高一年级数学学案(弧度制)
学案3:1.1.2 弧度制和弧度制与角度制的换算

1.1.2 弧度制和弧度制与角度制的换算学习目标(1)理解弧度的概念,能正确进行弧度与角度的互化;(2)熟记特殊角的弧度数;(3)熟悉在弧度制下,终边相同的角,象限角,轴上角的表示方式及其应用;(4)了解角的集合与实数集R之间可以建立一一对应的关系;(5)掌握在弧度制下的弧长公式和扇形的面积公式及应用.学习过程基础知识(1)把长度等于半径长的弧所对的________叫做1弧度的角,用符号________表示,读作________.(2)正角的弧度数是一个________,负角的弧度数是一个________,零角的弧度数是________.(3)如果半径为r的圆的圆心角α所对弧的长为l,那么角α的弧度数的绝对值是|α|=________.(4)换算公式1 =________rad≈0.01745rad,1rad=(________)°≈57.30°=57°18′.(5)弧长公式:l=________;扇形面积公式:S=________=________.其中α为圆心角的弧度数.弧度制的基本思想是使圆半径与圆周长有同一度量单位,然后用对应的弧长与圆半径之比来度量角度,弧度制的精髓就在于统一了度量弧与半径的单位,从而大大简化了有关公式及运算.1.注意弧度制与角度制与对应关系我们已经知道,圆上任意两点间的部分叫做圆弧,简称弧,所以弧又与圆心角有联系:弧的度数等于圆心角的度数.随着角的概念的推广,圆心角与弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角之分,弧也就有正弧、零弧、负弧之分;从“数”上讲,圆心角与弧的度数都有正数、0、负数之分.这样,圆心角、弧都被赋予了方向,每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反过来也对.这就是说,圆心角与弧是一一对应的.2.注意弧度制与实数的对应关系角的概念推广后,无论用角度制还是用弧度制,都能在角的集合与实数集R 之间建立一种一一对应的关系.对于角度制:说“每个角都有唯一的实数与它对应”时,这个实数可以取这个角可以取度数,或角度制下的分数,或角度制下的秒数,所以对应法则不是唯一的;但是对于弧度制:说“每个角都有唯一的实数与它对应”时,这个实数只可以取弧度数,即每一个角都有惟一的一个实数(弧度数)与之对应.反过来,不论是角度制,还是弧度制,每一个实数(可以弧度数,也可以是度数、分数、秒数)也都有惟一的一个角与它对应.3.注意角度制与弧度制之间的换算关系如果圆心角所对的弧长l =2πr (即弧是一个整圆),那么这个圆心角的弧度数1r =2πr r=2π,即一个周角的角度数为360︒=2π弧度,即180︒=π弧度,由此可得角度制与弧度制之间的换算公式:1︒=π180弧度≈0.0174,1弧度=180︒π≈57.30︒=57︒18'. 4.注意弧度制与角度制的单位区别弧度制是以“弧度”为单位度量角的制度,角度制是以“度”为单位度量角的制度;同时,不论是以“弧度”还是以“度”为单位的角的大小都是一个与半径大小无关的定值.5.注意弧度制与角度制的进位制区别分析角度制和弧度制下度量角的方法,我们看出,在用角度制表示角的时候,人们总是十进制、六十进制,不便于计算,而在用弧度表示角的时候,人们只用十进制,所以弧度制更容易找出与角对应的实数.另外,在弧长公式与扇形面积公式的表达上,弧度制下的公式远比角度制下的公式简单.6.注意弧度制与角度制在同一表达式混合使用由于有弧度制与角度制两种单位制,在表示与角时,若涉及到几项的和差形式,则要求所所有项选用的单位制必须一致,绝对不能出现k ·360°-π3(k ∈Z )或者2k π-60°(k ∈Z )一类的写法.例1.下列各命题中,假命题是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1度的角是周角的3601,1弧度的角是周角的12π C .根据弧度的定义,180°一定等于π弧度D .不论是用角度制还是用弧度制度量角,它们与圆的半径的长短有关例2.将下列各角化成2k π+α(k ∈Z ),且0≤α<2π的形式,并指出它们是第几象限角:(1)-1725°;(2)364π.课堂练习1.把-1125°化成α+2k π(0≤α<2π,k ∈Z )的形式是( )A .-π4 -6πB .7π4 -6πC .-π4 -8πD .7π4-8π 2.角α的终边落在区间(-3π,-52π)内,则角α所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.若2弧度的圆心角所对的弧长为4cm ,则这个圆心角所夹的扇形的面积是( )A .4 cm 2B .2 cm 2C .4πcm 2D .2πcm 24.已知扇形的周长是6cm ,面积是2cm 2,则扇形的中心角的弧度数是________.5.在直径为10cm 的轮上有一长为6cm 的弦,P 是该弦的中点,轮子以每秒5弧度的角速度旋转,求经过5秒钟后点P 转过的弧长.参考答案学习过程基础知识(1)圆心角,rad ,弧度;(2)正数,负数,0;(3)rl ; (4)π180,180π;(5)αr ,21lr ,21αr 2. 例1.D 【解析】角度制、弧度制是度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,又长度等于半径长的弧所对的圆心角称为1弧度的角,∴360︒=2πrad ,∴180︒=πrad ,故选D .例2.解:(1)∵-1725°=-5×360°+75°=-10π+125π, ∴-1725°与125π角的终边相同,又∵125π是第一象限角,∴-1725°是第一象限角; (2)∵364π=20π+34π,∴364π与34π角的终边相同, 又∵34π是第三象限角,∴364π是第三象限角. 课堂练习1.D【解析】-1125°=-1801125π=-425π=-π4 -6π=7π4 -8π; 2.C【解析】由于-3π=-4π+π,-52 π=-4π+23π,则区间(-3π,-52 π)表示的象限为第三象限,则角α所在象限是第三象限;3.A【解析】由于α=2,l =4,可得R =αl =2,则S =21αR 2=4. 4.1或4【解析】由扇形的弧长公式l =θ·r 和面积公式S =12θr 2知:2r +θr =6,12θr 2=2,联立后解得:θ=1或θ=4.5.解:∵轮子以每秒5弧度的角速度旋转,∴P 点在以O 为圆心、半径为OP =4cm 的圆上以同样的角速度在旋转,5秒钟转的弧度数为5×5=25 rad ,又r =4cm ,∴l =∣α∣·r =25×4=100(cm ).。
1.1.2弧度制(学生学案)

1 / 21.1.2弧度制(学生学案)例1:(课本P7例1)按照下列要求,把'6730︒化成弧度: (1) 精确值;精确到0.001的近似值. 变式训练1:将下列角度转化为弧度: (1)22°30′= (rad );(2)-210°=_____(rad );(3)1 200°= (rad ). 例2:(课本P7例2)将3.14rad 换算成角度(用度数表示,精确到0.001). 变式训练2:航海罗盘的圆周被分成32等份,把每一等份所对的圆心角的大小分别用度与弧度表示出来. 例3(课本P8例3).利用弧度制证明下列关于扇形的公式: (1)l R α=; (2)212S R α=; (3)12S lR =. 变式训练3:一个半径为R 的扇形,它的周长为4R ,则这扇形的面积为( ) A.2R 2 B.2 C. 12R 2 D.R 2 例4(课本P8例4).利用计算器比较sin1.5和sin85︒的大小. 变式训练4:5弧度的角所在的象限为( ) A.第一象限B.第二象限 C.第三象限 D.第四象限 课堂练习(课本P9练习NO :1;2;3;4;5) 【课时必记】 1、1弧度规定:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad 2、角度制与弧底制的互化: 10=180π弧度; 1弧度=(π180)0 (一般保留分数,不化简,除特殊要求精确数) 31.-300°化为弧度是( ) A.-43π B.-53π C.-74π D.-76π 2.下列转化结果错误的是( ) A.60°化成弧度是π3 B.-103π化成度是-600° C.-150°化成弧度是-76π D.π12化成度是15° 3.若α=-10,则α为( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π2,k ∈Z }的关系是( ) A.A =B B.A ⊆B C.B ⊆A D.以上都不对 5.下列与9π4的终边相同的角的表达式中,正确的是( ) A.2k π+45°(k ∈Z ) B.k ²360°+9π4(k ∈Z ) C.k ²360°-315°(k ∈Z ) D.k π+5π4(k ∈Z ) 6.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A.2 B.sin 2 C.2sin 1 D.2sin 1 7.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( ) A.-34π B.-2π C.π D.-π 8.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B =______________. 9.如果圆心角为2π3的扇形所对的弦长为23,则扇形的面积为________. 10.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________. 11. 如图所示,半径为1的圆的圆心位于坐标原点,点P 从点A (1,0)出发,依逆时针方向等速沿单位圆圆周旋转,已知P 点在1 s 内转过的角度为θ (0<θ<π),经过2 s 达到第三象限,经过14 s 后又回到了出发点A 处,求θ. 12.已知一扇形的圆心角是α,所在圆的半径是R . (1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积; (2)若扇形的周长是30,当α为多少弧度时,该扇形有最大面积?【课本作业】【课外完成】:1、(课本P9习题1.1 A组 NO:4)3、(课本P9习题1.1 A组 NO:6)4、(课本P9习题1.1 A组 NO:7)5、(课本P9习题1.1 A组 NO:8)B组:1、(课本P9习题1.1 B组 NO:2)2、(课本P9习题1.1 B组 NO:3)(直接做在书上)2 / 2。
高中数学人教A版必修第一册 学案与练习 弧度制

5.1.2 弧度制学习目标1.借助圆建立弧度制的概念,培养数学抽象、直观想象的核心素养.2.应用弧度制下的弧长公式和扇形的面积公式,培养逻辑推理和数学运算的核心素养.1.角的单位制及换算关系(1)角的单位制①角度制为1度的角,用度作为单位来度量角的单位制叫做角规定周角的1360度制.②弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度作为单位来度量角的单位制,叫做弧度制,它的单位符号是rad,读作弧度.③角的弧度数的求法在半径为r的圆中,弧长为l的弧所对的圆心角为α rad,那么|α|=l.r一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度与弧度的换算(3)一些特殊角与弧度数的对应关系2.弧度制下的弧长公式和扇形的面积公式角度与弧度的换算[例1] 将下列角度与弧度进行互化.(1)20°;(2)-800°;(3)7π12;(4)-11π5.解:(1)20°=20×π180 rad=π9rad.(2)-800°=-800×π180 rad=-40π9rad.(3)7π12 rad=712×180°=105°.(4)-11π5 rad=-115×180°=-396°.在进行角度与弧度的换算时,抓住关系式π rad=180°是关键,由它可以得到:度数×π180=弧度数,弧度数×(180π)°=度数.提醒:用弧度表示角,涉及π时,直接保留π,不要将π写成小数.针对训练1:将下列角度与弧度进行互化.(1)511π6;(2)-5π12;(3)10°;(4)-855°.解:(1)511π6 rad=5116×180°=15 330°.(2)-5π12 rad=-512×180°=-75°.(3)10°=10×π180=π18rad.(4)-855°=-855×π180=-19π4rad.弧度制的综合应用[例2] 在平面直角坐标系中,α=-2π3,β的终边与α的终边分别有如下关系时,求β.(1)若α,β的终边关于x 轴对称; (2)若α,β的终边关于y 轴对称; (3)若α,β的终边关于原点对称. 解:如图,在平面直角坐标系中,α=-2π3.(1)若α,β的终边关于x 轴对称,则{β|β=2π3+2k π,k ∈Z}.(2)若α,β的终边关于y 轴对称,则{β|β=-π3+2k π,k ∈Z}.(3)若α,β的终边关于原点对称,则{β|β=π3+2k π,k ∈Z}.(1)用弧度制表示终边相同的角2k π+α(k ∈Z)时,其中2k π是π的偶数倍,而不是整数倍.(2)在同一个式子中,角度与弧度不能混合用,必须保持单位统一,如α=2k π+30°,k ∈Z 是不正确的写法.针对训练2:若角β的终边落在直线y=-√33x 上,写出角β的集合;当β∈(-2π,2π)时,求角β.解:终边落在直线y=-√33x 上的角β组成的集合A={β|β=k π+5π6,k∈Z}.因为β∈(-2π,2π),则当k=-2,-1,0,1时,符合题意,所以β=-7π6,-π6,5π6,11π6.扇形的弧长公式和面积公式的应用[例3] 扇形AOB 的面积是4 cm 2,它的周长是10 cm ,求扇形的圆心角α的弧度数及弦AB 的长.解:设扇形弧长为l cm ,半径为r cm , 则由题意知{l +2r =10,12l ·r =4,解得{r =1,l =8或{r =4,l =2.当r=1,l=8时, α=lr =8>2π(舍去),所以r=4,l=2, 此时α=l r =12(rad).如图可知AB=2·r ·sin α2=2×4×sin 14=8sin 14(cm).扇形弧长公式及面积公式的应用类问题的解决方法首先,将角度转化为弧度表示,弧度制的引入使相关的弧长公式、扇形面积公式均得到了简化,所以解决这类问题时通常采用弧度制.一般地,在几何图形中研究的角,其范围是(0,2π);其次,利用α,l ,R ,S 四个量“知二求二”代入公式.在求解的过程中要注意 (1)看清角的度量制,选用相应的公式;(2)扇形的周长等于弧长加两个半径长,对于扇形周长或面积的最值问题,通常转化为某个函数的最值问题.针对训练3:已知扇形AOB 的周长为10 cm ,求该扇形的面积的最大值及取得最大值时圆心角的大小及弧长.解:设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为r ,面积为S ,由l+2r=10,得l=10-2r>0,所以0<r<5. S=12lr=12(10-2r)·r=5r-r 2=-(r-52)2+254,因为0<r<5,所以当r=52时,S 取得最大值254,这时l=10-2×52=5,所以θ=l r=552=2.故该扇形的面积的最大值为254cm 2,取得最大值时圆心角为2 rad ,弧长为5 cm.1.已知α=-2 rad ,则角α的终边在( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析:因为1 rad=(180π)°,所以α=-2 rad=-(360π)°≈-114.6°,故角α的终边在第三象限.故选C. 2.将300°化为弧度是( D )A.-π3B.7π6C.11π6D.5π3解析:300°=300×π180=5π3rad.故选D.3.设终边在y 轴的负半轴上的角的集合为M ,则( D ) A.M={α|α=3π2+k π,k ∈Z}B.M={α|α=3π2-kπ2,k ∈Z}C.M={α|α=-π2+k π,k ∈Z}D.M={α|α=-π2+2k π,k ∈Z}解析:在-π~π内,终边在y 轴的负半轴上的角为-π2,所以终边在y轴的负半轴上的角可以表示为{α|α=-π2+2k π,k ∈Z}.故选D.4.已知一个扇形的圆心角为30°,所对的弧长为π3,则该扇形的面积为( D ) A.π2540B.13C .π6D .π3解析:因为|α|=lr,所以r=l|α|=π3π6=2,所以该扇形的面积S=12lr=12×π3×2=π3.故选D.[例1] (多选题)下列说法正确的是( )A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1 rad 的角是周角的12πC.1 rad 的角比1°的角要大D.用弧度制度量角时,角的大小与圆的半径有关解析:对于A ,“度”与“弧度”是度量角的两种不同的度量单位,故选项A 正确;对于B ,周角为360°,所以1°的角就是周角的1360,周角为2π弧度,所以1 rad 的角是周角的12π,故选项B 正确; 对于C ,根据弧度制与角度制的互化,可得1 rad=(180π)°>1°,故选项C 正确;对于D ,用弧度制度量角时,角的大小与圆的半径是无关的,故选项D 错误. 故选ABC.[例2] (多选题)(2021·浙江绍兴期末)设扇形的圆心角为α,半径为r ,弧长为l ,面积为S ,周长为L ,则( ) A.若α,r 确定,则L ,S 唯一确定 B.若α,l 确定,则L ,S 唯一确定 C.若S ,L 确定,则α,r 唯一确定 D.若S ,l 确定,则α,r 唯一确定解析:由弧长公式得l=αr ,S=12lr=12αr 2,周长L=l+2r ,若α,r 确定,则l 确定,则L ,S 唯一确定,故A 正确; 若α,l 确定,则r 确定,则L ,S 唯一确定,故B 正确;若S ,L 确定,则{L =l +2r =αr +2r ,S =12αr 2,则α,r 不一定唯一确定,故C 错误;若S ,l 确定,则r 确定,则α唯一确定,故D 正确. 故选ABD.[例3] 如图所示,用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分的角的集合.解:(1)将阴影部分看成是由OA 逆时针转到OB 所形成, 故满足条件的角的集合为{α|3π4+2k π<α<4π3+2k π,k ∈Z}.(2)若将终边为OA 的一个角改写为-π6,此时阴影部分可以看成是OA逆时针旋转到OB 所形成,故满足条件的角的集合为{α|-π6+2k π<α<5π12+2k π,k ∈Z}.(3)将图中x 轴下方的阴影部分看成是由x 轴上方的阴影部分旋转π rad 而得到,故满足条件的角的集合为{α|k π≤α≤π2+k π,k ∈Z}.(4)将第二象限阴影部分旋转π rad 后可得到第四象限的阴影部分, 故满足条件的角的集合为{α|2π3+k π<α<5π6+k π,k ∈Z}.[例4] 已知α,β分别是第二象限角、第四象限角,试问:12(α+β)是第几象限角?12(β-α)呢?解:若α,β分别是第二象限角、第四象限角, 则2k π+π2<α<2k π+π,k ∈Z ,2t π-π2<β<2t π,t ∈Z ,则2(k+t)π<α+β<2(k+t)π+π,k ∈Z ,t ∈Z ,则(k+t)π<12(α+β)<(k+t)π+π2,k ∈Z ,t ∈Z ,则12(α+β)为第一或第三象限角.-2k π-π<-α<-2k π-π2,k ∈Z ,2(t-k)π-3π2<β-α<2(t-k)π-π2,k ∈Z ,t ∈Z ,则(t-k)π-3π4<12(β-α)<(t-k)π-π4,k ∈Z ,t ∈Z ,则12(β-α)位于第三象限或第四象限或y 轴的非正半轴,或者第一象限或第二象限或y 轴的非负半轴.选题明细表基础巩固1.(多选题)下列说法中,正确的是( ABC ) A.半圆所对的圆心角是π rad B.周角的大小等于2π radC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度解析:根据弧度的定义及角度与弧度的换算知A ,B ,C 均正确,D 中应为“长度等于半径长的圆弧,而不是弦”.故D 错误.故选ABC. 2.下列转化结果正确的是( D )A.60°化成弧度是π6radB.π12rad化成角度是30°C.1°化成弧度是180πradD.1 rad化成角度是(180π)°解析:对于A,60°化成弧度是π3rad,所以A错误;对于B,π12rad化成角度是15°,所以B错误;对于C,1°化成弧度是π180rad,所以C错误;对于D,1 rad化成角度是(180π)°,所以D正确.故选D.3.如果一个圆的半径变为原来的一半,而弧长变为原来的32倍,那么该弧所对的圆心角是原来的( D )A.12B.2倍 C.13D.3倍解析:设圆的半径为r,弧长为l,则该弧所对圆心角的弧度数为lr,若将半径变为原来的一半,弧长变为原来的32倍,则该弧所对圆心角的弧度数变为3 2 l1 2r=3·lr,即该弧所对的圆心角变为原来的3倍.故选D.4.3弧度的角终边在( B )A.第一象限B.第二象限C.第三象限D.第四象限解析:因为π2<3<π,所以3弧度的角终边在第二象限.故选B.5.若α是第三象限角,则3π2-α是第象限角.解析:因为α是第三象限角,则π+2kπ<α<3π2+2kπ,k∈Z,所以-3π2-2k π<-α<-π-2k π,k ∈Z ,则-2k π<3π2-α<π2-2k π,k ∈Z ,故在第一象限.答案:一6.一个半径为2的扇形,如果它的周长等于所在的半圆的弧长,那么扇形的圆心角是 弧度,扇形面积是 . 解析:由题意知r=2,l+2r=πr , 所以l=(π-2)r , 所以圆心角α=l r =(π-2)rr =(π-2)rad ,扇形面积S=12lr=12×(π-2)·r ·r=2(π-2)=2π-4. 答案:(π-2) 2π-4能力提升7.集合{α|k π+π4≤α≤k π+π2,k ∈Z}中角所表示的范围(阴影部分)是( C )解析:k 为偶数时,集合对应的区域为第一象限内直线y=x 左上部分(包含边界);k 为奇数时,集合对应的区域为第三象限内直线y=x 的右下部分(包含边界).故选C.8.中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是一幅书法扇面,其尺寸如图所示,则该扇面的面积为( A )A.704 cm 2B.352 cm 2C.1 408 cm 2D.320 cm 2解析:如图,设∠AOB=θ,OA=OB=r cm ,由弧长公式可得{24=rθ,64=(r +16)θ,解得r=485,所以S扇面=S扇形OCD-S扇形OAB=12×64×(485+16)-12×24×485=704(cm 2).故选A.9.(2021·安徽合肥高一期末)已知半径为r 的扇形OAB 的面积为1,周长为4,则r= .解析:由题意得S 扇=12lr=1,C 扇=2r+l=4,联立解得r=1.答案:110.已知角α=1 200°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限角;(2)在区间[-4π,π]内找出所有与角α终边相同的角. 解:(1)因为α=1 200°=1 200×π180=20π3=3×2π+2π3,所以角α与角2π3的终边相同,又因为π2<2π3<π,所以角α是第二象限角.(2)因为与角α终边相同的角(含角α)可表示为2π3+2k π(k ∈Z),且-4π≤2π3+2k π≤π(k ∈Z),所以-73≤k ≤16(k ∈Z),所以k=-2或k=-1或k=0,所以在区间[-4π,π]内与角α终边相同的角有-10π3,-4π3,2π3.11.已知扇形面积为4,当扇形圆心角为多少弧度时,扇形周长最小?并求出最小值.解:设圆心角是α,扇形半径是r , 则S=12αr ·r=12r 2α=4,所以r 2α=8.设扇形的周长为L ,则L=2r+r α≥2√2r ·rα=2×4=8, 当且仅当2r=r α,即α=2时,取“=”, 所以α=2时,该扇形的周长最小,最小值为8.应用创新12.《九章算术》是我国古代的数学巨著,其中《方田》章给出的计算弧田面积所用的经验公式为:弧田面积=12×(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,矢为2的弧田,按照上述方法计算出其面积是( A )A.2+4√3B.√3+12 C.2+8√3 D.4+8√3解析:如图,由题意可得∠AOB=2π3,在Rt△AOD中,∠AOD=π3,∠DAO=π6,所以OC=OA=2OD.结合题意可知矢=OC-OD=CD=2,则OD=2,半径OC=4,弦AB=2AD=2√16-4=4√3,所以弧田面积=12(弦×矢+矢2)=12(4√3×2+22)= 4√3+2.故选A.。
学案6:5.1.2 弧度制

5.1.2 弧度制[目标] 1.知道弧度制;2.记住1弧度的角的概念及弧长公式、扇形的面积公式;3.能进行弧度与角度的互化.[重点] 弧度与角度的互化.[难点] 1弧度角的概念的理解.【要点整合】知识点一 角的单位制[填一填](1)角度制⎩⎪⎨⎪⎧ 1度的角:规定周角的1360为1度的角.定义:用 作为单位来度量角的单位制.(2)弧度制⎩⎪⎨⎪⎧ 1弧度的角:长度等于半径长的弧所对的圆心角.记作: 或 .定义:用 作为单位来度量角的单位制.[答一答]1.扇形的圆心角的弧度数随弧长和半径的改变而变化吗?2.在半径不同的圆中,1度的角的大小是否相等?1弧度的角的大小是否相等?知识点二 任意角的弧度数与实数的对应关系 [填一填](1)正角:正角的弧度数是一个 .(2)负角:负角的弧度数是一个 .(3)零角:零角的弧度数是 .(4)如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=l r. [答一答]3.判断下列说法是否正确:(1)在弧度制下,角的集合与正实数集之间建立了一一对应关系.(2)每个弧度制的角,都有唯一的角度制的角与之对应.(3)用角度制和弧度制度量任一角,单位不同,量数也不同.4.角α=6这种表达方式正确吗?知识点三 角度与弧度的互化[填一填][答一答]5.在同一个式子中,角度制与弧度制能否混用?为什么?知识点四 弧度制下的弧长与扇形面积公式[填一填]扇形的半径为R ,弧长为l ,α(0<α<2π)为圆心角,则扇形弧长为l = ,周长为 ,扇形面积S =12lR =12αR 2.[答一答]6.角度制下的弧长公式和扇形面积公式是什么?与弧度制下的公式相比哪个更优化一些?【典例讲练】类型一 弧度制的概念[例1] 有关角的度量给出以下说法:①1°的角是周角的1360,1 rad 的角是周角的12π; ②1 rad 的角等于1度的角;③180°的角一定等于π rad 的角;④“度”和“弧度”是度量角的两种不同的度量单位.其中正确的说法是________.[通法提炼]解决概念辨析问题的关键是准确理解概念,如本题中要准确理解1弧度角的概念,知道角度制与弧度制的关系.[变式训练1] 下列说法中,错误的是( )A .半圆所对的圆心角是π radB .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度类型二 角度制与弧度制的互化命题视角1:角度制与弧度制的换算[例2] 将下列角度与弧度进行互化:(1)36°;(2)-112°30′;(3)7π12;(4)-11π5.[通法提炼]将角度转化为弧度时,在把带有分、秒的部分化为度之后,牢记π rad =180°即可求解.把弧度转化为角度时,直接用弧度数乘以⎝⎛⎭⎫180π°即可.[变式训练2] (1)-630°化为弧度为 ;(2)-78π= ; (3)α=-3 rad ,它是第 象限角.命题视角2:用弧度制表示终边相同的角[例3] (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π;(2)在[0,4π]中找出与2π5角终边相同的角.[通法提炼]用弧度表示的与角α终边相同的角的一般形式为β=α+2k πk ∈Z ,这些角所组成的集合为{β|β=α+2k π,k ∈Z }.[变式训练3] 将下列各角化成2k π+α(0≤α<2π,k ∈Z )的形式,并指出它们是第几象限角.(1) -1 725°;(2)870°.类型三 弧长公式与扇形面积公式[例4] (1)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin2 C.2sin1D .2sin1 (2)①已知扇形的周长为10 cm ,面积为4 cm 2,求扇形圆心角的弧度数.②已知一扇形的圆心角是72°,半径等于20 cm ,求扇形的面积.[通法提炼]涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程组求解.[变式训练4] 已知一扇形的周长为8 cm ,当它的半径和圆心角取什么值时,扇形的面积最大?并求出最大面积.【课堂达标】1.2 100°化成弧度是( )A.35π3 B .10π C.28π3 D.25π3 2.角-2912π的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.与角-π6终边相同的角是( ) A.5π6 B.π3 C.11π6 D.2π34.在半径为2的圆中,弧长为4的弧所对的圆心角的大小是 rad.5.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α的终边在第几象限;(2)求 γ角,使γ与α角的终边相同,且γ∈⎝⎛⎭⎫-π2,π2.【课堂小结】——本课须掌握的三大问题1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式.易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.【参考答案】【要点整合】知识点一角的单位制[填一填](1) 度(2) 1 rad1弧度弧度[答一答]1.提示:随着半径的变化,弧长也在变化,但对于一定大小的圆心角所对应的弧长与半径的比值是唯一确定的,与半径的大小无关.2.提示:1度的角等于周角的1360,该角的大小与圆的半径的大小没有关系,所以在不同的圆中,1度的角都是相等的.1弧度的角是长度等于半径长的弧所对的圆心角,所以该角的大小与圆的半径的大小没有关系,所以在不同的圆中,1弧度的角都是相等的.知识点二任意角的弧度数与实数的对应关系[填一填](1)正数(2)负数(3)0[答一答]3.答案:(1)(×) (2)(√) (3)(×)4.提示:正确.角α=6表示6弧度的角,这里将“弧度”省去了.知识点三 角度与弧度的互化[答一答]5.提示:不能.因为角度制和弧度制是表示角的两种不同的度量方法,两者有着本质的不同,因此在同一个表达式中不能出现两种度量方法的混用,如α=2k π+30°,k ∈Z 是不正确的写法,应写成α=2k π+π6,k ∈Z 或k ·360°+30°,k ∈Z . 知识点四 弧度制下的弧长与扇形面积公式[填一填]αRl +2R[答一答]6.提示:角度制下:弧长公式l =n πR 180,扇形面积公式S =n πR 2360. 运用弧度制下的弧长公式和扇形面积公式明显比角度制下的公式简单,但要注意它的前提是α为弧度制.【典例讲练】 类型一 弧度制的概念[例1][解析] 由弧度制的定义、弧度与角度的关系知,①③④均正确;因为1 rad =⎝⎛⎭⎫180π°≈57.30°≠1°,故②不正确.[答案] ①③④[变式训练1]答案:D解析:由弧度制的定义知D 说法错误.故选D.类型二 角度制与弧度制的互化命题视角1:角度制与弧度制的换算[例2][解] (1)36°=36×π180 rad =π5rad ; (2)-112°30′=-112.5°=-112.5×π180 rad =-5π8rad ; (3)7π12=⎝⎛⎭⎫7π12×180π°=⎝⎛⎭⎫712×180°=105°; (4)-11π5=⎝⎛⎭⎫-11π5×180π°=⎝⎛⎭⎫-115×180°=-396°. [变式训练2]答案:(1) -72π (2) -157°30′ (3) 三解析:(1)-630°=-630×π180=-72π. (2)-78π=-78π×⎝⎛⎭⎫180π°=-157°30′. (3)根据角度制与弧度制的换算,1 rad =⎝⎛⎭⎫180π°,则α=-3 rad =-⎝⎛⎭⎫540π°≈-171.9°. 分析可得,α是第三象限角.命题视角2:用弧度制表示终边相同的角[例3][解] (1)因为-1 480°=-1 480×π180 rad =-749π rad , 所以-749π=-10 π+169 π,其中α=169π. (2)因为25π=25×180°=72°, 所以终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z ), 当k =0时,θ=72°=2π5;当k =1时,θ=432°=12π5. 所以在[0,4π]中与2π5角终边相同的角为2π5,12π5. [变式训练3]解:(1)因为-1 725°=-5×360°+75°,所以-1 725°=-10π+5π12⎝⎛⎭⎫其中α=512π.所以-1 725°与5π12的终边相同,故-1 725°是第一象限角. (2)870°=296π=5π6+4π⎝⎛⎭⎫其中α=56π,角870°与5π6终边相同,故870°是第二象限角. 类型三 弧长公式与扇形面积公式[例4][答案] (1)C (2)见解析[解析] (1)如图,过点O 作OC ⊥AB 于C ,延长OC ,交于D ,则∠AOC =∠BOC =1 rad ,且AC =12AB =1. 在Rt △AOC 中,OA =1sin ∠AOC =1sin1. ∴圆心角所对的弧长l =α·OA =2sin1,故选C. (2)解:①设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为r ,依题意有⎩⎪⎨⎪⎧ l +2r =10,①12lr =4.② ①代入②得r 2-5r +4=0,解得r 1=1,r 2=4.当r =1时,l =8(cm),此时,θ=8 rad>2π rad(舍去).当r =4时,l =2(cm),此时,θ=24=12rad. ②设扇形弧长为l ,因为72°=72×π180=2π5(rad), 所以l =αR =2π5×20=8π(cm),所以S =12lR =12×8π×20=80π(cm 2). [答案] (1)C (2)见解析[变式训练4]解:设扇形的半径为r ,弧长为l ,则2r +l =8,l =8-2r , S =12lr =12r (8-2r )=-r 2+4r =-(r -2)2+4(0<r <4).当r =2时,S max =4 cm 2,此时l =4 cm ,α=2.所以当半径长为2 cm ,圆心角为2 rad 时,扇形的面积最大,最大值为4 cm 2.【课堂达标】1.答案:A解析:2 100°=2 100×π180=35π3. 2.答案:D解析:-2912π=-4π+1912π,1912π的终边位于第四象限,故选D. 3.答案:C解析:与角-π6终边相同的角的集合为{α|α=-π6+2k π,k ∈Z },当k =1时,α=-π6+2π=11π6,故选C.4.答案:2解析:根据弧度制的定义,知所求圆心角的大小为42=2 rad. 5.解:(1)∵-800°=-3×360°+280°,280°=14π9, ∴α=14π9+(-3)×2π,α角与14π9的终边相同,∴α是第四象限角. (2)∵与α角终边相同的角为2k π+α,k ∈Z ,α与14π9终边相同,∴γ=2k π+14π9,k ∈Z . 又∵γ∈⎝⎛⎭⎫-π2,π2,∴-π2<2k π+14π9<π2, 当k =-1时,不等式成立,∴γ=-2π+14π9=-4π9.。
1.1.2弧度制学案

1.1.2 弧度制一、【课前导学】 1.弧度角的定义:思考:圆的半径为r ,圆弧长为r π、2r 、3r 的弧所对的圆心角分别为多少?说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。
思考:弧度角π是什么?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?2.弧度的推广及角的弧度数的计算: 规定:说明:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。
3.角度与弧度的换算3602π=rad 180π=rad1801π=︒rad 0.01745≈rad 1rad =︒)180(π5718'≈5.在角度制下,弧长公式及扇形面积公式如何表示? 圆的半径为r ,圆心角为n 所对弧长为: 扇形面积为 :6.弧长公式:在弧度制下,弧长公式和扇形面积公式又如何表示? 二、【典例示范】例1 (1)'3067︒化成弧度.(2)35πrad 化成度。
例2 用弧度制分别表示轴线角、象限角的集合。
(1)终边落在x 轴的非正、非负半轴,y 轴的非正、非负半轴的角的集合。
(2)第一、二、三、四象限角的弧度表示。
OAB例3 将下列各角化为2(02,)k k Z πααπ+≤<∈的形式,并判断其所在象限。
(1)π319; (2)o 315-; (3)o 1485-.(练习)写出阴影部分的角的集合:例4 (1)已知扇形OAB 的圆心角α为120,半径6r =,求弧长AB 及扇形面积。
(2)已知扇形周长为20cm ,当扇形的中心角为多大时它有最大面积,最大面积是多少?例5 如图,扇形OAB 的面积是24cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长。
1502101.1.2 弧度制(作业)一、选择题 1.π43sin的值是( ). A . 22-B . 22C . 21-D . 212.一条弦长等于半径的21,则此弦所对圆心角( ). A .等于6π弧度 B .等于 3π弧度 C .等于21弧度 D .以上都不对 3.扇形的周长是16,圆心角是2弧度,则扇形面积是( ).A .B .C .16D .324.集合|,,|2,22A k k Z B k k Z ππααπααπ⎧⎫⎧⎫==+∈==±∈⎨⎬⎨⎬⎩⎭⎩⎭的关系是( ) (A )A B = (B )A B ⊆ (C )A B ⊇ (D )以上都不对5.已知集合{}{}|2(21),,|44A k k k Z B απαπαα=≤≤+∈=-≤≤,则A B =( )(A )φ (B ){}|44αα-≤≤(C ){}|0ααπ≤≤ (D ){|4ααπ-≤≤-或0}απ≤≤二、填空题6.把化为的形式是 . 7.圆的半径变为原来的12,而弧长不变,则该弧所对的圆心角是原来的 倍。
高中数学第册学案:弧度制含解析

5.1。
2弧度制【素养目标】1.掌握弧度与角度的互化,熟悉特殊角的弧度数.(数学运算) 2.掌握弧度制中扇形的弧长和面积公式及公式的简单应用.(数学运算)3.根据弧度制与角度制的互化以及弧度制条件下扇形的弧长和面积公式,体会引入弧度制的必要性.(逻辑推理)【学法解读】本节在学习中把抽象问题直观化,即借助扇形理解弧度概念,在学角度与弧度换算时巧借π=180°,学生可提升自己的数学抽象及数学运算的素养.必备知识·探新知基础知识知识点1 度量角的两种制度(1)角度制.①定义:用__度__作为单位来度量角的单位制.②1度的角:周角的__错误!__为1度角,记作1°。
(2)弧度制①定义:以__弧度__为单位来度量角的单位制.②1弧度的角:长度等于__半径长__的圆弧所对的圆心角叫做__1弧度__的角.③表示方法:1弧度记作1 rad.思考1:圆心角α所对应的弧长与半径的比值是否是唯一的确定的?提示:一定大小的圆心角α的弧度数是所对弧长与半径的比值,是唯一确定的,与半径大小无关.知识点2 弧度数一般地,正角的弧度数是一个__正__数,负角的弧度数是一个__负__数,零角的弧度数是__0__.如果半径为r的圆的圆心角α所对弧的长为l,那么角α的弧度数的绝对值是|α|=__lr__.思考2:(1)建立弧度制的意义是什么?(2)对于角度制和弧度制,在具体的应用中,两者可混用吗?如何书写才是规范的?提示:(1)在弧度制下,角的集合与实数R之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.(2)角度制与弧度制是两种不同的度量制度,在表示角时不能混用,例如α=k·360°+错误!(k∈Z),β=2kπ+60°(k∈Z)等写法都是不规范的,应写为α=k·360°+30°(k∈Z),β=2kπ+错误!(k ∈Z).知识点3 弧度与角度的换算公式(1)周角的弧度数是2π,而在角度制下的度数是360,于是360°=2π rad,即根据以上关系式就可以进行弧度与角度的换算了.弧度与角度的换算公式如下:若一个角的弧度数为α,角度数为n,则αrad=(错误!)°,n°=n·错误!rad.(2)常用特殊角的弧度数0°30°45°60°90°120°135°150°180°270°360°0__错误!____错误!____错误!__错误!__错误!____错误!____错误!__π__错误!____2π__(3)角的概念推广后,在弧度制下,角的集合与实数集R之间建立起__一一对应__关系:每一个角都有唯一的一个__实数__(即这个角的弧度数)与它对应;反过来,任一个实数也都有唯一的一个__角__(即弧度数等于这个实数的角)与它对应.思考3:(1)角度制与弧度制在进制上有何区别?(2)弧度数与角度数之间有何等量关系?提示:(1)角度制是六十进制,而弧度制是十进制的实数.(2)弧度数=角度数×错误!;角度数=弧度数×(错误!).知识点4 弧度制下的弧长公式与扇形面积公式(1)弧长公式在半径为r的圆中,弧长为l的弧所对的圆心角大小为α,则|α|=错误!,变形可得l=__|α|r__,此公式称为弧长公式,其中α的单位是弧度.(2)扇形面积公式由圆心角为1 rad的扇形面积为错误!=错误!r2,而弧长为l的扇形的圆心角大小为lr rad,故其面积为S=错误!×错误!=错误!lr,将l=|α|r代入上式可得S=错误!lr=错误!|α|r2,此公式称为扇形面积公式.思考4:(1)弧度制下弧长公式及扇形面积公式有哪些常用变形形式?(2)弧度制下的弧长公式及扇形面积公式可以解决哪些问题?体现了什么数学思想?提示:(1)①|α|=错误!;②R=错误!;③|α|=错误!;④R=错误!。
学案4:1.1.2 弧度制

1.1.2弧度制【课标要求】1.了解角的另外一种度量方法——弧度制.2.能进行弧度与角度的互化.3.掌握弧度制中扇形的弧长公式和面积公式.【核心扫描】1.对弧度制概念的理解.(难点)2.弧度制与角度制的互化.(重点、易错点)新知导学1.度量角的单位制(1)角度制用度作为单位来度量角的单位制叫做角度制,规定1度的角等于周角的1360.(2)弧度制①弧度制的定义长度等于的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制.②任意角的弧度数与实数的对应关系正角的弧度数是一个;负角的弧度数是一个;零角的弧度数是零.③角的弧度数的计算如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是|α|=l r.温馨提示:圆心角α所对的弧长与半径的比值lr与半径的大小无关,仅与角的大小有关.2.角度制与弧度制的换算(1)温馨提示:角度制与弧度制是两种不同的度量单位,两者之间可相互转化,并且角度与弧度是一一对应的关系.在表示角时,角度制与弧度制不能混用,在表达式中,要保持单位一致,防止出现π3+k ·180°或60°+2k π等这类错误的写法.3.扇形的弧长及面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则 温馨提示:扇形的面积公式S =12lR 与三角形的面积公式极为相似(把弧长看作底),可以类比记忆.在弧度制下的弧长公式、面积公式有诸多优越性,但如果已知角是以“度”的单位,则必须先化成弧度后再计算.互动探究探究点1 角α=2这种表达方式正确吗?探究点2 弧度制与角度制有何区别与联系?探究点3 如何用弧度制表示直角坐标系中的角?题型探究类型一 角度制与弧度制的换算 【例1】 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.[规律方法] (1)进行角度与弧度换算时,要抓住关系:π rad =180°.(2)熟记特殊角的度数与弧度数的对应值.【活学活用1】 (1)把112°30′化成弧度; (2)把-5π12化成度.类型二 用弧度制表示终边相同的角【例2】 (1)将-1 500°表示成2k π+α(0≤α<2π,k ∈Z )的形式,并指出它是第几象限角; (2)在0°~720°范围内,找出与角2π5终边相同的角.[规律方法] 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.【活学活用2】 设α1=-570°,α2=750°,β1=3π5,β2=-π3.(1)将α1,α2用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将β1,β2用角度制表示出来,并在-720°~0°范围内找出与它们终边相同的所有角.类型三 扇形的弧长及面积公式的应用【例3】 已知一个扇形的周长为a ,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.[规律方法] (1)联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.(2)当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数. 【活学活用3】 已知一个扇形的周长为8π9+4,圆心角为80°,求这个扇形的面积.易错辨析 角的度量单位不统一及角的大小不清楚【示例】 用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在如图所示的阴影部分内的角的集合(不包括边界).[错解] (1)330°+2k π<θ<75°+2k π(k ∈Z ),(2)225°+2k π<θ<135°+2k π(k ∈Z ).[错因分析] 在用角度或弧度表示角时,不要混用;此外,对于区域角,要注意旋转方向,并注意把结果写成集合的形式.[正解] (1)∵330°的终边也可看作-30°的终边,∴-30°=-π6,75°=5π12,∴⎩⎨⎧⎭⎬⎫θ⎪⎪-π6+2k π<θ<5π12+2k π,k ∈Z . (2)∵225°的终边也可看作-135°的终边,∴-135°=-3π4,135°=3π4,∴⎩⎨⎧⎭⎬⎫θ⎪⎪-3π4+2k π<θ<3π4+2k π,k ∈Z . [防范措施] 一定要使用统一的角的度量单位,另外要弄清角的大小,不要出现矛盾不等式.课堂达标1.下列说法中,错误的说法是( ). A .半圆所对的圆心角是π rad B .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度 2.α=-2,则α的终边在( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.-2312π rad 化为角度应为________.4.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.5.已知集合A ={α|2k π<α<π+2k π,k ∈Z },B ={α|-4≤α≤4},求A ∩B .课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单 位取弧度.参考答案新知导学1.(2)①半径长②正数负数2.角度制与弧度制的换算(1) 2π 360° π 180°(2) 90° 180°3.α·R互动探究探究点1提示正确.用弧度制表示角时,“弧度”二字或“rad”通常略去不写,角α=2就表示α是2 rad的角.探究点2提示(1)区别:①弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制.②1弧度的角是指等于半径长的弧所对的圆心角,而1度的角是指等于周角的1360的角,二者大小显然不同.③用弧度制表示角时,单位“弧度”两个字可以省略不写,但用角度制表示角时,单位“°”不能省略.(2)联系:无论是以“弧度”还是以“度”为单位,角的大小都是一个与“半径”大小无关的值.探究点3提示(1)利用弧度制表示终边落在坐标轴上的角的集合.(2)类型一 角度制与弧度制的换算 【例1】 【解】(1)20°=20π180=π9.(2)-15°=-15180π=-π12.(3)7π12=712×180°=105°. (4)-11π5=-115×180°=-396°.【活学活用1】 【解】(1)112°30′=⎝⎛⎭⎫2252°=2252×π180=5π8. (2)-5π12=-⎝⎛⎭⎫5π12×180π°=-75°. 类型二 用弧度制表示终边相同的角【例2】 【解】(1)-1 500°=-1 500×π180=-25π3=-10π+5π3.∵5π3是第四象限角,∴-1 500°是第四角限角. (2)∵2π5=25×180°=72°,∴终边与角2π5相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°,∴在0°~720°范围内,与2π5角终边相同的角为72°,432°.【活学活用2】 【解】(1)∵180°=π rad , ∴α1=-570°=-570π180=-19π6=-2×2π+5π6,α2=750°=750π180=25π6=2×2π+π6.∴α1的终边在第二象限,α2的终边在第一象限. (2)β1=3π5=35×180°=108°,设θ=108°+k ·360°(k ∈Z ),则由-720°≤θ<0°,即-720°≤108°+k ·360°<0°,得k =-2,或k =-1.故在-720°~0°范围内,与β1终边相同的角是-612°和-252°.β2=-π3=-60°,设γ=-60°+k ·360°(k ∈Z ),则由-720°≤-60°+k ·360°<0°,得k =-1,或k =0. 故在-720°~0°范围内,与β2终边相同的角是-420°.类型三 扇形的弧长及面积公式的应用【例3】 【解】设扇形的弧长为l ,半径为r ,圆心角为α,面积为S . 由已知,2r +l =a ,即l =a -2r . ∴S =12l ·r =12(a -2r )·r =-r 2+a 2r=-⎝⎛⎭⎫r -a 42+a 216. ∵r >0,l =a -2r >0,∴0<r <a 2,∴当r =a 4时,S max =a 216.此时,l =a -2·a 4=a2,∴α=lr=2.故当扇形的圆心角为2 rad 时,扇形的面积最大,为a 216.【活学活用3】【解】设扇形的半径为r ,面积为S ,由已知,扇形的圆心角为80×π180=4π9, ∴扇形的弧长为4π9r ,由已知,得4π9r +2r =8π9+4,∴r =2, ∴S =12·4π9r 2=8π9.故扇形的面积是8π9.课堂达标1.D【解析】根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误. 2.C【解析】1 rad≈57.30°,∴-2 rad≈-114.60°.故α的终边在第三象限. 3.-345°【解析】-2312π=-2312×180°=-345°.4.34【解析】由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .5.【解】∵A ={α|2k π<α<π+2k π,k ∈Z }, 令k =1,有2π<α<3π,而2π>4;令k=0,有0<α<π;令k=-1,有-2π<α<-π.而-2π<-4<-π,故A∩B={α|-4≤α<-π或0<α<π}.。
弧度制高中数学教案

弧度制高中数学教案主题:弧度制教学目标:1. 了解弧度的定义和计算方法;2. 掌握弧度和角度之间的转换关系;3. 能够运用弧度制解决实际问题。
教学重点:弧度的定义、计算方法和角度与弧度的转换关系。
教学难点:弧度制在实际问题中的应用。
教学准备:教师准备黑板、彩色粉笔、教具等。
教学过程:一、导入(5分钟)教师向学生提出一个问题:“角度制是我们常用的计量角度的单位,那么在数学中还有一种计量角度的单位叫做什么呢?”引出弧度的概念。
二、讲解弧度的定义和计算方法(15分钟)1. 弧度的定义:假设在单位圆上取一长度为r的弧所对的圆心角θ,那么这个圆心角所对的弧长就是这个圆心角的弧度数。
一个完整的圆周对应的角度是360度,对应的弧度是2π弧度。
2. 弧度的计算方法:弧度数 = 弧长 / 半径三、讲解角度与弧度的转换关系(10分钟)1. 角度与弧度的换算公式:1° = π/180 弧度2. 举例说明如何将角度转换为弧度,如何将弧度转换为角度。
四、练习与讨论(15分钟)让学生做几道练习题,巩固所学的知识,并带领学生讨论习题解法。
五、应用(10分钟)通过实际问题,引导学生运用弧度制解决实际问题,训练学生的应用能力。
六、小结(5分钟)回顾本节课所学内容,让学生总结弧度制的重点和难点。
七、作业布置(5分钟)布置相应的作业,以巩固所学内容。
拓展延伸:学生可以通过实际生活中的实际问题来练习弧度制的应用,如摆锤摆动问题、圆周运动问题等。
教学反思:通过引入弧度制这一新概念,激发学生的学习兴趣和求知欲。
同时,通过实际问题的运用,帮助学生更好地理解和掌握弧度的定义和计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.....中学高一年级数学学案编号: 编制人: 审核:归纳:把角从弧度化为度的方法是:___________
把角从度化为弧度的方法是:________________
知识点三:用弧度制表示终边相同的角
轴线角
(1)终边在x轴非负半轴上的角的集合________
_______________
(2)终边在x轴非正半轴上的角的的集合_______
_______________
(3)终边在y轴非负半轴上的角的集合 _______
______________
(4) 终边在y轴非正半轴上的角的集合 ______
______________
(5) 终边在x轴上的角的的集合
{}Z
k
k
S∈
=
=,
|
1
π
β
β
(6)终边在y轴上的角的集合
⎭
⎬
⎫
⎩
⎨
⎧
∈
+
=
=Z
k
k
S,
2
|
2
π
π
β
β
(7)终边在坐标轴上的角的集合
⎭
⎬
⎫
⎩
⎨
⎧
∈
=
=Z
k
k
S,
2
|
3
π
β
β
象限角
请你用弧度制表示第一、第二、第三、第四象限
角的集合。
终边相同的角
与α终边相同的角的集合______________
知识点四:弧长公式、扇形面积
公式
弧长公式:_____________________
扇形面积公式:_________________
三、例题解析
例1把下列各角从度化为弧度:
(1)0
252(2) 0
30
(2)—210º(3)1200º
例2填表
例3已知两角的和是1弧度,两角的差是
1 ,试求这两个角的大小。
例4在直径20cm的圆中,的圆心角
3
4π
所
对的弧长为___________cm.
一、学习目标:
1.了解弧度制,能进行弧度与角度的换算.
2.理解1弧度的角的意义;理解弧度制的定义,建立弧度制的概念。
重难点
重点:了解弧度制,并能进行弧度与角度的换算.
难点:弧度的概念及其与角度的关系. 二、知识及探究:
知识点一:角度制、弧度制的概念
初中几何研究过角的度量,当时是用度来做单位度量角的。
那么1 的角是如何定义的?
1.角度制:规定周角的
1
360
做为1 的
角。
这种用度作为单位来度量角的单位制叫作角度制。
我们把用度做单位来度量角的制度叫做角度制,有了它就可以计算弧长,公式为______________
2.弧度制
为了使用方便数学上还采用了另一种度量角的单位制:
1弧度的角:长度等于半径长的弧所对的圆心角。
弧度制:
定义:以弧度作为单位来度量角的单位制。
记法:用符号______表示,读作弧度。
r
r
r
1rad
如上图所示,
3.弧度数
正角的弧度是一个正数,负角的弧度是一个负数,零角的弧度是零。
思考1:角的弧度制与角的大小有关,与角所在圆的半径的大小是否有关?
思考2:角的弧度与角所在圆的半径、角所对的弧长有何关系?
角α的弧度数的绝对值是
r
|
|
l
=
α。
这里α的正负由角α的终边的旋转方向决定。
知识点二:角度与弧度的换算
3.角度制与弧度制如何换算?
π2
360=
radπ
=
180rad
180
1
π
=
︒rad 0.01745
≈rad
1rad=︒)
180
(
π
5718'
≈。