原函数(,)u x y ⇔,0.Q Px x y∂∂=>∂∂ 其中,42242132()()4Qx x y x x y x xλλλ-∂=-+-+⋅∂, 424212()2()2Px x y xy x y y yλλλ-∂=+++⋅∂. 由Q Px y∂∂=∂∂,即满足 4224213424212()()42()2()2x x y x x y x x x y xy x y y λλλλλλ---+-+⋅=+++⋅,424()(1)01x x y λλλ⇔++=⇔=-.可见,当1λ=-时,所给向量场为某二元函数的梯度场.为求(,)u x y ,采用折线法,在0x >半平面内任取一点,比如点(1,0)作为积分路径的起点,则根据积分与路径无关,有2(,)42(1,0)2(,)x y xydx x dyu x y C x y -=++⎰244210200xy x x dx dy C x x y⋅-=++++⎰⎰(折线法) 242yx dy C x y -=++⎰2242(1)yx dy C y x x -=+⎛⎫+ ⎪⎝⎭⎰(第一类换元法)222222004221(1)(1)yy x x y y d C d C x x y y x x x ⋅⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 2arctan yC x =-+(基本积分公式) 其中C 为任意常数.【相关知识点】1.二元可微函数(,)u x y 的梯度公式:u u gradu i +j x y∂∂=∂∂. 2.定理:设D 为平面上的单连通区域,函数()P x,y 与(,)Q x y 在D 内连续且有连续的一阶偏导数,则下列六个命题等价:(1),(,)Q Px y D x y∂∂≡∈∂∂; (2) 0,LPdx Qdy L +=⎰为D 内任意一条逐项光滑的封闭曲线;(3)LABPdx Qdy +⎰仅与点,A B 有关,与连接,A B 什么样的分段光滑曲线无关;(4) 存在二元单值可微函数(,)u x y ,使du Pdx Qdy =+(即Pdx Qdy +为某二元单值可微函数(,)u x y 的全微分; (5) 微分方程0Pdx Qdy +=为全微分方程;(6) 向量场P +Q i j 为某二元函数(,)u x y 的梯度u P +Q =grad i j .换言之,其中任一组条件成立时,其它五组条件皆成立.当条件成立时,可用试图法或折线法求函数(,)u x y .五、(本题满分6分)【解析】先建立坐标系,取沉放点为原点O ,铅直向下作为Oy 轴正向,探测器在下沉过程中受重力、浮力和阻力的作用,其中重力大小:mg ,浮力的大小:F B ρ=-浮;阻力:kv -,则由牛顿第二定律得202,0,0.t t d ym mg B g kv y vdtρ===--== (*)由22,dy d y dv dv dy dv dy v v v dv dt dt dt dy dt dy===⋅==,代入(*)得y 与v 之间的微分方程10,0y dy mv mg B kv v dv ρ-=⎛⎫=--= ⎪⎝⎭.分离变量得 mvdy dv mg B kv ρ=--,两边积分得 mvdy dv mg B kv ρ=--⎰⎰,2222()()()Bm m g Bm m g mv k k k k y dv mg B kv m Bm m g mg B kv k k k dv mg B kv m g Bm m k dvk mg B kv m m mg B dv dvk k mg B kv ρρρρρρρρρρ+--+=------+=--⎛⎫- ⎪=-+ ⎪-- ⎪ ⎪⎝⎭-=-+--⎰⎰⎰⎰⎰1()()()()m mg B m k v d mg B kv k k mg B kv ρρρ-⋅-=-+----⎰ (第一类换元法) 2()ln()m m mg B v mg B kv C k k ρρ-=----+.再根据初始条件0|0,y v ==即22()()ln()0ln()m mg B m mg B mg B C C mg B k kρρρρ----+=⇒=-. 故所求y 与v 函数关系为()2ln .m mg B m mg B kv y v k k mg B ρρρ-⎛⎫--=-- ⎪-⎝⎭六、(本题满分7分)【解析】方法1:本题属于求第二类区面积分,且不属于封闭区面,则考虑添加一平面使被积区域封闭后用高斯公式进行计算,但由于被积函数分母中包含12222()x y z ++,因此不能立即加、减辅助面2221:0x y a z ⎧+≤∑⎨=⎩,宜先将曲面方程代入被积表达式先化简:2212222()1().()axdydz z a dxdy I axdydz z a dxdy a x y z ∑∑++==++++⎰⎰⎰⎰ 添加辅助面2221:0x y a z ⎧+≤∑⎨=⎩,其侧向下(由于∑为下半球面z =侧,而高斯公式要求是整个边界区面的外侧,这里我们取辅助面的下侧,和∑的上侧组成整个边界区面的内侧,前面取负号即可),由高斯公式,有11222211()()()1()().D I axdydz z a dxdy axdydz z a dxdy a a z a ax dV a dxdy a x z ∑+∑∑Ω=++-++⎛⎫⎡⎤∂+⎛⎫∂⎣⎦ ⎪=-+-- ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分前面加负号是由于我们取边界区面的内侧,第二个积分前面加负号是由于1∑的方向向下;另外由曲面片1∑在yoz 平面投影面积为零,则10axdydz ∑=⎰⎰,而1∑上0z =,则()22z a a +=.21(2())D I a z a dV a dxdy a Ω⎛⎫=-+++ ⎪⎝⎭⎰⎰⎰⎰⎰,其中Ω为∑与1∑所围成的有界闭区域,D 为1∑在xoy 面上的投影222{(,)|}D x y x y a =+≤. 从而,220322001321232.3D a I a dv zdv a dxdy a a a d rdr a a a ππθπΩΩ⎛⎫=--+ ⎪⎝⎭⎛⎫=-⋅-+⋅ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分用球体体积公式;第二个用柱面坐标求三重积分;第三个用圆的面积公式.()2042400242200242300224224440411222112()21()1122242412a a a aI a d r z dr a a a d r a r dr a a d a r r draa r r a a a a a a a a a a ππππθππθπθππππππ⎛⎫⎛=--+ ⎪⎝⎝⎭⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭=-+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-+⋅-=-+⋅- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+⋅⎰⎰⎰⎰⎰⎰4342a π⎛⎫=- ⎪⎝⎭ 方法2:逐项计算:2212222212()1()()1().axdydz z a dxdyI axdydz z a dxdy a x y z xdydz z a dxdy I I a ∑∑∑∑++==++++=++=+⎰⎰⎰⎰⎰⎰⎰⎰其中,12,Dyz DyzDyzI xdydz ∑==-+=-⎰⎰⎰⎰⎰⎰⎰⎰第一个负号是由于在x 轴的正半空间区域∑的上侧方向与x 轴反向;第二个负号是由于被积函数在x 取负数.yz D 为∑在yoz 平面上的投影域222{(,)|,0}yz D y z y z a z =+≤≤,用极坐标,得2102203223320212()2222()(0),333aI d a r a r a a ππθππππ=-=-⋅--=-=-=-⎰⎰⎰(222222002302300042230044411()1(22)2(22)2222123422(3Dxya a a a a a a I z a dxdy a dxdya a d a r rdra a r r dr a a rdr a r dr a r a r a a a a a a aπθππππ∑=+=-=-=-⎡⎤=--⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎢⎥=-⋅- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰3),46a π=其中yz D 为∑在yoz 平面上的投影域222{(,)|}yz D y z y z a =+≤.故312.2I I I a π=+=-【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.七、(本题满分6分)【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.当各项分母均相同是n 时,n 项和式2sin sinsin n n n n n x nnnπππ=+++是函数sin x π在[0,1]区间上的一个积分和.于是可由定积分1sin xdx π⎰求得极限lim nn x→∞.【解析】由于sinsin sin ,1,2,,11i i i n n n i n n n n iπππ≤≤=⋅⋅⋅++,于是,111sinsin sin 11nn ni i i i i i n n n n nn iπππ===≤≤++∑∑∑.由于 1011sin12limlim sin sin nnn n i i i i n xdx n n n ππππ→∞→∞=====∑∑⎰,10111sin112lim lim sin lim sin sin 11nn nn n n i i i i n i i n xdx n n n n n n πππππ→∞→∞→∞===⎡⎤=⋅===⎢⎥++⎣⎦∑∑∑⎰根据夹逼定理知,1sin2lim1nn i i n n iππ→∞==+∑. 【相关知识点】夹逼准则:若存在N ,当n N >时,n n n y x z ≤≤,且有lim lim n n n n y z a →+∞→+∞==,则lim n n x a →+∞=.八、(本题满分5分)【解析】方法1:因正项数列{}n a 单调减少有下界0,知极限lim n n a →∞存在,记为a ,则n a a ≥且0a ≥.又1(1)nn n a ∞=-∑发散,根据莱布尼茨判别法知,必有 0a >(否则级数1(1)n n n a ∞=-∑收敛).又正项级数{}n a 单调减少,有11,11nnn a a ⎛⎫⎛⎫≤ ⎪ ⎪++⎝⎭⎝⎭而1011a <<+,级数11()1n n a ∞=+∑收敛.根据正项级数的比较判别法,知级数11()1nn n a ∞=+∑也收敛. 方法2:同方法1,可证明lim 0n n a a →∞=>.令1,1nn n b a ⎛⎫= ⎪+⎝⎭则11lim1,11n n na a →∞==<++根据根值判别法,知级数11()1nn n a ∞=+∑也收敛. 【相关知识点】1.交错级数的莱布尼茨判别法:设交错级数11(1)n n n u ∞-=-∑满足:(1)1,1,2,;n n u u n +≥= (2)lim 0.n n u →∞=则11(1)n n n u ∞-=-∑收敛,且其和满足1110(1),n n n u u ∞-=<-<∑余项1.n n r u +<反之,若交错级数11(1)n n n u ∞-=-∑发散,只是满足条件(1),则可以反证说明此级数一定不满足条件(2)lim 0n n u →∞=,所以有lim 0.n n u →∞>(否则级数11(1)n n n u ∞-=-∑收敛)2.正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.3.根值判别法:设0n u >,则当111, 1, lim 0,1, .n n n n n n n u u u ρ∞=∞→∞=⎧<⎪⎪⎪=>≠⎨⎪⎪=⎪⎩∑∑时收敛,时发散,且时此判别法无效九、(本题满分6分)【解析】(1)要证0(0,1)x ∃∈,使0100()()x x f x f x dx =⎰;令1()()()x x xf x f t dt ϕ=-⎰,要证0(0,1)x ∃∈,使0()0x ϕ=.可以对()x ϕ的原函数0()()x x t dt ϕΦ=⎰使用罗尔定理:(0)0Φ=,11111111000(1)()()(())()()()0,xx x x x dx xf x dx f t dt dxxf x dx x f t dt xf x dx ϕ==Φ==-⎡⎤=-+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰分部又由()f x 在[0,1]连续()x ϕ⇒在[0,1]连续,()x Φ在[0,1]连续,在(0,1)可导.根据罗尔定理,0(0,1)x ∃∈,使00()()0x x ϕ'Φ==.(2) 由()()()()()2()0x xf x f x f x xf x f x ϕ'''=++=+>,知()x ϕ在(0,1)内单调增,故(1)中的0x 是唯一的.评注:若直接对()x ϕ使用零点定理,会遇到麻烦:1(0)()0,(1)(1)0f t dt f ϕϕ=-≤=≥⎰.当()0f x ≡时,对任何的0(0,1)x ∈结论都成立;当()f x ≡0时,(0)0,ϕ<但(1)0ϕ≥,若(1)0ϕ=,则难以说明在(0,1)内存在0x .当直接对()x ϕ用零点定理遇到麻烦时,不妨对()x ϕ的原函数使用罗尔定理. 【相关知识点】1.罗尔定理:如果函数()f x 满足 (1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.十、(本题满分6分)【解析】经正交变换化二次型为标准形,二次型矩阵与标准形矩阵既合同又相似.由题设知,二次曲面方程左端二次型对应矩阵为111111b A b a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则存在正交矩阵P ,使得 1000010004P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B 记,即A B 与相似.由相似矩阵有相同的特征值,知矩阵A 有特征值0,1,4.从而,211014,3, 1.(1)0.a a b A b B ++=++⎧⎪⇒==⎨=--==⎪⎩从而,111131.111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦当10λ=时,()1110131111E A ---⎡⎤⎢⎥-=---⎢⎥⎢⎥---⎣⎦1(1)23⨯-行分别加到,行111020000---⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 于是得方程组(0)0E A x -=的同解方程组为12320,20.x x x x ---=⎧⎨-=⎩(0)2r E A -=,可知基础解系的个数为(0)321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为1(1,0,1).Tα=-当21λ=时,()011121110E A --⎡⎤⎢⎥-=---⎢⎥⎢⎥--⎣⎦3(1)2⨯-加到行011011110--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦1(1)2⨯-行加到行011000110--⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦23,行互换011110000--⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦, 于是得方程组()0E A x -=的同解方程组为23120,0.x x x x --=⎧⎨--=⎩()2r E A -=,可知基础解系的个数为()321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为2(1,1,1).Tα=-当34λ=时,()3114111113E A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦12,行互换111311113--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦ 1行的3,(-1)倍分别加到2,3行111024024--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦23行加到行111024000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦,于是得方程组(4)0E A x -=的同解方程组为123230,240.x x x x x -+-=⎧⎨-=⎩(4)2r E A -=,可知基础解系的个数为(4)321n r E A --=-=,故有1个自由未知量,选2x 为自由未知量,取22x =,解得基础解系为3(1,2,1).Tα=由实对称矩阵不同特征值对应的特征向量相互正交,可知123,,ααα相互正交. 将123,,ααα单位化,得111222333,,.TTTαηααηααηα======因此所求正交矩阵为0P ⎡⎢⎢⎢=⎢⎢⎢⎢⎣. 评注:利用相似的必要条件求参数时,iiiia b=∑∑是比较好用的一个关系式.亦可用E A E B λλ-=-比较λ同次方的系数来求参数.【相关知识点】1.特征值的性质:11nni iii i aλ===∑∑2.相似矩阵的性质:若矩阵A B 与相似,则A B =.十一、(本题满分4分)【解析】用线性无关的定义证明.设有常数011,,,,k λλλ-⋅⋅⋅使得10110.()k k A A λαλαλα--++⋅⋅⋅+=*两边左乘1k A -,则有()110110k k k A A A λαλαλα---++⋅⋅⋅+=,即 12(1)0110k k k k A A Aλαλαλα---++⋅⋅⋅+=. 上式中因0k A α=,可知()2110k k A A αα-+===,代入上式可得100.k A λα-=由题设10k Aα-≠,所以00.λ=将00λ=代入()*,有1110k k A A λαλα--+⋅⋅⋅+=.两边左乘2k A -,则有 ()21110k k k A A A λαλα---+⋅⋅⋅+=,即123110k k k A A λαλα---+⋅⋅⋅+=.同样,由0kA α=,()2110k k A A αα-+==,可得110.k A λα-=由题设10k Aα-≠,所以10.λ=类似地可证明210,k λλ-=⋅⋅⋅==因此向量组1,,,k A A ααα-⋅⋅⋅是线性无关的. 【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k 使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.十二、(本题满分5分) 【解析】()II 的通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.理由:可记方程组22()0,()0,n n n n I A X II B Y ⨯⨯==()I ,()II 的系数矩阵分别记为,A B ,由于B 的每一行都是20n n A X ⨯=的解,故0T AB =.TB 的列是()I 的基础解系,故由基础解系的定义知,T B 的列向量是线性无关的,因此()r B n =.故基础解系所含向量的个数2()n n r A =-,得()2r A n n n =-=.因此,A 的行向量线性无关.对0TAB =两边取转置,有()0TT T ABBA ==,则有T A 的列向量,即A 的行向量是0BY =的线性无关的解.又()r B n =,故0BY =基础解系所含向量的个数应为2()2n r B n n n -=-=,恰好等于A 的行向量个数.故A 的行向量组是0BY =的基础解系,其通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.十三、(本题满分6分)【分析】把X Y -看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的性质,可以知道N(0,1)X Y-,这样可以简化整题的计算.【解析】令Z X Y =-,由于,X Y 相互独立,且都服从正态分布,因此Z 也服从正态分布,且()()()0E Z E X E Y =-=,11()()()122D Z D X D Y =+=+=. 于是,(0,1)Z X Y N =-~.()()()()()()()22222()1.D X Y D ZE ZE Z D Z E Z E ZE Z-==-=+-=-而2222z z E Z z dz ze dz +∞+∞---∞==⎰2222202z z z ed e+∞+∞--⎡⎤⎛⎫==-=⎥ ⎪⎝⎭⎥⎦ 故21.D X Y π-=-【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.2.方差的定义:22()DX EX EX =-.3.随机变量函数期望的定义:若()Y g X =,则()()EY g x f x dx +∞-∞=⎰.十四、(本题满分4分) 【解析】由题知:212,,,~(3.4,6)n X X X N ,11nn i i X X n ==∑,各样本相互独立,根据独立正态随机变量的性质,211~(,)n n i i X X N n μσ==∑.其中11n n i i EX E X n μ=⎛⎫== ⎪⎝⎭∑,211n n i i DX D X n σ=⎛⎫== ⎪⎝⎭∑.根据期望和方差的性质,1122222211111 3.4 3.4,11166.n nn i i i i n n nn i i i i i i n EX E X EX n n n n DX D X D X DX n n n n n μσ=====⎛⎫===== ⎪⎝⎭⎛⎫⎛⎫====== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑所以,2116~(3.4,)n n i i X X N n n ==∑.把n X 标准化,~(0,1)X U N =. 从而,{}{}{}{}1.4X 5.4 1.4 3.4X 3.4 5.4 3.42X 3.42X 3.42210.95,P P P P P <<=-<-<-=-<-<=-<=<=Φ-≥⎝⎭⎪⎩⎭故0.975,Φ≥⎝⎭查表得到 1.96,3≥即()21.96334.57,n ≥⨯≈所以n 至少应取35. 【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数. 2.若2~(,)Z N u σ,则~(0,1)Z uN σ-十五、(本题满分4分)【解析】设该次考试的考生成绩为X ,则2~(,)X N μσ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,则在显著性水平0.05α=下建立检验假设:001:70,:70,H H μμμ==≠由于2σ未知,故用t 检验.选取检验统计量,X T == 在070μμ==时,2~(70,),~(35).X N T t σ 选择拒绝域为{}R T λ=≥,其中λ满足:{}0.05P T λ≥=,即{}0.9750.975,(35) 2.0301.P T t λλ≤===由0 36,66.5,70,15,n x s μ====可算得统计量T 的值:1.42.0301t ==<.所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.。

1999 年全国硕士研究生入学统一考试数学一试题

1999 年全国硕士研究生入学统一考试数学一试题

1999 年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分。

把正确答案填写在题中横线上。

) (1) 2011lim tan x x x x →⎛⎫-=⎪⎝⎭(2)20sin()x d x t dt dx-=⎰ (3) 2"4xy y e -= 的通解为y =(4) 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是(5) 设两两相互独立的三事件A , B 和C 满足条件:1,()()(),2ABC P A P B P C φ===<9(),16P A B C ⋃⋃=则()P A =二、选择题(本题共5小题,每小题3分,满分15分。

每小题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。

)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则 ( )(A) 当()f x 是奇函数时,()F x 必是偶函数。

(B) 当()f x 是偶函数时,()F x 必是奇函数。

(C) 当()f x 是周期函数时,()F x 必是周期函数。

(D) 当()f x 是单调增函数时,()F x 必是单调增函数。

(2)设20()(),0x f x x g x x >=≤⎩其中()g x 是有界函数,则()f x 在0x =处 ( ) (A)极限不存在 (B)极限存在,但不连续 (C)连续,但不可导 (D)可导(3) 设011,02(),()cos ,,1222,12n n x x a f x S x a n x x x x π∞=⎧≤≤⎪⎪==+-∞<<+∞⎨⎪- <<⎪⎩∑其中102()cos ,(0,1,2,),n a f x n xdx n π==⋅⋅⋅⎰则52S ⎛⎫- ⎪⎝⎭等于 ( )(A)12 (B)12- (C)34 (D)34-(4)设A 是m n ⨯矩阵, B 是n m ⨯矩阵,则(A)当m n >时,必有行列式AB 0≠ (B)当m n >时,必有行列式AB 0= (C)当n m >时,必有行列式AB 0≠ (D)当n m >时,必有行列式AB 0=(5)设两个相互独立的随机变量X 和Y 分别服从正态分布N (0,1)和N (1,1),则(A) {}10.2P X Y +≤=(B) {}1P X+Y 1.2≤= (C) {}1P X-Y 0.2≤= (D) {}1P X-Y 1.2≤=三、(本题满分5分)设()y y x =,()z z x =是由方程()z xf x y =+和(,,)F x y z =0所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求dz dx。

1999年考研数学真题及答案解析

1999年考研数学真题及答案解析
的速度从抓斗缝隙中漏掉,现将抓起污泥的抓斗提升至井口,问克服重
力需作多少焦耳的功?(说明:①1N 1m 1J ; 其中 m, N , s, J 分别表示
米,牛顿,秒,焦耳;②抓斗的高度及位于井口上方的缆绳长度忽略不 计.)
八、(本题满分7分)
设S 为椭球面 x2 y2 z2 1 的上半部分,点P (x, y, z) ∈S,π为S 在点P 处的切平面, 22
1 (1)【答案】 .
3
【分析】利用 x 0 的等价变换和洛必达法则求函数极限.
【详解】
方法1:
lim
x0
1 x2
x
1 tan
x
lim
x0
tan x x x2 tan x
tan
x
x lim x0
tan x x3
x
sec2 x 1
洛 lim x0
3x2
lim
x0
tan2 3x2
x
tan x
f
(x) 在 x
0处
(
)
x2 g(x), x 0
(A)极限不存在
(B)极限存在,但不连续
(C)连续,但不可导
(D)可导
(3)

f (x) 2x,2x,012xx121, S(x)
a0 2
an
n1
cos n x,
x , 其中
an
2
1 0
f
(
x)
cos
n
xdx,
(n
0,1,
2,
),

S
六、(本题满分6分)
试证:当 x 0 时, x2 1 ln x x 12 .
七、(本题满分6分) 为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口

1999年数学一真题及答案详解

1999年数学一真题及答案详解

1999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)2011lim()tan x x x x→-=_____________. (2)20sin()xd x t dt dx -⎰=_____________. (3)24e xy y ''-=的通解为y =_____________.(4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 _____________.(5)设两两相互独立的三事件,A B 和C 满足条件:1,()()(),2ABC P A P B P C =∅==< 且已知9(),16P AB C =则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则 (A)当()f x 是奇函数时,()F x 必是偶函数(B)当()f x 是偶函数时,()F x 必是奇函数(C)当()f x 是周期函数时,()F x 必是周期函数 (D)当()f x 是单调增函数时,()F x必是单调增函数(2)设20()() 0x f x x g x x >=≤⎩,其中()g x 是有界函数,则()f x 在0x =处 (A)极限不存在 (B)极限存在,但不连续(C)连续,但不可导(D)可导(3)设 01()122 12x x f x x x ≤≤⎧⎪=⎨-<<⎪⎩,01()cos ,,2n n a S x a n x x π∞==+-∞<<+∞∑ 其中102()cos n a f x n xdx π=⎰ (0,1,2,)n =,则5()2S -等于 (A)12(B)12-(C)34(D)34-(4)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则(A)当m n >时,必有行列式||0≠AB(B)当m n >时,必有行列式||0=AB(C)当n m >时,必有行列式||0≠AB(D)当n m >时,必有行列式||0=AB(5)设两个相互独立的随机变量X 和Y 分别服从正态分布(0,1)N 和(1,1)N ,则(A)1{0}2P X Y +≤= (B)1{1}2P X Y +≤=(C)1{0}2P X Y -≤=(D)1{1}2P X Y -≤=三、(本题满分6分)设(),()y y x z z x ==是由方程()z xf x y =+和(,,)0F x y z =所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求.dz dx四、(本题满分5分)求(e sin ())(e cos ),x x LI y b x y dx y ax dy =-++-⎰其中,a b 为正的常数,L 为从点(2,0)A a 沿曲线y =(0,0)O 的弧.五、(本题满分6分)设函数()(0)y x x ≥二阶可导且()0,(0) 1.y x y '>=过曲线()y y x =上任意一点(,)P x y 作该曲线的切线及x 轴的垂线,上述两直线与x 轴所围成的三角形的面积记为1S ,区间[0,]x 上以()y y x =为曲线的曲边梯形面积记为2S ,并设122S S -恒为1,求曲线()y y x =的方程.六、(本题满分7分)论证:当0x >时,22(1)ln (1).x x x -≥-七、(本题满分6分)为清除井底的淤泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(见图).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s 的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克服重力需作多少焦耳的功? (说明:①1N ⨯1m=1Jm,N,s,J 分别表示米,牛,秒,焦.②抓斗的高度及位于井口上方的缆绳长度忽略不计.)八、(本题满分7分)设S 为椭球面222122x y z ++=的上半部分,点(,,),P x y z S π∈为S 在点P 处的切平面,(,,)x y z ρ为点(0,0,0)O 到平面π的距离,求.(,,)SzdS x y z ρ⎰⎰九、(本题满分7分)设4tan :n n a xdx π=⎰(1)求211()n n n a a n ∞+=+∑的值. (2)试证:对任意的常数0,λ>级数1nn a nλ∞=∑收敛. 十、(本题满分8分)设矩阵153,10ac b c a -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 其行列式||1,=-A 又A 的伴随矩阵*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1),T=--α求,,a b c 和0λ的值.十一、(本题满分6分)设A 为m 阶实对称矩阵且正定,B 为m n ⨯实矩阵,T B 为B 的转置矩阵,试证TB AB 为正定矩阵的充分必要条件是B 的秩().r n =B十二、(本题满分8分)设随机变量X 与Y 相互独立,下表列出了二维随机变量(,)X Y 联合分布率及关于X 和关于Y十三、(本题满分6分)设X 的概率密度为36() 0< ()0 其它xx x f x θθθ⎧-<⎪=⎨⎪⎩,12,,,n X X X 是取自总体X 的简单随机样本(1)求θ的矩估计量ˆθ. (2)求ˆθ的方差ˆ().D θ1999年全国硕士研究生入学统一考试数学(一)答案详解一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1) 【答】31 【详解1】 302020tan lim tan tan lim tan 11lim x x x x x x x x x x x x x -=-=⎪⎭⎫⎝⎛-→→→ 313tan lim lim22031sec 022===→-→x x x xx x 【详解2】 302020cos sin lim sin cos sin lim tan 11lim x x x x x x x x x x x x x x x -=-=⎪⎭⎫⎝⎛-→→→ 313sin lim 3sin cos cos lim 020==+-=→→x x x x x x x x x (2)【答】 2sin x【详解】 ⎰⎰-=--x xdu u dx d u t x dt t x dx d 0022)sin ()sin( 202sin sin x du u dxd x ==⎰ 故本题应填2sin x (3)【答】 x xe x C eC y 222141⎪⎭⎫ ⎝⎛++=-,其中21,C C 为任意常数.【详解】 特征方程为:042=-λ,解得2-,22,1==λλ.故04"=-y y 的通解为x xe C eC y 22211+=-,由于非齐次项为2,)(2==a e x f x 为特征方程的单根,因此原方程的特解可设为xAxe y 2=*,代入原方程求得41=A , 故所求解为x x x xee C e C y y y 22221141++=+=-* 故本题应填x xe x C e C y 222141⎪⎭⎫ ⎝⎛++=-,其中21,C C 为任意常数.(4)【答】10,,0,-n n【详解】 因为111111111111111---------=---------=-λλλλλλλλλ n n n A E λλλ 0000111)(---=n故矩阵A 的n 个特征值是n 和0(n-1重)因此本题应填10,,0,-n n(5) 【答】41 【详解】 根据加法式有())()()()()()()(ABC P BC P AB P AC P C P B P A P C B A P +---++=⋃⋃ 由题A,B 和C 两两相互独立,21)()()(,<===C P B P A P ABC φ,因此有 ),()()()(2A P BC P AC P AB P === 0)()(==φP ABC P , 从而 ()169)(3)(32=-=⋃⋃A P A P C B A P 解得 41)(,43)(==A P A P 又根据题设 41)(,21)(=<A P A P 故二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)【答】 应选(A )【详解】 )(x f 的原函数)(x F 可以表示为C dt t f x F x+=⎰)()(,于是.)()()()(0C u d u f t u C dt t f x F xx+---=+=-⎰⎰-当)(x f 为奇函数时,),()(u f u f -=-从而有)()()()(0x F C dt t f C du u f x F xx=+=+=-⎰⎰即 )(x F 为偶函数.故(A )为正确选项,至于(B )、(C )、(D )可分别举反例如下:2)(x x f =是偶函数,但其原函数131)(3+=x x F 不是奇函数,可排除(B ); x x f 2cos )(=是周期函数,但其原函数x x x F 2sin 4121)(+=不是周期函数,可排除(C );x x f =)(在区间()∞∞-,内是单调增函数,但其原函数221)(x x F =在区间()∞∞-,内非单调增函数,可排除(D )。

1998 年全国硕士研究生入学统一考试数学试题库及答案

1998 年全国硕士研究生入学统一考试数学试题库及答案

1998 年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.)(1) 22limx x→= . (2) 设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2zx y ∂=∂∂ .(3) 设L 为椭圆221,43x y +=其周长记为a ,则22(234)L xy x y ds ++=⎰ . (4) 设A 为n 阶矩阵,0A ≠,*A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值λ,则*2()A E +必有特征值 . (5) 设平面区域D 由曲线1y x=及直线20,1,y x x e ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为 _ .二、选择题(本题共5小题,每小题3分,共15分.) (1) 设()f x 连续,则220()x d tf x t dt dx-=⎰ ( ) (A) 2()xf x (B) 2()xf x - (C) 22()xf x (D) 22()xf x - (2) 函数23()(2)f x x x x x =---不可导点的个数是 ( )(A) 3 (B) 2 (C) 1 (D) 0 (3) 已知函数()y y x =在任意点x 处的增量2,1y xy xα∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于 ( ) (A) 2π (B) π (C) 4e π (D) 4e ππ(4) 设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线 111232323x a y b z c a a b b c c ---==--- ( )(A) 相交于一点 (B) 重合(C) 平行但不重合 (D) 异面(5) 设A B 、是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有( )(A) (|)(|)P A B P A B = (B) (|)(|)P A B P A B ≠ (C) ()()()P AB P A P B = (D) ()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z L --==-在平面:210x y z ∏-+-=上的投影直线0L 的方程,并求0L 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数λ,使在右半平面0x >上的向量42242(,)2()()A x y xy x y i x x y j λλ=+-+为某二元函数(,)u x y 的梯度,并求(,)u x y .五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为(0)k k >.试建立y 与v 所满足的微分方程,并求出函数关系式()y =y v .六、(本题满分7分)计算212222(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半球面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭八、(本题满分5分)设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11()1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1) 试证存在0(0,1)x ∈,使得在区间[]00,x 上以0()f x 为高的矩形面积,等于在区间[]0,1x 上以()y f x =为曲边的梯形面积. (2) 又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=,可以经过正交变换x y P z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦化为椭圆柱面方程2244ηζ+=,求,a b 的值和正交矩阵P .十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数k ,使线性方程组0kA x =有解向量α,且10k A α-≠, 证明:向量组1,,,k A A ααα-是线性无关的.十二、(本题满分5分)已知线性方程组1111221,222112222,221122,220,0,()0n n n n n n n n n a x a x a x a x a x a x I a x a x a x ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩的一个基础解系为11121,221222,212,2(,,,),(,,,),,(,,,)TTTn n n n n n b b b b b b b b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,试写出线性方程组1111221,222112222,221122,220,0,()0n n n n n n n n n b y b y b y b y b y b y II b y b y b y ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩的通解,并说明理由.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大?附表:标准正态分布表22()t zz dt -Φ=⎰z1.28 1.645 1.962.33 ()z Φ0.9000.9500.9750.990十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程. 附表:t 分布表{()()}p P t n t n p ≤=1998年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x→=24x →-=)221lim4x x →=2220112112lim 24x xx x →-- =-.方法2:采用洛必达法则.原式)()022limxx →''洛0x →= 0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x→-++=14=-. (2)【答案】()()()yf xy x y y x y ϕϕ'''''++++【分析】因为1()(),,z f xy y x y f xϕϕ=++具有二阶连续导数,利用混合偏导数在连续的条件下与求导次序无关,先求z x ∂∂或z y∂∂均可,但不同的选择可能影响计算的繁简. 方法1:先求z x∂∂. 211()()()()()z y f xy y x y f xy f xy y x y x x x x x ϕϕ∂∂⎡⎤''=++=-+++⎢⎥∂∂⎣⎦, 2221()()()11()()()()()11()()()()()()()().z y f xy f xy y x y x y y x x yf xy x f xy f xy x x y y x y x x xf xy f xy yf xy x y y x y x xyf xy x y y x y ϕϕϕϕϕϕϕ∂∂⎛⎫''=-+++ ⎪∂∂∂⎝⎭'''''''=-++++++'''''''=-++++++'''''=++++ 方法2:先求z y∂∂. 11()()()()()()()(),z f xy y x y f xy x x y y x y y y x xf xy x y y x y ϕϕϕϕϕ∂∂⎡⎤''=++=++++⎢⎥∂∂⎣⎦''=++++ []22()()()()()().z z f xy x y y x y x y y x xyf xy x y y x y ϕϕϕϕ∂∂∂''==++++∂∂∂∂∂'''''=++++ 方法3:对两项分别采取不同的顺序更简单些:()[][][]21()()1()()()()()()().z f xy y x y x y x y x y x f xy x y x y x x y f xy y x y x yyf xy x y y x y ϕϕϕϕϕ⎡⎤∂∂∂∂∂⎛⎫⎡⎤=++ ⎪⎢⎥⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦⎣⎦∂∂⎡⎤''=++⎢⎥∂∂⎣⎦∂∂''=++∂∂'''''=++++ 评注:本题中,,f ϕ中的中间变量均为一元,因此本题实质上是一元复合函数的求导,只要注意到对x 求导时,y 视为常数;对y 求导时,x 视为常数就可以了. (3)【答案】12a【解析】L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上,22222213412(34)1212.43L L x y x y x y ds ds a +=⇒+=⇒+==⎰⎰因此, 原式222(34)12LLxyds xy ds a =++=⎰⎰.【相关知识点】对称性:平面第一型曲线积分(),lf x y ds ⎰,设(),f x y 在l 上连续,如果l 关于y 轴对称,1l 为l 上0x ≥的部分,则有结论:()()()()12,,,,0,l lf x y ds f x y x f x y ds f x y x ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. 类似地,如果l 关于x 轴对称,2l 为l 上0y ≥的部分,则有结论:()()()()22,,,,0,l lf x y ds f x y y f x y ds f x y y ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. (4)【答案】 21A λ⎛⎫+ ⎪⎝⎭【解析】方法1:设A 的对应于特征值λ的特征向量为ξ,由特征向量的定义有,(0)A ξλξξ=≠.由0A ≠,知0λ≠(如果0是A 的特征值0A ⇔=),将上式两端左乘A *,得A A A A A ξξλξλξ***===,从而有 *,AA ξξλ=(即A *的特征值为Aλ).将此式两端左乘A *,得()22**AA A A ξξξλλ⎛⎫== ⎪⎝⎭.又E ξξ=,所以()()22*1A A E ξξλ⎛⎫⎛⎫ ⎪+=+ ⎪ ⎪⎝⎭⎝⎭,故*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.方法2:由0A ≠,A 的特征值0λ≠(如果0是A 的特征值0A ⇔=),则1A -有特征值1λ,A *的特征值为A λ;*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.【相关知识点】1.矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘1A -,得1A αλα-=.因为0α≠,故0λ≠,于是有11A ααλ-=.按特征值定义知1λ是1A -的特征值. 若AX X λ=,则()()A kE X AX kX k X λ+=+=+.即若λ是A 的特征值,则A kE +的特征值是k λ+.2.矩阵A 可逆的充要条件是0A ≠,且11A A A-*=. (5)【答案】14【解析】首先求(,)X Y 的联合概率密度(,)f x y .21(,)|1,0D x y x e y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭,区域D 的面积为22111ln 2.e e D S dx x x===⎰1,(,),(,)20, x y D f x y ⎧∈⎪=⎨⎪⎩其他.其次求关于X 的边缘概率密度.当1x <或2x e >时,()0X f x =;当21x e ≤≤时,1011()(,)22x X f x f x y dy dy x+∞-∞===⎰⎰. 故1(2).4X f =二、选择题(本题共5小题,每小题3分,共15分.) (1)【答案】(A)【解析】为变限所定义的函数求导数,作积分变量代换22,u x t =-2:0:0t x u x →⇒→,()222du d x t tdt =-=-12dt du t⇒=-,222022220001()()211()(),22xx xx tf x t dt u x t tf u dt t f u du f u du ⎛⎫-=-- ⎪⎝⎭=-=⎰⎰⎰⎰()2220022221()()211()()2(),22x x d d tf x t dt f u du dx dx f x x f x x xf x -='=⋅=⋅=⎰⎰选(A).【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t ft t f t ββαα'''=⋅-⋅.(2)【答案】(B)【解析】当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是分段函数.22()(2)1f x x x x x =---,当0,1x ≠±时()f x 可导,因而只需在0,1x =±处考察()f x 是否可导.在这些点我们分别考察其左、右导数.由 22222222(2)(1),1,(2)(1),10,()(2)(1),01,(2)(1),1,x x x x x x x x x x f x x x x x x x x x x x ⎧---<-⎪----≤<⎪=⎨---≤<⎪⎪---≤⎩⇒ ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x ---→-→-------'-===++, ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x +++→-→-------'-===++,即()f x 在1x =-处可导.又()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x ---→→-----'===,()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x+++→→-----'===-, 所以()f x 在0x =处不可导.类似,函数()f x 在1x =处亦不可导.因此()f x 只有2个不可导点,故应选(B).评注:本题也可利用下列结论进行判断:设函数()()f x x a x ϕ=-,其中()x ϕ在x a =处连续,则()f x 在x a =处可导的充要条件是()0a ϕ=. (3)【答案】(D) 【解析】由2,1y x y x α∆∆=++有2.1y y x x xα∆=+∆+∆令0,x ∆→得α是x ∆的高阶无穷小,则0lim0x xα∆→=∆,0limx y x ∆→∆∆20lim 1x y x x α∆→⎛⎫=+ ⎪+∆⎝⎭200lim lim 1x x y x x α∆→∆→=++∆21y x =+ 即21dy y dx x =+. 分离变量,得2,1dy dx y x =+ 两边积分,得 ln arctan y x C =+,即arctan 1.xy C e =代入初始条件(0),y π=得()arctan0110.y C e C π===所以,arctan x y e π=.故 arctan 1(1)xx y eπ==arctan1eπ=4.e ππ=【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (4)【答案】(A) 【解析】设3331121212:x a y b z c L a a b b c c ---==---,1112232323:x a y b z c L a a b b c c ---==---,题设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则由行列式的性质,可知 11112121222223232333333312230a b c a a b b c c a b c a a b b c c a b c a b c ------≠行减行,行减行, 故向量组121212(,,)a a b b c c ---与232323(,,)a a b b c c ---线性无关,否则由线性相关的定义知,一定存在12,k k ,使得11212122232323(,,)(,,)0k a a b b c c k a a b b c c ---+---=,这样上面行列式经过初等行变换值应为零,产生矛盾.121212(,,)a a b b c c ---与232323(,,)a a b b c c ---分别为12,L L 的方向向量,由方向向量线性相关,两直线平行,可知12,L L 不平行.又由333121212x a y b z c a a b b c c ---==---得333121212111x a y b z c a a b b c c ----=-=----,即()()()312312312121212x a a a y b b b z c c c a a b b c c ---------==---. 同样由111232323x a y b z c a a b b c c ---==---,得111232323111x a y b z c a a b b c c ---+=+=+---,即 ()()()123323323232323x a a a y b b b z c c c a a b b c c -+--+--+-==---, 可见12,L L 均过点()213213213,,a a a b b b c c c ------,故两直线相交于一点,选(A). (5)【答案】C【分析】由题设条件(|)(|)P B A P B A =,知A 发生与A 不发生条件下B 发生的条件概率相等,即A 发生不发生不影响B 的发生概率,故,A B 相互独立.而本题选项(A)和(B)是考虑(|)P A B 与(|)P A B 是否相等,选项(C)和(D)才是事件A 与B 是否独立.【解析】由条件概率公式及条件(|)(|),P B A P B A =知{}{}{}{}{}{}{}1P AB P AB P B P AB P A P A P A-==-, 于是有 {}{}{}{}{}1P AB P A P A P B P AB -=⋅-⎡⎤⎡⎤⎣⎦⎣⎦, 可见 {}{}{}P AB P A P B =. 应选(C).【相关知识点】条件概率公式:{}{}{}|P AB P B A P A =.三、(本题满分5分)【解析】方法1:求直线L 在平面∏上的投影0L :方法1:先求L 与∏的交点1N .以1,:,1x t L y t z t =+⎧⎪=⎨⎪=-⎩代入平面∏的方程,得(1)2(1)101t t t t +-+--=⇒=.从而交点为1(2,1,0)N ;再过直线L 上点0(1,0,1)M 作平面∏的垂线11:112x y z L --'==-,即1,,12.x t y t z t =+⎧⎪=-⎨⎪=+⎩并求L '与平面∏的交点2N :1(1)()2(12)103t t t t +--++-=⇒=-,交点为2211(,,)333N .1N 与2N 的连接线即为所求021:421x y zL --==-. 方法2:求L 在平面∏上的投影线的最简方法是过L 作垂直于平面∏的平面0∏,所求投影线就是平面∏与0∏的交线.平面0∏过直线L 上的点(1,0,1)与不共线的向量(1,1,1)l =- (直线L 的方向向量)及(1,1,2)n =-(平面∏的法向量)平行,于是0∏的方程是111110112x y z ---=-,即3210x y z --+=. 投影线为 0210,:3210.x y z L x y z -+-=⎧⎨--+=⎩下面求0L 绕y 轴旋转一周所成的旋转曲面S 的方程.为此,将0L 写成参数y 的方程:2,1(1).2x y z y =⎧⎪⎨=--⎪⎩ 按参数式表示的旋转面方程得S 的参数方程为,,.x y y z θθ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩消去θ得S 的方程为()222212(1)2x z y y ⎡⎤+=+--⎢⎥⎣⎦,即2224174210.x y z y -++-=四、(本题满分6分)【解析】令42(,)2(),P x y xy x y λ=+242(,)(),Q x y x x y λ=-+则(,)((,),(,))A x y P x y Q x y =在单联通区域右半平面0x >上为某二元函数(,)u x y 的梯度Pdx Qdy ⇔+在0x >上∃原函数(,)u x y ⇔,0.Q Px x y∂∂=>∂∂ 其中,42242132()()4Qx x y x x y x xλλλ-∂=-+-+⋅∂, 424212()2()2Px x y xy x y y yλλλ-∂=+++⋅∂. 由Q Px y∂∂=∂∂,即满足 4224213424212()()42()2()2x x y x x y x x x y xy x y y λλλλλλ---+-+⋅=+++⋅,424()(1)01x x y λλλ⇔++=⇔=-.可见,当1λ=-时,所给向量场为某二元函数的梯度场.为求(,)u x y ,采用折线法,在0x >半平面内任取一点,比如点(1,0)作为积分路径的起点,则根据积分与路径无关,有2(,)42(1,0)2(,)x y xydx x dyu x y C x y -=++⎰244210200xy x x dx dy C x x y⋅-=++++⎰⎰(折线法) 242yx dy C x y-=++⎰ 2242(1)yx dy C y x x -=+⎛⎫+ ⎪⎝⎭⎰(第一类换元法)222222004221(1)(1)yy x x y y d C d C x x y y x x x ⋅⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 2arctan yC x =-+(基本积分公式) 其中C 为任意常数.【相关知识点】1.二元可微函数(,)u x y 的梯度公式:u u gradu i +j x y∂∂=∂∂. 2.定理:设D 为平面上的单连通区域,函数()P x,y 与(,)Q x y 在D 内连续且有连续的一阶偏导数,则下列六个命题等价:(1),(,)Q Px y D x y∂∂≡∈∂∂; (2) 0,LPdx Qdy L +=⎰为D 内任意一条逐项光滑的封闭曲线;(3)LABPdx Qdy +⎰仅与点,A B 有关,与连接,A B 什么样的分段光滑曲线无关;(4) 存在二元单值可微函数(,)u x y ,使du Pdx Qdy =+(即Pdx Qdy +为某二元单值可微函数(,)u x y 的全微分; (5) 微分方程0Pdx Qdy +=为全微分方程;(6) 向量场P +Q i j 为某二元函数(,)u x y 的梯度u P +Q =grad i j .换言之,其中任一组条件成立时,其它五组条件皆成立.当条件成立时,可用试图法或折线法求函数(,)u x y .五、(本题满分6分)【解析】先建立坐标系,取沉放点为原点O ,铅直向下作为Oy 轴正向,探测器在下沉过程中受重力、浮力和阻力的作用,其中重力大小:mg ,浮力的大小:F B ρ=-浮;阻力:kv -,则由牛顿第二定律得202,0,0.t t d ym mg B g kv y vdtρ===--== (*)由22,dy d y dv dv dy dv dy v v v dv dt dt dt dy dt dy===⋅==,代入(*)得y 与v 之间的微分方程10,0y dy mv mg B kv v dv ρ-=⎛⎫=--= ⎪⎝⎭.分离变量得 mvdy dv mg B kv ρ=--,两边积分得 mvdy dv mg B kv ρ=--⎰⎰,2222()()()Bm m g Bm m g mv k k k k y dv mg B kv m Bm m g mg B kv k k k dv mg B kv m g Bm m k dvk mg B kv m m mg B dv dvk k mg B kv ρρρρρρρρρρ+--+=------+=--⎛⎫- ⎪=-+ ⎪-- ⎪ ⎪⎝⎭-=-+--⎰⎰⎰⎰⎰1()()()()m mg B m k v d mg B kv k k mg B kv ρρρ-⋅-=-+----⎰ (第一类换元法) 2()ln()m m mg B v mg B kv C k k ρρ-=----+.再根据初始条件0|0,y v ==即22()()ln()0ln()m mg B m mg B mg B C C mg B k kρρρρ----+=⇒=-. 故所求y 与v 函数关系为()2ln .m mg B m mg B kv y v k k mg B ρρρ-⎛⎫--=-- ⎪-⎝⎭六、(本题满分7分)【解析】方法1:本题属于求第二类区面积分,且不属于封闭区面,则考虑添加一平面使被积区域封闭后用高斯公式进行计算,但由于被积函数分母中包含12222()x y z ++,因此不能立即加、减辅助面2221:0x y a z ⎧+≤∑⎨=⎩,宜先将曲面方程代入被积表达式先化简:2212222()1().()axdydz z a dxdy I axdydz z a dxdy a x y z ∑∑++==++++⎰⎰⎰⎰ 添加辅助面2221:0x y a z ⎧+≤∑⎨=⎩,其侧向下(由于∑为下半球面z =侧,而高斯公式要求是整个边界区面的外侧,这里我们取辅助面的下侧,和∑的上侧组成整个边界区面的内侧,前面取负号即可),由高斯公式,有11222211()()()1()().D I axdydz z a dxdy axdydz z a dxdy a a z a ax dV a dxdy a x z ∑+∑∑Ω=++-++⎛⎫⎡⎤∂+⎛⎫∂⎣⎦ ⎪=-+-- ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分前面加负号是由于我们取边界区面的内侧,第二个积分前面加负号是由于1∑的方向向下;另外由曲面片1∑在yoz 平面投影面积为零,则10axdydz ∑=⎰⎰,而1∑上0z =,则()22z a a +=.21(2())D I a z a dV a dxdy a Ω⎛⎫=-+++ ⎪⎝⎭⎰⎰⎰⎰⎰,其中Ω为∑与1∑所围成的有界闭区域,D 为1∑在xoy 面上的投影222{(,)|}D x y x y a =+≤. 从而,220322001321232.3D a I a dv zdv a dxdy a a a d rdr a a a ππθπΩΩ⎛⎫=--+ ⎪⎝⎭⎛⎫=-⋅-+⋅ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分用球体体积公式;第二个用柱面坐标求三重积分;第三个用圆的面积公式.()2042400242200242300224224440411222112()21()1122242412a a a aI a d r z dr a a a d r a r dr a a d a r r draa r r a a a a a a a a a a ππππθππθπθππππππ⎛⎫⎛=--+ ⎪⎝⎝⎭⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭=-+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-+⋅-=-+⋅- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+⋅⎰⎰⎰⎰⎰⎰4342a π⎛⎫=- ⎪⎝⎭ 方法2:逐项计算:2212222212()1()()1().axdydz z a dxdyI axdydz z a dxdy a x y z xdydz z a dxdy I I a ∑∑∑∑++==++++=++=+⎰⎰⎰⎰⎰⎰⎰⎰其中,12,Dyz DyzDyzI xdydz ∑==-+=-⎰⎰⎰⎰⎰⎰⎰⎰第一个负号是由于在x 轴的正半空间区域∑的上侧方向与x 轴反向;第二个负号是由于被积函数在x 取负数.yz D 为∑在yoz 平面上的投影域222{(,)|,0}yz D y z y z a z =+≤≤,用极坐标,得2102203223320212()2222()(0),333aI d a r a r a a ππθππππ=-=-⋅--=-=-=-⎰⎰⎰(222222002302300042230044411()1(22)2(22)2222123422(3Dxya a a a a a a I z a dxdy a dxdya a d a r rdra a r r dr a a rdr a r dr a r a r a a a a a a aπθππππ∑=+=-=-=-⎡⎤=--⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎢⎥=-⋅- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰3),46a π=其中yz D 为∑在yoz 平面上的投影域222{(,)|}yz D y z y z a =+≤.故312.2I I I a π=+=-【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.七、(本题满分6分)【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.当各项分母均相同是n 时,n 项和式2sin sinsin n n n n n x nnnπππ=+++是函数sin x π在[0,1]区间上的一个积分和.于是可由定积分1sin xdx π⎰求得极限lim nn x→∞.【解析】由于sinsin sin ,1,2,,11i i i n n n i n n n n iπππ≤≤=⋅⋅⋅++,于是,111sinsin sin 11nn ni i i i i i n n n n nn iπππ===≤≤++∑∑∑.由于 1011sin12limlim sin sin nnn n i i i i n xdx n n n ππππ→∞→∞=====∑∑⎰,10111sin112lim lim sin lim sin sin 11nn nn n n i i i i n i i n xdx n n n n n n πππππ→∞→∞→∞===⎡⎤=⋅===⎢⎥++⎣⎦∑∑∑⎰根据夹逼定理知,1sin2lim1nn i i n n iππ→∞==+∑. 【相关知识点】夹逼准则:若存在N ,当n N >时,n n n y x z ≤≤,且有lim lim n n n n y z a →+∞→+∞==,则lim n n x a →+∞=.八、(本题满分5分)【解析】方法1:因正项数列{}n a 单调减少有下界0,知极限lim n n a →∞存在,记为a ,则n a a ≥且0a ≥.又1(1)nn n a ∞=-∑发散,根据莱布尼茨判别法知,必有 0a >(否则级数1(1)n n n a ∞=-∑收敛).又正项级数{}n a 单调减少,有11,11nnn a a ⎛⎫⎛⎫≤ ⎪ ⎪++⎝⎭⎝⎭而1011a <<+,级数11()1n n a ∞=+∑收敛.根据正项级数的比较判别法,知级数11()1nn n a ∞=+∑也收敛. 方法2:同方法1,可证明lim 0n n a a →∞=>.令1,1nn n b a ⎛⎫= ⎪+⎝⎭则11lim1,11n n na a →∞==<++根据根值判别法,知级数11()1nn n a ∞=+∑也收敛. 【相关知识点】1.交错级数的莱布尼茨判别法:设交错级数11(1)n n n u ∞-=-∑满足:(1)1,1,2,;n n u u n +≥= (2)lim 0.n n u →∞=则11(1)n n n u ∞-=-∑收敛,且其和满足1110(1),n n n u u ∞-=<-<∑余项1.n n r u +<反之,若交错级数11(1)n n n u ∞-=-∑发散,只是满足条件(1),则可以反证说明此级数一定不满足条件(2)lim 0n n u →∞=,所以有lim 0.n n u →∞>(否则级数11(1)n n n u ∞-=-∑收敛)2.正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.3.根值判别法:设0n u >,则当111, 1, lim 0,1, .n n n n n n n u u u ρ∞=∞→∞=⎧<⎪⎪⎪=>≠⎨⎪⎪=⎪⎩∑∑时收敛,时发散,且时此判别法无效九、(本题满分6分)【解析】(1)要证0(0,1)x ∃∈,使0100()()x x f x f x dx =⎰;令1()()()x x xf x f t dt ϕ=-⎰,要证0(0,1)x ∃∈,使0()0x ϕ=.可以对()x ϕ的原函数0()()x x t dt ϕΦ=⎰使用罗尔定理:(0)0Φ=,11111111000(1)()()(())()()()0,xx x x x dx xf x dx f t dt dxxf x dx x f t dt xf x dx ϕ==Φ==-⎡⎤=-+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰分部又由()f x 在[0,1]连续()x ϕ⇒在[0,1]连续,()x Φ在[0,1]连续,在(0,1)可导.根据罗尔定理,0(0,1)x ∃∈,使00()()0x x ϕ'Φ==.(2) 由()()()()()2()0x xf x f x f x xf x f x ϕ'''=++=+>,知()x ϕ在(0,1)内单调增,故(1)中的0x 是唯一的.评注:若直接对()x ϕ使用零点定理,会遇到麻烦:1(0)()0,(1)(1)0f t dt f ϕϕ=-≤=≥⎰.当()0f x ≡时,对任何的0(0,1)x ∈结论都成立;当()f x ≡0时,(0)0,ϕ<但(1)0ϕ≥,若(1)0ϕ=,则难以说明在(0,1)内存在0x .当直接对()x ϕ用零点定理遇到麻烦时,不妨对()x ϕ的原函数使用罗尔定理. 【相关知识点】1.罗尔定理:如果函数()f x 满足 (1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.十、(本题满分6分)【解析】经正交变换化二次型为标准形,二次型矩阵与标准形矩阵既合同又相似.由题设知,二次曲面方程左端二次型对应矩阵为111111b A b a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则存在正交矩阵P ,使得 1000010004P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B 记,即A B 与相似.由相似矩阵有相同的特征值,知矩阵A 有特征值0,1,4.从而,211014,3, 1.(1)0.a a b A b B ++=++⎧⎪⇒==⎨=--==⎪⎩从而,111131.111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦当10λ=时,()1110131111E A ---⎡⎤⎢⎥-=---⎢⎥⎢⎥---⎣⎦1(1)23⨯-行分别加到,行111020000---⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 于是得方程组(0)0E A x -=的同解方程组为12320,20.x x x x ---=⎧⎨-=⎩(0)2r E A -=,可知基础解系的个数为(0)321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为1(1,0,1).Tα=-当21λ=时,()011121110E A --⎡⎤⎢⎥-=---⎢⎥⎢⎥--⎣⎦3(1)2⨯-加到行011011110--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦ 1(1)2⨯-行加到行011000110--⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦23,行互换011110000--⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦, 于是得方程组()0E A x -=的同解方程组为23120,0.x x x x --=⎧⎨--=⎩()2r E A -=,可知基础解系的个数为()321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为2(1,1,1).Tα=-当34λ=时,()3114111113E A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦12,行互换111311113--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦ 1行的3,(-1)倍分别加到2,3行111024024--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦23行加到行111024000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦,于是得方程组(4)0E A x -=的同解方程组为123230,240.x x x x x -+-=⎧⎨-=⎩(4)2r E A -=,可知基础解系的个数为(4)321n r E A --=-=,故有1个自由未知量,选2x 为自由未知量,取22x =,解得基础解系为3(1,2,1).Tα=由实对称矩阵不同特征值对应的特征向量相互正交,可知123,,ααα相互正交. 将123,,ααα单位化,得111222333,,.TTTαηααηααηα======因此所求正交矩阵为0P ⎡⎢⎢⎢=⎢⎢⎢⎢⎣. 评注:利用相似的必要条件求参数时,iiiia b=∑∑是比较好用的一个关系式.亦可用E A E B λλ-=-比较λ同次方的系数来求参数.【相关知识点】1.特征值的性质:11nni iii i aλ===∑∑2.相似矩阵的性质:若矩阵A B 与相似,则A B =.十一、(本题满分4分)【解析】用线性无关的定义证明.设有常数011,,,,k λλλ-⋅⋅⋅使得10110.()k k A A λαλαλα--++⋅⋅⋅+=*两边左乘1k A-,则有()110110k k k A A A λαλαλα---++⋅⋅⋅+=,即 12(1)0110k k k k A A Aλαλαλα---++⋅⋅⋅+=. 上式中因0kA α=,可知()2110k k A A αα-+===,代入上式可得100.k A λα-=由题设10k Aα-≠,所以00.λ=将00λ=代入()*,有1110k k A A λαλα--+⋅⋅⋅+=.两边左乘2k A-,则有 ()21110k k k A A A λαλα---+⋅⋅⋅+=,即123110k k k A A λαλα---+⋅⋅⋅+=.同样,由0kA α=,()2110k k A A αα-+==,可得110.k A λα-=由题设10k Aα-≠,所以10.λ=类似地可证明210,k λλ-=⋅⋅⋅==因此向量组1,,,k A A ααα-⋅⋅⋅是线性无关的. 【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k 使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.十二、(本题满分5分) 【解析】()II 的通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.理由:可记方程组22()0,()0,n n n n I A X II B Y ⨯⨯==()I ,()II 的系数矩阵分别记为,A B ,由于B 的每一行都是20n n A X ⨯=的解,故0T AB =.TB 的列是()I 的基础解系,故由基础解系的定义知,TB 的列向量是线性无关的,因此()r B n =.故基础解系所含向量的个数2()n n r A =-,得()2r A n n n =-=.因此,A 的行向量线性无关.对0TAB =两边取转置,有()0TT T ABBA ==,则有T A 的列向量,即A 的行向量是0BY =的线性无关的解.又()r B n =,故0BY =基础解系所含向量的个数应为2()2n r B n n n -=-=,恰好等于A 的行向量个数.故A 的行向量组是0BY =的基础解系,其通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.十三、(本题满分6分)【分析】把X Y -看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的性质,可以知道N(0,1)X Y-,这样可以简化整题的计算.【解析】令Z X Y =-,由于,X Y 相互独立,且都服从正态分布,因此Z 也服从正态分布,且()()()0E Z E X E Y =-=,11()()()122D Z D X D Y =+=+=. 于是,(0,1)Z X Y N =-~.()()()()()()()22222()1.D X Y D ZE ZE Z D Z E Z E ZE Z-==-=+-=-而2222z z E Z z dz ze dz +∞+∞---∞==⎰222222z z z ed e +∞+∞--⎡⎤⎛⎫==-=⎥ ⎪⎝⎭⎥⎦ 故21.D X Y π-=-【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.2.方差的定义:22()DX EX EX =-.3.随机变量函数期望的定义:若()Y g X =,则()()EY g x f x dx +∞-∞=⎰.十四、(本题满分4分) 【解析】由题知:212,,,~(3.4,6)n X X X N ,11nn i i X X n ==∑,各样本相互独立,根据独立正态随机变量的性质,211~(,)n n i i X X N n μσ==∑.其中11n n i i EX E X n μ=⎛⎫== ⎪⎝⎭∑,211n n i i DX D X n σ=⎛⎫== ⎪⎝⎭∑.根据期望和方差的性质,1122222211111 3.4 3.4,11166.n nn i i i i n n nn i i i i i i n EX E X EX n n n n DX D X D X DX n n n n n μσ=====⎛⎫===== ⎪⎝⎭⎛⎫⎛⎫====== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑所以,2116~(3.4,)n n i i X X N n n ==∑.把n X 标准化,~(0,1)X U N =. 从而,{}{}{}{}1.4X 5.4 1.4 3.4X 3.4 5.4 3.42X 3.42X 3.42210.95,P P P P P <<=-<-<-=-<-<=-<=<=Φ-≥⎝⎭⎪⎩⎭故0.975,3⎛⎫Φ≥⎪ ⎪⎝⎭查表得到 1.96,3≥即()21.96334.57,n ≥⨯≈所以n 至少应取35. 【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数. 2.若2~(,)Z N u σ,则~(0,1)Z uN σ-十五、(本题满分4分)【解析】设该次考试的考生成绩为X ,则2~(,)X N μσ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,则在显著性水平0.05α=下建立检验假设:001:70,:70,H H μμμ==≠由于2σ未知,故用t 检验.选取检验统计量,X T ==在070μμ==时,2~(70,),~(35).X N T t σ 选择拒绝域为{}R T λ=≥,其中λ满足:{}0.05P T λ≥=,即{}0.9750.975,(35) 2.0301.P T t λλ≤===由0 36,66.5,70,15,n x s μ====可算得统计量T 的值:1.42.0301t ==<.所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.1998 年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1) 0x →= .(2) 曲线322y x x x =-++与x 轴所围成的图形的面积A = .(3)2ln sin sin xdx x =⎰ .(4) 设()f x 连续,则220()x d tf x t dt dx-=⎰ . (5) 曲线1ln()(0)y x e x x=+>的渐近线方程为 .二、选择题(本题共5小题,每小题3分,共15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设数列n x 与n y 满足lim 0n n n x y →∞=,则下列断言正确的是 ( )(A) 若n x 发散,则n y 发散 (B) 若n x 无界,则n y 必有界 (C) 若n x 有界,则n y 必为无穷小 (D) 若1nx 为无穷小,则n y 必为无穷小 (2) 函数23()(2)f x x x x x =---的不可导点的个数是 ( )(A) 0 (B) 1 (C) 2 (D) 3 (3) 已知函数()y y x =在任意点x 处的增量2,1y xy xα∆∆=++其中α是比(0)x x ∆∆→高阶的无穷小,且(0),y π=,则(1)y = ( ) (A) 4e ππ (B) 2π (C) π (D) 4e π (4) 设函数()f x 在x a =的某个邻域内连续,且()f a 为其极大值,则存在0δ>,当(,)x a a δδ∈-+时,必有 ( )(A) ()[()()]0x a f x f a --≥ (B) ()[()()]0x a f x f a --≤(C) 2()()lim0()()t af t f x x a t x →-≥≠- (D) 2()()lim 0()()t a f t f x x a t x →-≤≠- (5) 设A 是任一(3)n n ≥阶方阵,A *是其伴随矩阵,又k 为常数,且0,1k ≠±,则必有()kA *= ( )(A) kA *(B) 1n k A -* (C) n k A * (D) 1k A -*三、(本题满分5分)求函数tan()4()(1)x x f x x π-=+在区间(0,2)π内的间断点,并判断其类型.四、(本题满分5分)确定常数,,a b c 的值,使30sin lim(0).ln(1)x x b ax xc c t dtt →-=≠+⎰五、(本题满分5分)利用代换cos u y x=将方程cos 2sin 3cos xy x y x y x e '''-+=化简,并求出原方程的通解.六、(本题满分6分)计算积分312⎰七、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为(0)k k >.试建立y 与v 所满足的微分方程,并求出函数关系式()y =f v .八、(本题满分8分)设()y f x =是区间[0,1]上的任一非负连续函数.(1) 试证存在0(0,1)x ∈,使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在0[,1]x 上以()y f x =为曲边的梯形面积.(2) 又设()f x 在区间(0,1)内可导,且2()()f x f x x'>-,证明(1)中的0x 是唯一的.九、(本题满分8分)设有曲线y =过原点作其切线,求由此曲线、切线及x 轴围成的平面图形绕x轴旋转一周所得到的旋转体的表面积.十、(本题满分8分)设()y y x =是一向上凸的连续曲线,其上任意一点(,)x y,且此曲线上点(0,1)处的切线方程为1y x =+,求该曲线的方程,并求函数()y y x =的极值.十一、(本题满分8分)设(0,1)x ∈,证明: (1) 22(1)ln (1);x x x ++< (2)11111.ln 2ln(1)2x x -<-<+十二、(本题满分5分)设11(2)TE C B A C ---=,其中E 是4阶单位矩阵,TA 是4阶矩阵A 的转置矩阵,1232120101230120,,0012001200010001B C --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求A .十三、(本题满分8分)已知123(1,4,0,2),(2,7,1,3),(0,1,1,),(3,10,,4)T T T Ta b αααβ===-=,问:(1) ,a b 取何值时,β不能由123,,ααα线性表示?(2) ,a b 取何值时,β可由123,,ααα线性表示?并写出此表达式.1998年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x→=24x →-=)221lim4x x →=2220112112lim 24x x xx →-- =-.方法2:采用洛必达法则.原式)()022limx x →''洛0x →= 0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x →-++=14=-. (2)【答案】3712【分析】求曲线与x 轴围成的图形的面积,应分清楚位于x 轴上方还是下方,为此,要先求此曲线与x 轴交点.【解析】322y x x x =-++与x 轴的交点,即322(2)(1)0x x x x x x -++=--+=的根。

1997考研数学一真题及答案解析

1997考研数学一真题及答案解析

1997年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.)(1) 2013sin coslim(1cos )ln(1)x x x x x x →+=++ . (2) 设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 .(3) 对数螺线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为 .(4) 设12243311A t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,B为三阶非零矩阵,且0AB =,则t = .(5) 袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 二元函数22, (,)(0,0),(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处 ( )(A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在(2) 设在区间[,]a b 上()0,()0,()0,f x f x f x '''><>令12(),()()ba S f x dx S fb b a ==-⎰,31[()()]()2S f a f b b a =+-,则 ( )(A) 123S S S << (B) 213S S S << (C) 312S S S << (D) 231S S S << (3) 2sin ()sin ,x t xF x e tdt π+=⎰设则()F x ( )(A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数(4) 设111122232333,,,a b c a b c a b c ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则三条直线1110a x b y c ++=,2220a x b y c ++=,3330a x b y c ++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是 ( )(A) 123,,ααα线性相关 (B) 123,,ααα线性无关(C) 秩123(,,)r ααα=秩12(,)r αα (D) 123,,ααα线性相关,12,αα线性无关(5) 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是 ( )(A) 8 (B) 16 (C) 28 (D) 44三、(本题共3小题,每小题5分,满分15分.)(1) 计算22(),I x y dV Ω=+⎰⎰⎰其中Ω为平面曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周形成的曲面与平面8z =所围成的区域.(2) 计算曲线积分()()()C z y dx x z dy x y dz -+-+-⎰,其中C 是曲线221,2,x y x y z ⎧+=⎨-+=⎩从z轴正向往z 轴负向看,C 的方向是顺时针的.(3) 在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N ,在0t =时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为()x t (将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求()x t .四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.)(1) 设直线0,:30x y b L x ay z ++=⎧⎨+--=⎩在平面∏上,且平面∏与曲面22z x y =+相切于点(1,2,5)-,求,a b 之值.(2) 设函数()f u 具有二阶连续导数,而(sin )xz f e y =满足方程22222xz z e z x y∂∂+=∂∂,求()f u .五、(本题满分6分)设()f x 连续,1()(),x f xt dt ϕ=⎰且0()limx f x A x→=(A 为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分8分)设11112,(),1,2,...,2n n na a a n a +==+=证明: (1) lim n n a →∞存在;(2) 级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑收敛.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)(1) 设B 是秩为2的54⨯矩阵,123(1,1,2,3),(1,1,4,1),(5,1,8,9)T T Tααα==--=--是齐次线性方程组0Bx =的解向量,求0Bx =的解空间的一个标准正交基.(2) 已知111ξ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量.(Ⅰ) 试确定参数,a b 及特征向量ξ所对应的特征值; (Ⅱ) 问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B . (1) 证明B 可逆; (2) 求1AB -.九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25.设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、(本题满分5分)设总体X 的概率密度为(1), 01,()0, x x f x θθ⎧+<<=⎨⎩其它,其中1θ>-是未知参数.12,,,n x x x 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和最大似然估计法求θ的估计量.1997年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1)【答案】32【分析】这是00型极限.注意两个特殊极限00sin ln(1)lim 1,lim 1x x x x x x→→+==.【解析】将原式的分子、分母同除以x ,得2001sin 13sin cos 3cos3limlim .ln(1)(1cos )ln(1)2(1cos )x x x x x x x x x x x x x x→→++==++++ 评注:使用洛必达法则的条件中有一项是0()lim()x x f x g x →''应存在或为∞,而本题中, []200111(3sin cos )3cos 2cos sinlimlim 1cos (1cos )ln(1)sin ln(1)1x x x x x x x x x xx x x x x→→'+++=+'++-+++ 极限不存在,也不为∞,不满足使用洛必达法则的条件,故本题不能用洛必达法则.【相关知识点】1.有界量乘以无穷小量为无穷小量. (2)【答案】(2,4)-【解析】考察这两个幂级数的关系.令1t x =-,则()1212111n n n n n nn n n na ttna tta t ∞∞∞+-==='==∑∑∑. 由于逐项求导后的幂级数与原幂级数有相同的收敛半径,1nn n a t∞=∑的收敛半径为3⇒()1nn n a t ∞='∑的收敛半径为 3.从而()2111n n n n n n t a t na t ∞∞+=='=∑∑的收敛半径为3,收敛区间即(-3,3),回到原幂级数11(1)n nn na x ∞+=-∑,它的收敛区间为313x -<-<,即(2,4)-.评注:幂级数的收敛区间指的是开区间,不考虑端点. 对于n n n a x ∞=∑,若1limn n na a ρ+→+∞=⇒它的收敛半径是1R ρ=.但是若只知它的收敛半径为R ,则⇒11limn n n a a R +→+∞=,因为1lim n n naa +→+∞可以不存在(对于缺项幂级数就是这种情形).(3)【答案】2x y e π+=【解析】求切线方程的主要问题是求其斜率x k y '=,而x y '可由e θρ=的参数方程cos cos ,sin sin x e y e θθρθθρθθ⎧==⎪⎨==⎪⎩ 求得: 2sin cos sin cos ,1cos sin cos sin x x y e e y y x e e θθθπθθθθθθθθθθθθ='++''====-'--, 所以切线的方程为2(0)y e x π-=--,即2x y e π+=.评注:本题难点在于考生不熟悉极坐标方程与直角坐标方程之间的关系.(4)【答案】3t =-【解析】由0AB =,对B 按列分块,设[]123,,B βββ=,则[][][]123123,,,,0,0,0AB A A A A ββββββ===,即123,,βββ是齐次方程组0Ax =的解.又因B O ≠,故0Ax =有非零解,那么()1221024343373031131A tt t --==+=+=-, 由此可得3t =-.评注:若熟悉公式0AB =,则()()3r A r B n +≤=,可知()3r A <,亦可求出3t =-. (5)【答案】25【解析】方法1:利用全概率公式.求第二人取得黄球的概率,一般理解为这事件与第一人取得的是什么球有关.这就要用全概率公式.全概率公式首先需要一个完全事件组,这就涉及到设事件的问题.设事件i A =“第i 个人取得黄球”,1,2i =,则完全事件组为11,A A (分别表示第一个人取得黄球和第一个人取得白球).根据题设条件可知{}1202505P A ===黄球的个数球的总数;{}1303505P A ===白球的个数球的总数;{}2120119|50149P A A -==-(第一个人取得黄球的条件下,黄球个数变成20119-=,球的总数变成50149-=,第二个人取得黄球的概率就为1949);{}2120|49P A A =(第一个人取得白球的条件下,黄球个数亦为20,球的总数变成50-1=49,第二个人取得黄球的概率就为2049).故应用全概率公式{}{}{}{}{}21211212193202||5495495P A P A P A A P A P A A =+=⋅+⋅=.方法二:利用“抽签原理”.只考虑第二个人取得的球,这50个球中每一个都会等可能地被第二个人取到.犹如几个人抽奖,其中只有一张彩票有奖,那么这几个人先抽与后抽,抽到有奖彩票的概率是一样的,这就是我们抽奖的公平性,此题中取到黄球的可能有20个,所以第二个人取到黄球的概率为202505=. 【相关知识点】1.全概率公式: {}{}{}{}{}2121121||P A P A P A A P A P A A =+; 2. 古典型概率公式:()i i A P A =有利于事件的样本点数样本空间的总数.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)【答案】(C)【解析】这是讨论(,)f x y 在(0,0)点是否连续,是否存在偏导数的问题.按定义00(0,0)(0,0)(,0),(0,)x y f d f df x f y x dx y dy ==∂∂==∂∂, 由于 (,0)0(),(0,)0()f x x f y y =∀=∀,⇒∃偏导数且(0,0)(0,0)0,0f f x y∂∂==∂∂. 再看(,)f x y 在(0,0)是否连续?由于222(,)(0,0)01lim(,)lim (0,0)2x y x y xx f x y f x x →→===≠+,因此(,)f x y 在(0,0)不连续.应选(C).评注:① 证明分段函数在某点连续,一般要用定义证,有难度.证明分段函数(,)f x y 在某点000(,)M x y 不连续的方法之一是:证明点(,)x y 沿某曲线趋于0M 时,(,)f x y 的极限不存在或不为00(,)f x y .② 证明00(,)(,)lim (,)x y x y f x y →不存在的重要方法是证明点(,)x y 沿两条不同曲线趋于000(,)M x y 时,(,)f x y 的极限不想等或沿某条曲线趋于0M 时,(,)f x y 的极限不存在.对于该题中的(,)f x y ,若再考察(,)(0,0)(,)(0,0)1lim (,)lim00lim (,)2x y x y y x y xf x y f x y →→→====≠=, (,)(0,0)lim (,)x y f x y →⇒不存在.由本例可见,函数在一点处不连续,但偏导数却可以存在.容易找到这种例子,例如(,),f x y x y =+它在点(0,0)处连续,但(0,0)x f '与(0,0)y f '都不存在.可见二元函数的连续性与偏导数的存在性可以毫无因果关系.(2)【答案】(B)【解析】方法1:用几何意义.由()0,()0,()0f x f x f x '''><>可知,曲线()y f x =是上半平面的一段下降的凹弧,()y f x =的图形大致如右图1()baS f x dx =⎰是曲边梯形ABCD 的面积;2()()S f b b a =-是矩形ABCE 的面积;31[()()]()2S f a f b b a =+-是梯形ABCD 的面积.由图可见213S S S <<,应选(B).方法2:观察法.因为是要选择对任何满足条件的()f x 都成立的结果,故可以取满足条件的特定的()f x 来观察结果是什么.例如取21(),[1,2]f x x x=∈,则 2123213211115,,248S dx S S S S S x ====⇒<<⎰. 【评注】本题也可用分析方法证明如下:由积分中值定理,至少存在一个点ξ,使()()(),baf x dx f b a a b =-<<⎰ξξ成立,再由()0,f x '<所以()f x 是单调递减的,故()(),f f b ξ>从而12()()()()()ba S f x dx fb a f b b a S ==->-=⎰ξ.为证31S S >,令1()[()()]()(),2x a x f x f a x a f t dt ϕ=+--⎰则()0,a ϕ=11()()()(()())()2211()()(()())2211()()()()()()221(()())(),2x f x x a f x f a f x f x x a f x f a f x x a f x a a x f x f x a ''=-++-'=---''=---<<''=--ϕηηη拉格朗日中值定理由于()0f x ''>,所以()f x '是单调递增的,故()()f x f ''>η,()0x '>ϕ,即()x ϕ在[,]a b 上单调递增的.由于()0,a ϕ=所以()0,[,]x x a b >∈ϕ,从而1()[()()]()()02b a b f b f a b a f t dt =+-->⎰ϕ,即31S S >.因此,213S S S <<,应选(D).如果题目改为证明题,则应该用评注所讲的办法去证,而不能用图证.【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[,]a b 上连续,则在(,)a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b =-<<⎰ξξ.这个公式叫做积分中值公式.2. 拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续,在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立. (3)【答案】(A) 【解析】由于函数sin sin tet 是以2π为周期的函数,所以, 22sin sin 0()sin sin x tt xF x etdt e tdt +==⎰⎰ππ,()F x 的值与x 无关.不选D,(周期函数在一个周期的积分与起点无关).估计2sin 0sin t e tdt ⎰π的值有多种方法.方法1:划分sin sin te t 取值正、负的区间.22sin sin sin 0sin sin 0sin sin 0()sin sin sin sin (sin )()sin t t t t u t t F x e tdt e tdt e tdte tdt e u due e tdt--==+=+-=-⎰⎰⎰⎰⎰⎰πππππππ当0t π<<时,sin 0t >,sin sin 0,tt e e -->所以()0F x >.选(A).方法2:用分部积分法.22sin sin 022sin sin 00220sin 2sin 20()sin cos cos cos (11)cos cos 0.tt ttt t F x etdt e d tettde e et dt e t dt ==-=-+=--+=>⎰⎰⎰⎰⎰ππππππ故应选(A).【评注】本题的方法1十分有代表性.被积函数在积分区间上可以取到正值与负值时,则常将积分区间划分成若干个,使每一个区间内,被积函数保持确定的符号,然后再作适当的变量变换,使几个积分的积分上下限相同,然后只要估计被积函数的正、负即可.(4)【答案】(D)【解析】方法1:三条直线交于一点的充要条件是方程组111111222222333333000a x b y c a x b y c a x b y c a x b y c a x b y c a x b y c++=+=-⎧⎧⎪⎪++=⇒+=-⎨⎨⎪⎪++=+=-⎩⎩ 有唯一解.将上述方程组写成矩阵形式:32A X b ⨯=,其中112233a b A a b a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是其系数矩阵,123c b c c -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.则AX b =有唯一解⇔[]()2r A r A b ==(方程组系数矩阵的秩与增广矩阵的秩相等且等于未知量的个数),即A 的列向量组12,αα线性相关.所以应选(D). 方法2:用排除法.(A)123,,ααα线性相关,当123ααα==时,方程组的系数矩阵与增广矩阵的秩相等且小于未知量的个数,则①式有无穷多解,根据解的个数与直线的位置关系.所以三条直线重合,相交有无穷多点,(A)不成立.(B)123,,ααα线性无关,3α不能由12,αα线性表出,方程组的系数矩阵与增广矩阵的秩不相等,方程组无解,根据解得个数与直线的位置关系,所以一个交点也没有,(B)不成立.(C)秩123(,,)r ααα=秩12(,)r αα,当123(,,)r ααα=12(,)1r αα=时,三条直线重合,不只交于一点,与题设条件矛盾,故(C)不成立.由排除法知选(D).评注:应重视线性代数中的几何背景.空间直线方程及平面方程其在空间的位置关系应与线性代数中的线性相关性、秩及方程组的解及其充要条件有机的结合起来. (5)【答案】(D)【解析】因X 与Y 独立,故3X 和2Y 也相互独立.由方差的性质,有(32)(3)(2)9()4()44D X Y D X D Y D X D Y -=+-=+=.【相关知识点】方差的性质:X 与Y 相互独立时,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.三、(本题共3小题,每小题5分,满分15分.)(1)【分析】三重积分的计算有三种方法:直角坐标中的计算,柱面坐标中的计算,球面坐标中的计算,其中柱面坐标中又可分先z 后(,)r θ,或先(,)r θ后z 两种方法.本题的区域Ω为绕z 轴旋转的旋转体,用柱面坐标先(,)r θ后z 方便.【解析】方法1:采用柱面坐标,先(,)r θ后z ,为此,作平面z z =.{}22(,,)|2,,z D x y z x y z z z =+≤=82220()zD I x y dv dz r rdrd θΩ=+=⋅⎰⎰⎰⎰⎰⎰(将直角坐标化为柱面坐标)82301024.3dz d dr ππθ==⎰⎰ 方法2:将Ω投影到xOy 平面,得圆域{}22(,)|16,D x y x y =+≤用柱面坐标先z 后(,)r θ,有22248422330021024()2(8).23r r I x y dv d dr r dz r dr ππθπΩ=+==-=⎰⎰⎰⎰⎰⎰评注:做二次积分或三次积分时,如果里层积分的结果不含外层积分变量,那么里、外层积分可以分别积分然后相乘即可.如本例方法2中20d πθ⎰可以单独先做.(2)【解析】方法1:写出C 的参数方程,然后用曲线积分化为定积分的公式.由平面上圆的参数方程易写出C 的参数方程为:()cos ,()sin ,()2cos sin x x t t y y t t z z t t t ======-+,其中2z x y =-+.由C 的方向知,C 在Oxy 平面上的投影曲线相应地也是顺时针的,于是t 从π2到0. 在把参数方程代入被积表达式之前,先用C 的方程将被积表达式化简,有222022220()()()(2)()(2)(2())()[cos (2cos sin )]cos (2())()0[2cos sin cos 2cos ]02cos 2.C CI z y dx x z dy x y dzx dx x z dy z dzx t dx t t t t tdt z t dz t t t t t dt tdt ππππππ=-+-+-=-+-+-=-+--++-=+--+=-=-⎰⎰⎰⎰⎰⎰⎰方法2:用斯托克斯公式来计算.记S 为平面2x y z -+=上C 所围有限部分,由L 的定向,按右手法则S 取下侧.原积分2SS dydzdzdx dxdy dxdy x y z z yx zx y∂∂∂==∂∂∂---⎰⎰⎰⎰. S 在xy 平面上的投影区域xy D 为221x y +≤.将第二类曲面积分化为二重积分得原积分22xyD dxdy π=-=-⎰⎰.这里因S 取下侧,故公式取负号.(3)【解析】已掌握新技术人数()x t 的变化率,即dxdt,由题意可立即建立初值问题 0(),(0).dxkx N x dtx x ⎧=-⎪⎨⎪=⎩ 把方程分离变量得,()dx kdt x N x =-111()dx kdt N x N x+=-.积分可得 11ln xkt c N N x=+-,1kNt kNtcNe x ce =+. 以0(0)x x =代入确定00x c N x =-,故所求函数为000.kNtkNtNx e x N x x e=-+四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.)(1)【分析】求出曲面22:0S x y z +-=在点0(1,2,5)M -(位于S 上)处的切平面方程,再写出L 的参数方程,L 上的点的坐标应满足切平面方程,由此定出参数a 与b . 【解析】曲面S 在点0M 的法向量{2,2,1}{2,4,1}M n x y =-=--.切平面∏的方程是2(1)4(2)(5)0x y z --+--=,即 2450x y z ---=.将直线L 的方程改写成参数方程,(1) 3.y x b z a x ab =--⎧⎨=---⎩ 将它代入平面∏方程得24()(1)350x x b a x ab -----++-=,即(5)420a x b ab +++-=.解得5,2a b =-=-.(2)【分析】(sin )xz f e y =是由一元函数()z f u =与二元函数sin xu e y =复合而成的二元函数,它满足方程22222x z ze z x y∂∂+=∂∂. (*)为了求()f u ,我们将用复合函数求导法,导出z x ∂∂,z y ∂∂,22z x ∂∂,22zy∂∂与(),()f u f u '''的关系,然后由(*)式导出()f u 满足的常微分方程,从而求出()f u . 【解析】先用复合函数求导法导出22222222()()sin ,()()cos ,()sin ()sin ,()cos ()sin .x x x x x x z u z u f u f u e y f u f u e y x x y y zzf u e y f u e y f u e y f u e y xy∂∂∂∂''''====∂∂∂∂∂∂''''''=+=-∂∂将后两式代入(*)得 222222()()x xz z f u e e f u x y∂∂''+==∂∂,即 ()()0f u f u ''-=.这是二阶线性常系数齐次方程,相应的特征方程210λ-=的特征根为1λ=±,因此求得12()u u f u C e C e -=+,其中1C 、2C 为任意常数.五、(本题满分6分)【分析】通过变换将()x ϕ化为积分上限函数的形式,此时0x ≠,但根据0()limx f x A x→=,知 (0)0f =,从而1(0)(0)0f dt ϕ==⎰,由此,利用积分上限函数的求导法则、导数在一点处的定义以及函数连续的定义来判定()x ϕ'在0x =处的连续性. 【解析】由题设0()limx f x A x→=知,(0)0,(0),f f A '==且有(0)0ϕ=.又 10()()()(0),xf u du x f xt dtu xtx xϕ==≠⎰⎰于是 02()()()(0),xxf x f u dux x xϕ-'=≠⎰由导数定义,有0200()()(0)()(0)limlimlim22xx x x f u du x f x Axx x ϕϕϕ→→→-'====⎰. 而 02200()()()()lim ()limlim lim xxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰ (0)22A AA ϕ'=-==, 从而知()x ϕ'在0x =处连续. 评注:对1()()x f xt dt ϕ=⎰作积分变量变换xt u =时,必附加条件0x ≠.因此,由1()()xx f u du x ϕ=⎰得到的()x ϕ'也附加有条件0x ≠.从而(0)ϕ'应单独去求.六、(本题满分8分)【解析】(1)先证n a 单调有界.显然0(1,2,)n a n >=,由初等不等式:对∀非负数,x y必有x y +≥,易知 1111()21(1,2,)22n n n a a n a +=+≥⋅==.再考察 121111(1)(1)1221n n n a a a +=+≤+=.因此,n a 单调下降且有界,存在极限lim n n a →+∞.(2)方法1:由n a 单调下降11110n n n n n a a a a a +++-⇒-=≥. ⇒原级数是正项级数.现适当放大,注意1n a ≥,得111101.n n n n n n n a a a a a a a ++++-≤-=≤- 11()nn n aa ∞+=-∑的部分和1111()n k k n k S a a a a ∞++==-=-∑,11lim lim n n n n S a a +→+∞→+∞⇒=-存在,可见级数11()n n n a a ∞+=-∑收敛.由比较判别法知,级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛. 方法2:令11nn n a b a +=-,利用递推公式,有 221221111lim lim 0141n n n n n n n n b a a b a a ρ+→∞→∞++-==⋅⋅=<+, 由比值判别法知级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛. 【评注】由证明中可见,有下述结论:11()nn n aa ∞+=-∑收敛⇔lim n n a →∞存在.在考研题中多次用到这个知识点,考生可倍加注意.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.) 【分析】要求0Bx =的解空间的一个标准基,首先必须确定此解空间的维数以及相应个数的线性无关的解.【解析】(1)因秩()2r B =,故解空间的维数()422n r B -=-=,又因12,αα线性无关,12,αα是方程组0Bx =的解,由解空间的基的定义,12,αα是解空间的基.用施密特正交化方法先将其正交化,令:[][][][]1121221111,1,2,3,(,)521,1,4,11,1,2,32,1,5,3.(,)153TT T T βααββαβββ===-=---=--将其单位化,有]]1212121,1,2,3,2,1,5,3T T ββηηββ====--, 即为所求的一个标准正交基.评注:此题是一个基本计算题,只要求得一个齐次方程组的基础解系再标准正交化即可. 由于解空间的基不唯一,施密特正交化处理后标准正交基也不唯一.已知条件中12,,αα3α是线性相关的(注意12323ααα-=),不要误认为解空间是3维的.(2)(I)设ξ是矩阵A 的属于特征值0λ的特征向量,即0,A ξλξ=021*******,1211a b λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦即 0002125312a b λλλ--=⎧⎪+-=⎨⎪-++=-⎩0130,a ,b λ⇒=-=-=. (II)将(1)解得的30a ,b =-=代入矩阵A ,得212533102A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦. 其特征方程为3212533(1)0,102E A λλλλλ---=-+-=+=+知矩阵A 的特征值为1231λλλ===-.由于 312()5232101r E A r --⎡⎤⎢⎥--=--=⎢⎥⎢⎥⎣⎦, 从而1λ=-只有一个线性无关的特征向量,故A 不能相似对角化. 评注:A 相似于对角阵⇔A 的每个i r 重特征值有i r 个线性无关的特征向量.八、(本题满分5分)【解析】由于ij B E A =,其中ij E 是初等矩阵10111ij i E j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)因为A 可逆,0A ≠,故0ij ij B E A E A A ==⋅=-≠,所以B 可逆.(2)由ij B E A =,知11111().ij ij ij ij AB A E A AA E E E -----====评注:①本题考查初等矩阵的概念与性质,要知道初等变换与初等矩阵左右乘的关系以及初等矩阵的逆矩阵的三个公式.有的考生写不出初等矩阵ij E ,或将B 写成ij B AE =,或不知道1ij ij E E -=,或认为A B =±,而不知道B A =-等,这些要引起注意.②经初等变换矩阵的秩不变,易知()()r B r A n ==,也可证明B 可逆.九、(本题满分7分) 【分析】首先需要清楚二项分布的产生背景.它的背景是:做n 次独立重复试验,每次试验的结果只有两个(要么成功,要么失败),每次试验成功的概率都为p ,随机变量X 表示n 次试验成功的次数,则~(,)X B n p .这道题中经过三个交通岗,在各个交通岗遇到红灯的事件是独立的,概率都为25,相当于做了3次独立重复试验,试验的结果只有两个(要么遇到红灯(成功),要么不遇到(失败)),每次成功的概率都为25,X 表示遇到红灯的次数,相当于做了3次试验成功的次数,故2~(3,)5X B .【解析】由题意知:2~(3,)5X B ,由二项分布的分布律的定义,有{}33(1),0,1,2,3.k kk p X k C p p k -==-=再由离散型随机变量分布函数的定义,有()kk xF x p≤=∑,(1)当0x <时,()0kk xF x p≤==∑;(2)当01x ≤<,{}300300322327()0()(1)555125k k xF x p p P X C -≤⎛⎫=====-==⎪⎝⎭∑;(3)当12x ≤<,{}{}1131013272281()01()(1)12555125k k xF x p p p P X P X C -≤==+==+==+-=∑; (4)当23x ≤<, {}{}{}012()012kk xF x pp p p P X P X P X ≤==++==+=+=∑223238122117()(1)12555125C -=+-=; (5)当3x ≥时{}{}{}{}0123()01231k k xF x p p p p p P X P X P X P X ≤==+++==+=+=+==∑.因此X 的分布函数为:0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩2~(3,)5X B 的数学期望为26355EX np ==⋅=.【相关知识点】1.二项分布分布律的定义:{}(1),0,1,,kkn kn P X k C p p k n -==-=.2.离散型随机变量分布函数的定义:{}()i ix xF x P X x p ≤=≤=∑.3.二项分布~(,)X B n p 的期望为EX np =.十、(本题满分5分) 【分析】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望);最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数. 【解析】(1)矩估计 由期望的定义:1110()()(1)(1)E X xf x dx x x dx x dx θθθθ+∞+-∞==+=+⎰⎰⎰1211001(1)(1)22x x dx θθθθθθθ+++=+=+=++⎰.样本均值11n i i X X n ==∑,用样本均值估计期望有EX X =,即12X θθ+=+,解得未知参数θ的矩估计量为:^21.1X Xθ-=- (2)最大似然估计设 12,,...,n x x x 是相应于样本12,,...,n X X X 的样本值,则样本的似然函数为:1(1)01(1,2,,)0 .nn ii i x x i n L θθ=⎧+<<=⎪=⎨⎪⎩∏其他当01i x <<时,10ni i x θ=>∏,又1θ>-,故10θ+>,即()10nθ+>.所以()0L θ>.111ln ln (1)ln(1)ln ln(1)ln n n nn i i i i i i L x n x n x θθθθθθ===⎡⎤=+=++=++⎢⎥⎣⎦∑∑∏.(由于ln L 是单调递增函数,L 取最大与ln L 取最大取到的θ是一致的,而加对数后能把连乘转换成累加,这样求导,找极值比较方便)1ln ln 1ni i d L nx d θθ==++∑. 令1ln ln 01n i i d L nx d θθ==+=+∑, 解得θ的最大似然估计值为^11ln nii nxθ==--∑,从而得θ的最大似然估计量为:^11ln nii nXθ==--∑.。

1999年数学一真题及答案详解

1999年数学一真题及答案详解

1999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)2011lim()tan x x x x→-=_____________. (2)20sin()xd x t dt dx -⎰=_____________. (3)24e x y y ''-=的通解为y =_____________.(4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 _____________.(5)设两两相互独立的三事件,A B 和C 满足条件:1,()()(),2ABC P A P B P C =∅==< 且已知9(),16P AB C =则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则 (A)当()f x 是奇函数时,()F x 必是偶函数(B)当()f x 是偶函数时,()F x 必是奇函数(C)当()f x 是周期函数时,()F x 必是周期函数 (D)当()f x 是单调增函数时,()F x 必是单调增函数(2)设21cos 0()() 0xx f x xx g x x -⎧>⎪=⎨⎪≤⎩,其中()g x 是有界函数,则()f x 在0x =处 (A)极限不存在 (B)极限存在,但不连续(C)连续,但不可导(D)可导(3)设 01()122 12x x f x x x ≤≤⎧⎪=⎨-<<⎪⎩,01()cos ,,2n n a S x a n x x π∞==+-∞<<+∞∑ 其中102()cos n a f x n xdx π=⎰ (0,1,2,)n =,则5()2S -等于 (A)12(B)12-(C)34(D)34-(4)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则(A)当m n >时,必有行列式||0≠AB(B)当m n >时,必有行列式||0=AB(C)当n m >时,必有行列式||0≠AB(D)当n m >时,必有行列式||0=AB(5)设两个相互独立的随机变量X 和Y 分别服从正态分布(0,1)N 和(1,1)N ,则(A)1{0}2P X Y +≤= (B)1{1}2P X Y +≤=(C)1{0}2P X Y -≤=(D)1{1}2P X Y -≤=三、(本题满分6分)设(),()y y x z z x ==是由方程()z xf x y =+和(,,)0F x y z =所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求.dz dx四、(本题满分5分)求(e sin ())(e cos ),x x LI y b x y dx y ax dy =-++-⎰其中,a b 为正的常数,L 为从点(2,0)A a 沿曲线22y ax x =-到点(0,0)O 的弧.五、(本题满分6分)设函数()(0)y x x ≥二阶可导且()0,(0) 1.y x y '>=过曲线()y y x =上任意一点(,)P x y 作该曲线的切线及x 轴的垂线,上述两直线与x 轴所围成的三角形的面积记为1S ,区间[0,]x 上以()y y x =为曲线的曲边梯形面积记为2S ,并设122S S -恒为1,求曲线()y y x =的方程.六、(本题满分7分)论证:当0x >时,22(1)ln (1).x x x -≥-七、(本题满分6分)为清除井底的淤泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(见图).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s 的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克服重力需作多少焦耳的功? (说明:①1N ⨯1m=1Jm,N,s,J 分别表示米,牛,秒,焦.②抓斗的高度及位于井口上方的缆绳长度忽略不计.)八、(本题满分7分)设S 为椭球面222122x y z ++=的上半部分,点(,,),P x y z S π∈为S 在点P 处的切平面,(,,)x y z ρ为点(0,0,0)O 到平面π的距离,求.(,,)SzdS x y z ρ⎰⎰九、(本题满分7分)设4tan :n n a xdx π=⎰(1)求211()n n n a a n∞+=+∑的值. (2)试证:对任意的常数0,λ>级数1nn a nλ∞=∑收敛. 十、(本题满分8分)设矩阵153,10ac b c a -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 其行列式||1,=-A 又A 的伴随矩阵*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1),T =--α求,,a b c 和0λ的值.十一、(本题满分6分)设A 为m 阶实对称矩阵且正定,B 为m n ⨯实矩阵,TB 为B 的转置矩阵,试证TB AB 为正定矩阵的充分必要条件是B 的秩().r n =B十二、(本题满分8分)设随机变量X 与Y 相互独立,下表列出了二维随机变量(,)X Y 联合分布率及关于X 和关于Y 的边缘分布率中的部分数值,试将其余数值填入表中的空白处. X Y1y2y3y()i i P X x p ∙==1x182x18 ()i j P Y y p ∙==161十三、(本题满分6分)设X 的概率密度为36() 0< ()0 其它xx x f x θθθ⎧-<⎪=⎨⎪⎩,12,,,n X X X 是取自总体X 的简单随机样本(1)求θ的矩估计量ˆθ.(2)求ˆθ的方差ˆ().D θ1999年全国硕士研究生入学统一考试数学(一)答案详解一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1) 【答】31 【详解1】 302020t a n l i m t a n t a n l i m t a n 11l i m x x x x x x x x x x x x x -=-=⎪⎭⎫⎝⎛-→→→ 313tan lim lim22031sec 022===→-→x x x xx x 【详解2】 302020c o s s i n lim sin cos sin lim tan 11lim x x x x x x x x x x x x x x x -=-=⎪⎭⎫⎝⎛-→→→ 313sin lim 3sin cos cos lim 020==+-=→→x x x x x x x x x (2)【答】 2sin x【详解】 ⎰⎰-=--x x du u dx d u t x dt t x dx d 0022)sin ()sin( 202sin sin x du u dxd x ==⎰ 故本题应填2sin x (3)【答】 x xe x C eC y 222141⎪⎭⎫ ⎝⎛++=-,其中21,C C 为任意常数.【详解】 特征方程为:042=-λ,解得2-,22,1==λλ. 故04"=-y y 的通解为x xe C eC y 22211+=-,由于非齐次项为2,)(2==a e x f x 为特征方程的单根,因此原方程的特解可设为xAxe y 2=*,代入原方程求得41=A , 故所求解为x x x xee C e C y y y 22221141++=+=-* 故本题应填x xe x C e C y 222141⎪⎭⎫ ⎝⎛++=-,其中21,C C 为任意常数.(4)【答】10,,0,-n n【详解】 因为111111111111111---------=---------=-λλλλλλλλλn n n A E λλλ00111)(---=n 故矩阵A 的n 个特征值是n 和0(n-1重)因此本题应填10,,0,-n n(5) 【答】41 【详解】 根据加法式有())()()()()()()(ABC P BC P AB P AC P C P B P A P C B A P +---++=⋃⋃ 由题A,B 和C 两两相互独立,21)()()(,<===C P B P A P ABC φ,因此有 ),()()()(2A P BC P AC P AB P === 0)()(==φP ABC P , 从而 ()169)(3)(32=-=⋃⋃A P A P C B A P 解得 41)(,43)(==A P A P 又根据题设 41)(,21)(=<A P A P 故二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)【答】 应选(A )【详解】 )(x f 的原函数)(x F 可以表示为C dt t f x F x+=⎰)()(,于是.)()()()(0C u d u f t u C dt t f x F xx+---=+=-⎰⎰-当)(x f 为奇函数时,),()(u f u f -=-从而有)()()()(0x F C dt t f C du u f x F xx=+=+=-⎰⎰即 )(x F 为偶函数.故(A )为正确选项,至于(B )、(C )、(D )可分别举反例如下:2)(x x f =是偶函数,但其原函数131)(3+=x x F 不是奇函数,可排除(B ); x x f 2cos )(=是周期函数,但其原函数x x x F 2sin 4121)(+=不是周期函数,可排除(C );x x f =)(在区间()∞∞-,内是单调增函数,但其原函数221)(x x F =在区间()∞∞-,内非单调增函数,可排除(D )。

1998年全国硕士研究生入学统一考试数学(一)真题及解析

1998年全国硕士研究生入学统一考试数学(一)真题及解析

1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)0x →(2)设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2z x y∂∂∂=_____________.(3)设l 为椭圆221,43x y +=其周长记为,a 则22(234)Lxy x y ds ++⎰=_____________. (4)设A 为n 阶矩阵*,0,≠A A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值,λ则*2()+A E 必有特征值_____________.(5)设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 连续,则220()xd tf x t dt dx -⎰= (A)2()xf x (B)2()xf x - (C)22()xf x(D)22()xf x -(2)函数23()(2)f x x x x x =---不可导点的个数是 (A)3 (B)2 (C)1(D)0(3)已知函数()y y x =在任意点x 处的增量2,1y xy xα∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于(A)2π (B)π(C)4e π(D)4e ππ(4)设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A)相交于一点 (B)重合 (C)平行但不重合(D)异面(5)设,A B 是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有 (A)(|)(|)P A B P A B = (B)(|)(|)P A B P A B ≠ (C)()()()P AB P A P B =(D)()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z l --==-在平面:210x y z π-+-=上的投影直线0l 的方程,并求0l 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数,λ使在右半平面0x >上的向量42242(,)2()()x y xy x y x x y λλ=+-+A i j为某二元函数(,)u x y 的梯度,并求(,).u x y 五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度(y 从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为,m 体积为,B 海水密度为,ρ仪器所受的阻力与下沉速度成正比,比例系数为(0).k k >试建立y 与v 所满足的微分方程,并求出函数关系式().y y v =六、(本题满分7分)计算222212(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半平面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112x n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦设正向数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11()1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1)试证存在0(0,1),x ∈使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在区间0[,1]x 上以()y f x =为曲边的曲边梯形面积.(2)又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的. 十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=可以经过正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 化为椭圆柱面方程2244,ηξ+=求,a b 的值和正交矩阵.P 十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数,k 使线性方程组k x =A 0有解向量,α且1.k -≠A α0 证明:向量组1,,,k -αA αA α是线性无关的.十二、(本题满分5分)已知方程组(Ⅰ)1111221,222112222,221122,22000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=+++=+++=的一个基础解析为11121,221222,212,2(,,,),(,,,),,(,,,).T T T n n n n n n b b b b b b b b b 试写出线性方程组(Ⅱ)1111221,222112222,221122,22000n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=+++=+++=的通解,并说明理由.设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大? 附:标准正态分布表22()t zx dt -Φ=⎰十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70 分?并给出检验过程.附:t 分布表 {()()}p P t n t n p ≤=1998年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x →=24x →-=)221lim4x x →=2220112112lim 24x x xx →-- =-.方法2:采用洛必达法则.原式)()022limxx →''洛0x→= 0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x →-++=14=-. (2)【答案】()()()yf xy x y y x y ϕϕ'''''++++ 【分析】因为1()(),,z f xy y x y f xϕϕ=++具有二阶连续导数,利用混合偏导数在连续的条件下与求导次序无关,先求z x ∂∂或z y∂∂均可,但不同的选择可能影响计算的繁简. 方法1:先求z x∂∂. 211()()()()()z y f xy y x y f xy f xy y x y x x x x x ϕϕ∂∂⎡⎤''=++=-+++⎢⎥∂∂⎣⎦,2221()()()11()()()()()11()()()()()()()().z y f xy f xy y x y x y y x x yf xy x f xy f xy x x y y x y x x xf xy f xy yf xy x y y x y x xyf xy x y y x y ϕϕϕϕϕϕϕ∂∂⎛⎫''=-+++ ⎪∂∂∂⎝⎭'''''''=-++++++'''''''=-++++++'''''=++++ 方法2:先求z y∂∂. 11()()()()()()()(),z f xy y x y f xy x x y y x y y y x xf xy x y y x y ϕϕϕϕϕ∂∂⎡⎤''=++=++++⎢⎥∂∂⎣⎦''=++++ []22()()()()()().z z f xy x y y x y x y y x xyf xy x y y x y ϕϕϕϕ∂∂∂''==++++∂∂∂∂∂'''''=++++ 方法3:对两项分别采取不同的顺序更简单些:()[][][]21()()1()()()()()()().z f xy y x y x y x y x y x f xy x y x y x x y f xy y x y x yyf xy x y y x y ϕϕϕϕϕ⎡⎤∂∂∂∂∂⎛⎫⎡⎤=++ ⎪⎢⎥⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦⎣⎦∂∂⎡⎤''=++⎢⎥∂∂⎣⎦∂∂''=++∂∂'''''=++++ 评注:本题中,,f ϕ中的中间变量均为一元,因此本题实质上是一元复合函数的求导,只要注意到对x 求导时,y 视为常数;对y 求导时,x 视为常数就可以了. (3)【答案】12a【解析】L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上,22222213412(34)1212.43L L x y x y x y ds ds a +=⇒+=⇒+==⎰⎰因此, 原式222(34)12LLxyds x y ds a =++=⎰⎰.【相关知识点】对称性:平面第一型曲线积分(),lf x y ds ⎰,设(),f x y 在l 上连续,如果l 关于y 轴对称,1l 为l 上0x ≥的部分,则有结论:()()()()12,,,,0,l lf x y ds f x y x f x y ds f x y x ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. 类似地,如果l 关于x 轴对称,2l 为l 上0y ≥的部分,则有结论:()()()()22,,,,0,l lf x y ds f x y y f x y ds f x y y ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. (4)【答案】 21A λ⎛⎫+ ⎪⎝⎭【解析】方法1:设A 的对应于特征值λ的特征向量为ξ,由特征向量的定义有,(0)A ξλξξ=≠.由0A ≠,知0λ≠(如果0是A 的特征值0A ⇔=),将上式两端左乘A *,得A A A A A ξξλξλξ***===,从而有 *,AA ξξλ=(即A *的特征值为Aλ).将此式两端左乘A *,得()22**AA A A ξξξλλ⎛⎫== ⎪⎝⎭.又E ξξ=,所以()()22*1A A E ξξλ⎛⎫⎛⎫ ⎪+=+ ⎪ ⎪⎝⎭⎝⎭,故*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.方法2:由0A ≠,A 的特征值0λ≠(如果0是A 的特征值0A ⇔=),则1A -有特征值1λ,A *的特征值为A λ;*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.【相关知识点】1.矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘1A -,得1A αλα-=.因为0α≠,故0λ≠,于是有11Aααλ-=.按特征值定义知1λ是1A -的特征值.若AX X λ=,则()()A kE X AX kX k X λ+=+=+.即若λ是A 的特征值,则A kE +的特征值是k λ+.2.矩阵A 可逆的充要条件是0A ≠,且11AA A-*=. (5)【答案】14【解析】首先求(,)X Y 的联合概率密度(,)f x y .21(,)|1,0D x y x e y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭, 区域D 的面积为22111ln 2.e e D S dx x x===⎰1,(,),(,)20, x y D f x y ⎧∈⎪=⎨⎪⎩其他.其次求关于X 的边缘概率密度.当1x <或2x e >时,()0X f x =;当21x e ≤≤时,1011()(,)22x X f x f x y dy dy x+∞-∞===⎰⎰. 故1(2).4X f =二、选择题(本题共5小题,每小题3分,共15分.) (1)【答案】(A)【解析】为变限所定义的函数求导数,作积分变量代换22,u x t =-2:0:0t x u x →⇒→,()222du d x t tdt =-=-12dt du t⇒=-, 222022220001()()211()(),22xx xx tf x t dt u x t tf u dt t f u du f u du ⎛⎫-=-- ⎪⎝⎭=-=⎰⎰⎰⎰()2220022221()()211()()2(),22x x d d tf x t dt f u du dx dx f x x f x x xf x -='=⋅=⋅=⎰⎰选(A).【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t ft t f t ββαα'''=⋅-⋅.(2)【答案】(B)【解析】当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是分段函数.22()(2)1f x x x x x =---,当0,1x ≠±时()f x 可导,因而只需在0,1x =±处考察()f x 是否可导.在这些点我们分别考察其左、右导数.由 22222222(2)(1),1,(2)(1),10,()(2)(1),01,(2)(1),1,x x x x x x x x x x f x x x x x x x x x x x ⎧---<-⎪----≤<⎪=⎨---≤<⎪⎪---≤⎩⇒ ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x ---→-→-------'-===++, ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x +++→-→-------'-===++,即()f x 在1x =-处可导.又()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x ---→→-----'===, ()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x+++→→-----'===-,所以()f x 在0x =处不可导.类似,函数()f x 在1x =处亦不可导.因此()f x 只有2个不可导点,故应选(B). 评注:本题也可利用下列结论进行判断:设函数()()f x x a x ϕ=-,其中()x ϕ在x a =处连续,则()f x 在x a =处可导的充要条件是()0a ϕ=. (3)【答案】(D) 【解析】由2,1y x y x α∆∆=++有2.1y y x x xα∆=+∆+∆ 令0,x ∆→得α是x ∆的高阶无穷小,则0lim0x xα∆→=∆,0limx y x ∆→∆∆20lim 1x yx x α∆→⎛⎫=+ ⎪+∆⎝⎭200lim lim 1x x y x x α∆→∆→=++∆21y x =+ 即21dy y dx x=+. 分离变量,得2,1dy dx y x=+ 两边积分,得 ln arctan y x C =+,即arctan 1.xy C e=代入初始条件(0),y π=得()arctan0110.y C e C π===所以,arctan xy eπ=.故 arctan 1(1)xx y eπ==arctan1eπ=4.e ππ=【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (4)【答案】(A) 【解析】设3331121212:x a y b z c L a a b b c c ---==---,1112232323:x a y b z c L a a b b c c ---==---,题设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则由行列式的性质,可知 11112121222223232333333312230a b c a a b b c c a b c a a b b c c a b c a b c ------≠行减行,行减行, 故向量组121212(,,)a a b b c c ---与232323(,,)a a b b c c ---线性无关,否则由线性相关的定义知,一定存在12,k k ,使得11212122232323(,,)(,,)0k a a b b c c k a a b b c c ---+---=,这样上面行列式经过初等行变换值应为零,产生矛盾.121212(,,)a a b b c c ---与232323(,,)a a b b c c ---分别为12,L L 的方向向量,由方向向量线性相关,两直线平行,可知12,L L 不平行.又由333121212x a y b z c a a b b c c ---==---得333121212111x a y b z c a a b b c c ----=-=----,即()()()312312312121212x a a a y b b b z c c c a a b b c c ---------==---. 同样由111232323x a y b z c a a b b c c ---==---,得111232323111x a y b z c a a b b c c ---+=+=+---,即 ()()()123323323232323x a a a y b b b z c c c a a b b c c -+--+--+-==---, 可见12,L L 均过点()213213213,,a a a b b b c c c ------,故两直线相交于一点,选(A). (5)【答案】C【分析】由题设条件(|)(|)P B A P B A =,知A 发生与A 不发生条件下B 发生的条件概率相等,即A 发生不发生不影响B 的发生概率,故,A B 相互独立.而本题选项(A)和(B)是考虑(|)P A B 与(|)P A B 是否相等,选项(C)和(D)才是事件A 与B 是否独立. 【解析】由条件概率公式及条件(|)(|),P B A P B A =知{}{}{}{}{}{}{}1P AB P AB P B P AB P A P A P A-==-, 于是有 {}{}{}{}{}1P AB P A P A P B P AB -=⋅-⎡⎤⎡⎤⎣⎦⎣⎦, 可见 {}{}{}P AB P A P B =. 应选(C).【相关知识点】条件概率公式:{}{}{}|P AB P B A P A =.三、(本题满分5分)【解析】方法1:求直线L 在平面∏上的投影0L :方法1:先求L 与∏的交点1N .以1,:,1x t L y t z t =+⎧⎪=⎨⎪=-⎩代入平面∏的方程,得(1)2(1)101t t t t +-+--=⇒=.从而交点为1(2,1,0)N ;再过直线L 上点0(1,0,1)M 作平面∏的垂线11:112x y z L --'==-,即1,,12.x t y t z t =+⎧⎪=-⎨⎪=+⎩并求L '与平面∏的交点2N :1(1)()2(12)103t t t t +--++-=⇒=-,交点为2211(,,)333N .1N 与2N 的连接线即为所求021:421x y zL --==-. 方法2:求L 在平面∏上的投影线的最简方法是过L 作垂直于平面∏的平面0∏,所求投影线就是平面∏与0∏的交线.平面0∏过直线L 上的点(1,0,1)与不共线的向量(1,1,1)l =- (直线L 的方向向量)及(1,1,2)n =-(平面∏的法向量)平行,于是0∏的方程是111110112x y z ---=-,即3210x y z --+=. 投影线为 0210,:3210.x y z L x y z -+-=⎧⎨--+=⎩下面求0L 绕y 轴旋转一周所成的旋转曲面S 的方程.为此,将0L 写成参数y 的方程:2,1(1).2x y z y =⎧⎪⎨=--⎪⎩ 按参数式表示的旋转面方程得S 的参数方程为,,.xy yzθθ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩消去θ得S的方程为()222212(1)2x z y y⎡⎤+=+--⎢⎥⎣⎦,即2224174210.x y z y-++-=四、(本题满分6分)【解析】令42(,)2(),P x y xy x yλ=+242(,)(),Q x y x x yλ=-+则(,)((,),(,))A x y P x y Q x y=在单联通区域右半平面0x>上为某二元函数(,)u x y的梯度Pdx Qdy⇔+在0x>上∃原函数(,)u x y⇔,0.Q Pxx y∂∂=>∂∂其中, 42242132()()4Qx x y x x y xxλλλ-∂=-+-+⋅∂,424212()2()2Px x y xy x y yyλλλ-∂=+++⋅∂.由Q Px y∂∂=∂∂,即满足4224213424212()()42()2()2x x y x x y x x x y xy x y yλλλλλλ---+-+⋅=+++⋅,424()(1)01x x yλλλ⇔++=⇔=-.可见,当1λ=-时,所给向量场为某二元函数的梯度场.为求(,)u x y,采用折线法,在0x>半平面内任取一点,比如点(1,0)作为积分路径的起点,则根据积分与路径无关,有2(,)42(1,0)2(,)x yxydx x dyu x y Cx y-=++⎰24421020x yx xdx dy Cx x y⋅-=++++⎰⎰(折线法)242y x dy Cx y-=++⎰2242(1)yx dy C y x x -=+⎛⎫+ ⎪⎝⎭⎰(第一类换元法)222222004221(1)(1)yy x x y y d C d C x x y y x x x ⋅⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 2arctan yC x=-+(基本积分公式) 其中C 为任意常数.【相关知识点】1.二元可微函数(,)u x y 的梯度公式:u u gradu i +j x y∂∂=∂∂. 2.定理:设D 为平面上的单连通区域,函数()P x,y 与(,)Q x y 在D 内连续且有连续的一阶偏导数,则下列六个命题等价:(1),(,)Q Px y D x y∂∂≡∈∂∂; (2) 0,LPdx Qdy L +=⎰为D 内任意一条逐项光滑的封闭曲线;(3)LABPdx Qdy +⎰仅与点,A B 有关,与连接,A B 什么样的分段光滑曲线无关;(4) 存在二元单值可微函数(,)u x y ,使du Pdx Qdy =+(即Pdx Qdy +为某二元单值可微函数(,)u x y 的全微分; (5) 微分方程0Pdx Qdy +=为全微分方程;(6) 向量场P +Q i j 为某二元函数(,)u x y 的梯度u P +Q =grad i j .换言之,其中任一组条件成立时,其它五组条件皆成立.当条件成立时,可用试图法或折线法求函数(,)u x y .五、(本题满分6分)【解析】先建立坐标系,取沉放点为原点O ,铅直向下作为Oy 轴正向,探测器在下沉过程中受重力、浮力和阻力的作用,其中重力大小:mg ,浮力的大小:F B ρ=-浮;阻力:kv -,则由牛顿第二定律得202,0,0.t t d ym mg B g kv y vdtρ===--== (*)由22,dy d y dv dv dy dv dy v v v dv dt dt dt dy dt dy===⋅==,代入(*)得y 与v 之间的微分方程10,0y dy mv mg B kv v dv ρ-=⎛⎫=--= ⎪⎝⎭.分离变量得 mvdy dv mg B kv ρ=--,两边积分得 mvdy dv mg B kv ρ=--⎰⎰,2222()()()Bm m g Bm m g mv k k k k y dv mg B kv m Bm m g mg B kv k k k dv mg B kv m g Bm m k dvk mg B kv m m mg B dv dvk k mg B kv ρρρρρρρρρρ+--+=------+=--⎛⎫- ⎪=-+ ⎪-- ⎪ ⎪⎝⎭-=-+--⎰⎰⎰⎰⎰1()()()()m mg B m k v d mg B kv k k mg B kv ρρρ-⋅-=-+----⎰ (第一类换元法) 2()ln()m m mg B v mg B kv C k kρρ-=----+.再根据初始条件0|0,y v ==即22()()ln()0ln()m mg B m mg B mg B C C mg B k k ρρρρ----+=⇒=-.故所求y 与v 函数关系为()2ln .m mg B m mg B kv y v k k mg B ρρρ-⎛⎫--=-- ⎪-⎝⎭六、(本题满分7分)【解析】方法1:本题属于求第二类区面积分,且不属于封闭区面,则考虑添加一平面使被积区域封闭后用高斯公式进行计算,但由于被积函数分母中包含12222()x y z ++,因此不能立即加、减辅助面2221:0x y a z ⎧+≤∑⎨=⎩,宜先将曲面方程代入被积表达式先化简:2212222()1().()axdydz z a dxdy I axdydz z a dxdy a x y z ∑∑++==++++⎰⎰⎰⎰ 添加辅助面2221:0x y a z ⎧+≤∑⎨=⎩,其侧向下(由于∑为下半球面z =侧,而高斯公式要求是整个边界区面的外侧,这里我们取辅助面的下侧,和∑的上侧组成整个边界区面的内侧,前面取负号即可),由高斯公式,有11222211()()()1()().D I axdydz z a dxdy axdydz z a dxdy a a z a ax dV a dxdy a x z ∑+∑∑Ω=++-++⎛⎫⎡⎤∂+⎛⎫∂⎣⎦ ⎪=-+-- ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分前面加负号是由于我们取边界区面的内侧,第二个积分前面加负号是由于1∑的方向向下;另外由曲面片1∑在yoz 平面投影面积为零,则10axdydz ∑=⎰⎰,而1∑上0z =,则()22z a a +=.21(2())D I a z a dV a dxdy a Ω⎛⎫=-+++ ⎪⎝⎭⎰⎰⎰⎰⎰,其中Ω为∑与1∑所围成的有界闭区域,D 为1∑在xoy 面上的投影222{(,)|}D x y x y a =+≤. 从而,220322001321232.3D a I a dv zdv a dxdy a a a d rdr a a a ππθπΩΩ⎛⎫=--+ ⎪⎝⎭⎛⎫=-⋅-+⋅ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分用球体体积公式;第二个用柱面坐标求三重积分;第三个用圆的面积公式.()2042400242200242300224224440411222112()21()1122242412a a a aI a d r z dr a a a d r a r dr a a d a r r draa r r a a a a a a a a a a ππππθππθπθππππππ⎛⎫⎛=--+ ⎪⎝⎝⎭⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭=-+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-+⋅-=-+⋅- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+⋅⎰⎰⎰⎰⎰⎰4342a π⎛⎫=- ⎪⎝⎭ 方法2:逐项计算:2212222212()1()()1().axdydz z a dxdyI axdydz z a dxdy a x y z xdydz z a dxdy I I a ∑∑∑∑++==++++=++=+⎰⎰⎰⎰⎰⎰⎰⎰其中,12,Dyz DyzDyzI xdydz ∑==-+=-⎰⎰⎰⎰⎰⎰⎰⎰第一个负号是由于在x 轴的正半空间区域∑的上侧方向与x 轴反向;第二个负号是由于被积函数在x 取负数.yz D 为∑在yoz 平面上的投影域222{(,)|,0}yz D y z y z a z =+≤≤,用极坐标,得2102203223320212()2222()(0),333aI d a r a r a a ππθππππ=-=-⋅--=-=-=-⎰⎰⎰(222222002302300042230044411()1(22)2(22)2222123422(3Dxya a a a a a a I z a dxdy a dxdya a d a r rdra a r r dr a a rdr a r dr a r a r a a a a a a aπθππππ∑=+=-=-=-⎡⎤=--⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎢⎥=-⋅- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰3),46a π=其中yz D 为∑在yoz 平面上的投影域222{(,)|}yz D y z y z a =+≤.故312.2I I I a π=+=-【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.七、(本题满分6分)【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.当各项分母均相同是n 时,n 项和式2sin sinsin n n n n n x nnnπππ=+++是函数sin x π在[0,1]区间上的一个积分和.于是可由定积分1sin xdx π⎰求得极限lim nn x→∞.【解析】由于sinsin sin ,1,2,,11i i i n n n i n n n n iπππ≤≤=⋅⋅⋅++,于是,111sinsin sin 11nn ni i i i i i n n n n nn iπππ===≤≤++∑∑∑.由于 1011sin12limlim sin sin nnn n i i i i n xdx n n n ππππ→∞→∞=====∑∑⎰,10111sin112lim lim sin lim sin sin 11nn nn n n i i i i n i i n xdx n n n n n n πππππ→∞→∞→∞===⎡⎤=⋅===⎢⎥++⎣⎦∑∑∑⎰根据夹逼定理知,1sin2lim1nn i i n n iππ→∞==+∑. 【相关知识点】夹逼准则:若存在N ,当n N >时,n n n y x z ≤≤,且有lim lim n n n n y z a →+∞→+∞==,则lim n n x a →+∞=.八、(本题满分5分)【解析】方法1:因正项数列{}n a 单调减少有下界0,知极限lim n n a →∞存在,记为a ,则n a a ≥且0a ≥.又1(1)nn n a ∞=-∑发散,根据莱布尼茨判别法知,必有 0a >(否则级数1(1)n n n a ∞=-∑收敛).又正项级数{}n a 单调减少,有11,11nnn a a ⎛⎫⎛⎫≤ ⎪ ⎪++⎝⎭⎝⎭而1011a <<+,级数11()1n n a ∞=+∑收敛.根据正项级数的比较判别法,知级数11()1nn n a ∞=+∑也收敛. 方法2:同方法1,可证明lim 0n n a a →∞=>.令1,1nn n b a ⎛⎫= ⎪+⎝⎭则11lim1,11n n na a →∞==<++根据根值判别法,知级数11()1nn n a ∞=+∑也收敛. 【相关知识点】1.交错级数的莱布尼茨判别法:设交错级数11(1)n n n u ∞-=-∑满足:(1)1,1,2,;n n u u n +≥= (2)lim 0.n n u →∞=则11(1)n n n u ∞-=-∑收敛,且其和满足1110(1),n n n u u ∞-=<-<∑余项1.n n r u +<反之,若交错级数11(1)n n n u ∞-=-∑发散,只是满足条件(1),则可以反证说明此级数一定不满足条件(2)lim 0n n u →∞=,所以有lim 0.n n u →∞>(否则级数11(1)n n n u ∞-=-∑收敛)2.正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.3.根值判别法:设0n u >,则当111, 1, lim 0,1, .n n n n n n n u u u ρ∞=∞→∞=⎧<⎪⎪⎪=>≠⎨⎪⎪=⎪⎩∑∑时收敛,时发散,且时此判别法无效九、(本题满分6分)【解析】(1)要证0(0,1)x ∃∈,使0100()()x x f x f x dx =⎰;令1()()()x x xf x f t dt ϕ=-⎰,要证0(0,1)x ∃∈,使0()0x ϕ=.可以对()x ϕ的原函数0()()x x t dt ϕΦ=⎰使用罗尔定理:(0)0Φ=,11111111000(1)()()(())()()()0,xx x x x dx xf x dx f t dt dxxf x dx x f t dt xf x dx ϕ==Φ==-⎡⎤=-+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰分部又由()f x 在[0,1]连续()x ϕ⇒在[0,1]连续,()x Φ在[0,1]连续,在(0,1)可导.根据罗尔定理,0(0,1)x ∃∈,使00()()0x x ϕ'Φ==.(2) 由()()()()()2()0x xf x f x f x xf x f x ϕ'''=++=+>,知()x ϕ在(0,1)内单调增,故(1)中的0x 是唯一的.评注:若直接对()x ϕ使用零点定理,会遇到麻烦:1(0)()0,(1)(1)0f t dt f ϕϕ=-≤=≥⎰.当()0f x ≡时,对任何的0(0,1)x ∈结论都成立;当()f x ≡0时,(0)0,ϕ<但(1)0ϕ≥,若(1)0ϕ=,则难以说明在(0,1)内存在0x .当直接对()x ϕ用零点定理遇到麻烦时,不妨对()x ϕ的原函数使用罗尔定理. 【相关知识点】1.罗尔定理:如果函数()f x 满足 (1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.十、(本题满分6分)【解析】经正交变换化二次型为标准形,二次型矩阵与标准形矩阵既合同又相似.由题设知,二次曲面方程左端二次型对应矩阵为111111b A b a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则存在正交矩阵P ,使得 1000010004P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B 记,即A B 与相似.由相似矩阵有相同的特征值,知矩阵A 有特征值0,1,4.从而,211014,3, 1.(1)0.a a b A b B ++=++⎧⎪⇒==⎨=--==⎪⎩从而,111131.111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦当10λ=时,()1110131111E A ---⎡⎤⎢⎥-=---⎢⎥⎢⎥---⎣⎦1(1)23⨯-行分别加到,行111020000---⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦于是得方程组(0)0E A x -=的同解方程组为12320,20.x x x x ---=⎧⎨-=⎩(0)2r E A -=,可知基础解系的个数为(0)321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为1(1,0,1).Tα=-当21λ=时,()011121110E A --⎡⎤⎢⎥-=---⎢⎥⎢⎥--⎣⎦3(1)2⨯-加到行011011110--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦1(1)2⨯-行加到行011000110--⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦23,行互换011110000--⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦, 于是得方程组()0E A x -=的同解方程组为23120,0.x x x x --=⎧⎨--=⎩()2r E A -=,可知基础解系的个数为()321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为2(1,1,1).Tα=-当34λ=时,()3114111113E A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦12,行互换111311113--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦1行的3,(-1)倍分别加到2,3行111024024--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦23行加到行111024000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦,于是得方程组(4)0E A x -=的同解方程组为123230,240.x x x x x -+-=⎧⎨-=⎩(4)2r E A -=,可知基础解系的个数为(4)321n r E A --=-=,故有1个自由未知量,选2x 为自由未知量,取22x =,解得基础解系为3(1,2,1).Tα=由实对称矩阵不同特征值对应的特征向量相互正交,可知123,,ααα相互正交. 将123,,ααα单位化,得111222333,,.TTTαηααηααηα======因此所求正交矩阵为0P ⎡⎢⎢⎢=⎢⎢⎢⎢⎣. 评注:利用相似的必要条件求参数时,iiiia b=∑∑是比较好用的一个关系式.亦可用E A E B λλ-=-比较λ同次方的系数来求参数.【相关知识点】1.特征值的性质:11nni iii i aλ===∑∑2.相似矩阵的性质:若矩阵A B 与相似,则A B =.十一、(本题满分4分)【解析】用线性无关的定义证明.设有常数011,,,,k λλλ-⋅⋅⋅使得10110.()k k A A λαλαλα--++⋅⋅⋅+=*两边左乘1k A -,则有()110110k k k A A A λαλαλα---++⋅⋅⋅+=,即 12(1)0110k k k k A A Aλαλαλα---++⋅⋅⋅+=. 上式中因0kA α=,可知()2110k k A A αα-+===,代入上式可得100.k A λα-=由题设10k Aα-≠,所以00.λ=将00λ=代入()*,有1110k k A A λαλα--+⋅⋅⋅+=.两边左乘2k A -,则有 ()21110k k k A A A λαλα---+⋅⋅⋅+=,即123110k k k A A λαλα---+⋅⋅⋅+=.同样,由0kA α=,()2110k k A A αα-+==,可得110.k A λα-=由题设10k Aα-≠,所以10.λ=类似地可证明210,k λλ-=⋅⋅⋅==因此向量组1,,,k A A ααα-⋅⋅⋅是线性无关的. 【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k 使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.十二、(本题满分5分) 【解析】()II 的通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.理由:可记方程组22()0,()0,n n n n I A X II B Y ⨯⨯==()I ,()II 的系数矩阵分别记为,A B ,由于B 的每一行都是20n n A X ⨯=的解,故0T AB =.TB 的列是()I 的基础解系,故由基础解系的定义知,T B 的列向量是线性无关的,因此()r B n =.故基础解系所含向量的个数2()n n r A =-,得()2r A n n n =-=.因此,A 的行向量线性无关.对0TAB =两边取转置,有()0TT T ABBA ==,则有T A 的列向量,即A 的行向量是0BY =的线性无关的解.又()r B n =,故0BY =基础解系所含向量的个数应为2()2n r B n n n -=-=,恰好等于A 的行向量个数.故A 的行向量组是0BY =的基础解系,其通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.十三、(本题满分6分)【分析】把X Y -看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的性质,可以知道N(0,1)X Y-,这样可以简化整题的计算.【解析】令Z X Y =-,由于,X Y 相互独立,且都服从正态分布,因此Z 也服从正态分布,且()()()0E Z E X E Y =-=,11()()()122D Z D X D Y =+=+=. 于是,(0,1)Z X Y N =-~.()()()()()()()22222()1.D X Y D ZE ZE Z D Z E Z E ZE Z-==-=+-=-而2222z z E Z z dz ze dz +∞+∞---∞==⎰2222202z z z ed e+∞+∞--⎡⎤⎛⎫==-=⎥ ⎪⎝⎭⎥⎦ 故21.D X Y π-=-【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.2.方差的定义:22()DX EX EX =-.3.随机变量函数期望的定义:若()Y g X =,则()()EY g x f x dx +∞-∞=⎰.十四、(本题满分4分) 【解析】由题知:212,,,~(3.4,6)n X X X N ,11nn i i X X n ==∑,各样本相互独立,根据独立正态随机变量的性质,211~(,)n n i i X X N n μσ==∑.其中11n n i i EX E X n μ=⎛⎫== ⎪⎝⎭∑,211n n i i DX D X n σ=⎛⎫== ⎪⎝⎭∑.根据期望和方差的性质,1122222211111 3.4 3.4,11166.n nn i i i i n n nn i i i i i i n EX E X EX n n n n DX D X D X DX n n n n n μσ=====⎛⎫===== ⎪⎝⎭⎛⎫⎛⎫====== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑所以,2116~(3.4,)n n i i X X N n n ==∑.把n X 标准化,~(0,1)X U N =. 从而,{}{}{}{}1.4X 5.4 1.4 3.4X 3.4 5.4 3.42X 3.42X 3.42210.95,P P P P P <<=-<-<-=-<-<=-<=<=Φ-≥⎝⎭⎪⎩⎭故0.975,Φ≥⎝⎭查表得到 1.96,3≥即()21.96334.57,n ≥⨯≈所以n 至少应取35. 【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数. 2.若2~(,)Z N u σ,则~(0,1)Z uN σ-十五、(本题满分4分)【解析】设该次考试的考生成绩为X ,则2~(,)X N μσ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,则在显著性水平0.05α=下建立检验假设:001:70,:70,H H μμμ==≠由于2σ未知,故用t 检验.选取检验统计量,X T ==在070μμ==时,2~(70,),~(35).X N T t σ 选择拒绝域为{}R T λ=≥,其中λ满足:{}0.05P T λ≥=,即{}0.9750.975,(35) 2.0301.P T t λλ≤===由0 36,66.5,70,15,n x s μ====可算得统计量T 的值:1.42.0301t ==<.所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1997年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_____________.(2)设幂级数的收敛半径为3,则幂级数的收敛区间为_____________.(3)对数螺线在点处切线的直角坐标方程为_____________.(4)设为三阶非零矩阵,且则=_____________. (5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)二元函数 ,在点处(A)连续,偏导数存在 (B)连续,偏导数不存在 (C)不连续,偏导数存在 (D)连续,偏导数不存在(2)设在区间上令则(A) (B) (C)(D)(3)设则 (A)为正常数(B)为负常数2013sin coslim(1cos )ln(1)x x x x x x →+++1nn n a x ∞=∑11(1)n n n na x ∞+=-∑e θρ=2(,)(e ,)2ππρθ=12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B ,=AB O t (,)f x y =22(,)(0,0)0(,)(0,0)xyx y x y x y ≠+=(0,0)[,]a b ()0,()0,()0.f x f x f x '''><>1231(),()(),[()()](),2b a S f x dx S f b b a S f a f b b a ==-=+-⎰123S S S <<213S S S <<312S S S <<231S S S <<2sin ()e sin ,x t x F x tdt π+=⎰()F x(C)恒为零 (D)不为常数(4)设则三条直线 (其中)交于一点的充要条件是 (A)线性相关(B)线性无关(C)秩秩(D)线性相关线性无关(5)设两个相互独立的随机变量和的方差分别为4和2,则随机变量的方差是(A)8 (B)16 (C)28 (D)44三、(本题共3小题,每小题5分,满分15分)(1)计算其中为平面曲线 绕轴旋转一周所成的曲面与平面所围成的区域.(2)计算曲线积分其中是曲线从轴正向往轴负向看的方向是顺时针的.111122232333,,,a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ααα1112223330,0,0a xb yc a x b y c a x b y c ++=++=++=220,1,2,3i i a b i +≠=123,,ααα123,,ααα123(,,)r =ααα12(,)r αα123,,ααα12,,ααX Y 32X Y -22(),I x y dv Ω=+⎰⎰⎰Ω220y zx ==z 8z =()()(),cz y dx x z dy x y dz -+-+-⎰Ñc 2212x y x y z +=-+=z z c(3)在某一人群中推广新技术是通过其中掌握新技术的人进行的,设该人群的总人数为在时刻已掌握新技术的人数为在任意时刻已掌握新技术的人数为将视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数求四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分)(1)设直线在平面上,而平面与曲面相切于点求之值.(2)设函数具有二阶连续导数,而满足方程求,N 0t =0,x t ()(x t ()x t 0,k >().x t :l 030x y b x ay z ++=+--=ππ22z x y =+(1,2,5),-,a b ()f u (e sin )xz f y =22222e ,x z zz x y∂∂+=∂∂().f u五、(本题满分6分)设连续且为常数),求并讨论在处的连续性.六、(本题满分8分) 设证明(1)存在.(2)级数收敛.()f x 10,()(),x f xt dt ϕ=⎰0()lim(x f x A A x→=()x ϕ'()x ϕ'0x =11110,()(1,2,),2n n na a a n a +==+=L lim n x a →∞11(1)nn n a a ∞=+-∑七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分)(1)设是秩为2的矩阵是齐次线性方程组的解向量,求的解空间的一个标准正交基.(2)已知是矩阵的一个特征向量. 1)试确定参数及特征向量所对应的特征值.2)问能否相似于对角阵?说明理由.八、(本题满分5分)设是阶可逆方阵,将的第行和第行对换后得到的矩阵记为 (1)证明可逆. (2)求B 54⨯123,[1,1,2,3],[1,1,4,1],[5,1,8,9]T T T ==--=--αααx =B 0x =B 0111⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ξ2125312a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A ,a b ξA A n A i j .B B 1.-AB九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设再各个交通岗遇到红灯的事件是相互独立的,并且概率都是设为途中遇到红灯的次数,求随机变量的分布律、分布函数和数学期望.十、(本题满分5分) 设总体的概率密度为其中是未知参数是来自总体的一个容量为的简单随机样本,分别用矩估计法和极大似然估计法求的估计量.2.5X X X ()f x =(1)0x θθ+01x <<其它1θ>-12,,,,n X X X L X n θ1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_____________.(2)设具有二阶连续导数,则=_____________.(3)设为椭圆其周长记为则=_____________. (4)设为阶矩阵为的伴随矩阵为阶单位矩阵.若有特征值则必有特征值_____________.(5)设平面区域由曲线及直线所围成,二维随机变量在区域上服从均匀分布,则关于的边缘概率密度在处的值为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设连续,则=(A) (B) (C)(D)(2)函数不可导点的个数是(A)3 (B)2 (C)1(D)0 (3)已知函数在任意点处的增量且当时是的高阶无穷小,,则等于(A) (B)(C)(D)22limx x →1()(),,z f xy y x y f x ϕϕ=++2z x y ∂∂∂l 221,43x y +=,a 22(234)Lxy x y ds ++⎰ÑA n *,0,≠A A A ,E n A ,λ*2()+A E D 1y x=20,1,e y x x ===(,)X Y D (,)X Y X 2x =()f x 220()xd tf x t dt dx -⎰2()xf x 2()xf x -22()xf x 22()xf x -23()(2)f x x x x x =---()y y x =x 2,1y xy x α∆∆=++0x ∆→,αx ∆(0)y π=(1)y 2ππ4e π4e ππ(4)设矩阵是满秩的,则直线与直线 (A)相交于一点(B)重合 (C)平行但不重合 (D)异面(5)设是两个随机事件,且则必有 (A)(B) (C)(D)三、(本题满分5分)求直线在平面上的投影直线的方程,并求绕轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数使在右半平面上的向量为某二元函数的梯度,并求111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦333121212x a y b z c a a b b c c ---==---111232323x a y b z c a a b b c c ---==---,A B 0()1,()0,(|)(|),P A P B P B A P B A <<>=(|)(|)P A B P A B =(|)(|)P A B P A B ≠()()()P AB P A P B =()()()P AB P A P B ≠11:111x y z l --==-:210x y z π-+-=0l 0l y ,λ0x >42242(,)2()()x y xy x y x x y λλ=+-+A i j (,)u x y (,).u x y五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度从海平面算起)与下沉速度之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为体积为海水密度为仪器所受的阻力与下沉速度成正比,比例系数为试建立与所满足的微分方程,并求出函数关系式六、(本题满分7分)计算其中为下半平面为大于零的常数.(yv,m,B,ρ(0).k k>y v().y y v=222212(),()axdydz z a dxdyx y z∑++++⎰⎰∑z=,a七、(本题满分6分)求八、(本题满分5分)设正向数列单调减少,且发散,试问级数是否收敛?并说明理由.2sin sin sin lim .1112x n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦L {}n a 1(1)nn n a ∞=-∑11()1nn n a ∞=+∑九、(本题满分6分)设是区间上的任一非负连续函数.(1)试证存在使得在区间上以为高的矩形面积,等于在区间上以为曲边的曲边梯形面积.(2)又设在区间内可导,且证明(1)中的是唯一的. 十、(本题满分6分)已知二次曲面方程可以经过正交变换化为椭圆柱面方程求的值和正交矩阵()y f x =[0,1]0(0,1),x ∈0[0,]x 0()f x 0[,1]x ()y f x =()f x (0,1)2()(),f x f x x'>-0x 2222224x ay z bxy xz yz +++++=x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 2244,ηξ+=,a b .P设是阶矩阵,若存在正整数使线性方程组有解向量且 证明:向量组是线性无关的.十二、(本题满分5分) 已知方程组(Ⅰ)的一个基础解析为试写出线性方程组(Ⅱ)的通解,并说明理由.A n ,k k x =A 0,α1.k -≠A α01,,,k -αA αA αL 1111221,222112222,221122,22000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=+++=+++=L L ML 11121,221222,212,2(,,,),(,,,),,(,,,).T T T n n n n n n b b b b b b b b b L L L L 1111221,222112222,221122,22000n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=+++=+++=L L ML设两个随机变量相互独立,且都服从均值为0、方差为的正态分布,求随机变量的方差.十四、(本题满分4分)从正态总体中抽取容量为的样本,如果要求其样本均值位于区间内的概率不小于0.95,问样本容量至少应取多大? 附:标准正态分布表,X Y 12X Y -2(3.4,6)N n (1.4,5.4)n 22()t zx dt -Φ=⎰设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70 分?并给出检验过程. 附:分布表t {()()}p P t n t n p ≤=1999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_____________. (2)=_____________. (3)的通解为=_____________.(4)设阶矩阵的元素全为1,则的个特征值是 _____________.(5)设两两相互独立的三事件和满足条件:且已知则=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设是连续函数是的原函数,则 (A)当是奇函数时必是偶函数(B)当是偶函数时必是奇函数(C)当是周期函数时必是周期函数 (D)当是单调增函数时必是单调增函数(2)设,其中是有界函数,则在处 (A)极限不存在 (B)极限存在,但不连续(C)连续,但不可导(D)可导(3)设, 其中 ,则等于(A) (B)(C) (D)(4)设是矩阵,是矩阵,则2011lim()tan x x x x →-20sin()xd x t dt dx -⎰24e x y y ''-=y n A A n ,A B C 1,()()(),2ABC P A P B P C =∅==<9(),16P A B C =U U ()P A ()f x ,()F x ()f x ()f x ,()F x ()f x ,()F x ()f x ,()F x ()f x ,()Fx 20()() 0x f x x g x x >=≤⎩()g x ()f x 0x = 01()122 12x x f x x x ≤≤⎧⎪=⎨-<<⎪⎩01()cos ,,2n n a S x a n x x π∞==+-∞<<+∞∑102()cos n a f x n xdx π=⎰(0,1,2,)n =L 5()2S -1212-3434-A m n ⨯B n m ⨯(A)当时,必有行列式(B)当时,必有行列式(C)当时,必有行列式(D)当时,必有行列式(5)设两个相互独立的随机变量和分别服从正态分布和,则(A)(B)(C)(D)三、(本题满分6分)设是由方程和所确定的函数,其中和分别具有一阶连续导数和一阶连续偏导数,求四、(本题满分5分)求其中为正的常数,为从点沿曲线的弧.m n>||0≠AB m n>||0=AB n m>||0≠AB n m>||0=ABX Y(0,1)N(1,1)N1{0}2P X Y+≤=1{1}2P X Y+≤=1{0}2P X Y-≤=1{1}2P X Y-≤=(),()y y x z z x==()z xf x y=+(,,)0F x y z=f F.dzdx(e sin())(e cos),x xLI y b x y dx y ax dy=-++-⎰,a b L(2,0)A ay=(0,0)O五、(本题满分6分)设函数二阶可导且过曲线上任意一点作该曲线的切线及轴的垂线,上述两直线与轴所围成的三角形的面积记为,区间上以为曲线的曲边梯形面积记为,并设恒为1,求曲线的方程.六、(本题满分7分) 论证:当时,()(0)y x x ≥()0,(0) 1.y x y '>=()y y x =(,)P x y x x 1S [0,]x ()y y x =2S 122S S -()y y x =0x >22(1)ln (1).x x x -≥-七、(本题满分6分)为清除井底的淤泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(见图).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s 的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克服重力需作多少焦耳的功? (说明:①1N 1m=1Jm,N,s,J 分别表示米,牛,秒,焦.②抓斗的高度及位于井口上方的缆绳长度忽略不计.)八、(本题满分7分)设为椭球面的上半部分,点为在点处的切平面,为点到平面的距离,求⨯S 222122x y z ++=(,,),P x y z S π∈S P (,,)x y z ρ(0,0,0)O π.(,,)SzdS x y z ρ⎰⎰九、(本题满分7分)设(1)求的值.(2)试证:对任意的常数级数收敛.十、(本题满分8分)设矩阵其行列式又的伴随矩阵有一个特征值,属于的一个特征向量为求和的值.40tan :n n a xdx π=⎰211()n n n a a n∞+=+∑0,λ>1nn a n λ∞=∑153,10ac b c a -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A ||1,=-A A *A 0λ0λ(1,1,1),T =--α,,a b c 0λ十一、(本题满分6分)设为阶实对称矩阵且正定,为实矩阵,为的转置矩阵,试证为正定矩阵的充分必要条件是的秩十二、(本题满分8分)设随机变量与相互独立,下表列出了二维随机变量联合分布率及关于和关于A mB m n ⨯T B B T B AB B ().r n =B X Y (,)X Y X十三、(本题满分6分)设的概率密度为,是取自总体的简单随机样本 (1)求的矩估计量.(2)求的方差X 36() 0< ()0 其它x x x f x θθθ⎧-<⎪=⎨⎪⎩12,,,n X X X L X θˆθˆθˆ().D θ。

相关文档
最新文档