1.1.2弧度制学案

合集下载

学案7:1.1.2 弧度制

学案7:1.1.2 弧度制

1.1.2 弧度制【课前准备】1.课时目标(1)理解弧度的概念,能正确进行弧度与角度的互化;(2)熟记特殊角的弧度数;(3)熟悉在弧度制下,终边相同的角,象限角,轴上角的表示方式及其应用;(4)了解角的集合与实数集R 之间可以建立一一对应的关系;(5)掌握在弧度制下的弧长公式和扇形的面积公式及应用.2.基础预探(1)把长度等于半径长的弧所对的________叫做1弧度的角,用符号________表示,读作________.(2)正角的弧度数是一个________,负角的弧度数是一个________,零角的弧度数是________.(3)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=________.(4)换算公式1︒=________rad ≈0.01745rad ,1rad=(________)º≈57.30º=57º18′. 一般互化公式:π180︒=________. (5)弧长公式:l =________;扇形面积公式:S =________=________.其中α为圆心角的弧度数.【知识训练】1.若角α终边在第二象限,则π-α所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.半径为π cm ,中心角为120o 的弧长为( )A .31πcmB .31π2cmC .32πcmD .32π2cm 3.把-411π表示成θ+2kπ(k ∈Z )的形式,且使得|θ|最小的θ的值是________. 4.弧长为3π,圆心角为135º的扇形半径为 ;面积为________.5.集合M ={x |x =k π2+π4,k ∈Z },N ={x |x =k π4+π2,k ∈Z },则集合M 与N 的关系为________.6.设角α1=-570º,α2=750º,β1=53π弧度,β2=-37π弧度. (1)将α1、α2用弧度制表示出来,并指出它们各自所在象限;(2)将β1、β2用角度制表示出来,并在-720º~0º之间找出与它们有相同终边的所有角.【学习引领】弧度制的基本思想是使圆半径与圆周长有同一度量单位,然后用对应的弧长与圆半径之比来度量角度,弧度制的精髓就在于统一了度量弧与半径的单位,从而大大简化了有关公式及 运算.1.注意弧度制与角度制与对应关系我们已经知道,圆上任意两点间的部分叫做圆弧,简称弧,所以弧又与圆心角有联系:弧的度数等于圆心角的度数.随着角的概念的推广,圆心角与弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角之分,弧也就有正弧、零弧、负弧之分;从“数”上讲,圆心角与弧的度数都有正数、0、负数之分.这样,圆心角、弧都被赋予了方向,每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反过来也对.这就是说,圆心角与弧是一一对应的.2.注意弧度制与实数的对应关系角的概念推广后,无论用角度制还是用弧度制,都能在角的集合与实数集R 之间建立一种一一对应的关系.对于角度制:说“每个角都有唯一的实数与它对应”时,这个实数可以取这个角可以取度数,或角度制下的分数,或角度制下的秒数,所以对应法则不是唯一的;但是对于弧度制:说“每个角都有唯一的实数与它对应”时,这个实数只可以取弧度数,即每一个角都有惟一的一个实数(弧度数)与之对应.反过来,不论是角度制,还是弧度制,每一个实数(可以弧度数,也可以是度数、分数、秒数)也都有惟一的一个角与它对应.3.注意角度制与弧度制之间的换算关系如果圆心角所对的弧长l =2πr (即弧是一个整圆),那么这个圆心角的弧度数1r =2πr r=2π,即一个周角的角度数为360︒=2π弧度,即180︒=π弧度,由此可得角度制与弧度制之间的换算公式:1︒=π180弧度≈0.0174,1弧度=180︒π≈57.30︒=57︒18'. 4.注意弧度制与角度制的单位区别弧度制是以“弧度”为单位度量角的制度,角度制是以“度”为单位度量角的制度;同时,不论是以“弧度”还是以“度”为单位的角的大小都是一个与半径大小无关的定值.5.注意弧度制与角度制的进位制区别分析角度制和弧度制下度量角的方法,我们看出,在用角度制表示角的时候,人们总是十进制、六十进制,不便于计算,而在用弧度表示角的时候,人们只用十进制,所以弧度制更容易找出与角对应的实数.另外,在弧长公式与扇形面积公式的表达上,弧度制下的公式远比角度制下的公式简单.6.注意弧度制与角度制在同一表达式混合使用由于有弧度制与角度制两种单位制,在表示与角时,若涉及到几项的和差形式,则要求所所有项选用的单位制必须一致,绝对不能出现k ·360°-π3(k ∈Z )或者2k π-60°(k ∈Z )一类的写法.【典例导析】题型一:有关弧度的概念问题例1.下列各命题中,假命题是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1度的角是周角的3601,1弧度的角是周角的12πC .根据弧度的定义,180º一定等于π弧度D .不论是用角度制还是用弧度制度量角,它们与圆的半径的长短有关点评:本题主要考查了弧度了基本概念.对于概念类的题目,要从定义入手,仔细分析每一句话,并注意与概念叙述的异同点.变式练习1:下列诸命题中,真命题是( )A .1弧度是1︒的圆心角所对的弧B .1弧度是长度为半径的弧C .1弧度是1︒的弧与1︒的角之和D .1弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位题型二:弧度数与角度数的相互转换问题例2.将下列各角化成2k π+α(k ∈Z ),且0≤α<2π的形式,并指出它们是第几象限角:(1)-1725º;(2)364π.点评:用弧度制表示终边相同角2k π+α(k ∈Z )时,2k π是π的偶数倍,而不是整数倍.同时,α为弧度,不能写成2k π+( )º(k ∈Z )的形式.变式练习2:已知α=1690º,(1)把α写为2kπ+β,k ∈Z ,β∈[0,2π)的形式;(2)求θ,使θ与α的终边相同,且θ∈(-4π,-2π).题型三:单角与相关倍数角的象限判定问题例3.已知α是第二象限角,则3是第几象限角?点评:其实,对于单角与其他倍数角的关系的快捷正确判断,都可以利用先确定单角的取值范围,再利用其他倍数角的取值情况加以分类讨论,特别要注意分类讨论时取整数k 的取值的讨论.变式练习3:已知α是第二象限角,则2是第几象限角?题型四:有关扇形的公式问题例4.一个半径为r 的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少弧度?是多少度?扇形的面积是多少?点评:本题考查弧长公式及扇形面积公式的运用,考查弧度制下的弧长公式和扇形面积公式及应用,考查平面几何知识在三角问题中的应用.这里我们要注意的是在使用有关的公式时,圆心角的单位必须是弧度,如果是用角度表示的,则应先换算成弧度,再代入公式.变式练习4:一个扇形的周长等于它所在圆的周长,那么这个扇形的圆心角是多少?如果其半径等于2,那么它的面积等于多少?【随堂练习】1.把-1125°化成α+2k π(0≤α<2π,k ∈Z )的形式是( )A .-π4 -6πB . 7π4 -6πC .-π4 -8πD .7π4-8π 2.角α的终边落在区间(-3π,-52π)内,则角α所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.若2弧度的圆心角所对的弧长为4cm ,则这个圆心角所夹的扇形的面积是( )A .4 cm 2B .2 cm 2C .4πcm 2D .2πcm 24.已知扇形的周长是6cm ,面积是2cm 2,则扇形的中心角的弧度数是________.5.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于________.6.在直径为10cm 的轮上有一长为6cm 的弦,P 是该弦的中点,轮子以每秒5弧度的角速度旋转,求经过5秒钟后点P 转过的弧长.【课后作业】1.下列各角中与240°角终边相同的角为( )A .2π3B .-5π6C .-2π3D .7π62.一钟表的分针长10 cm ,经过35分钟,分针的端点所转过的长为( )A .70 cmB .670cmC .(25π-3cm D .35π3cm 3.已知圆上的一段弧长等于该圆的内接正方形的边长,则这段弧所对的圆周角的弧度数为________.4.半径为1的圆的圆心位于坐标原点,点P 从A (1,0)出发依逆时针方向等速沿圆周旋转,已知点P 在1秒内转过的角为θ(0<θ<π),经过2秒到达第三象限,经过14秒后,恰好回到A 点,则θ的值为________.5.已知π<α+β<4π3,-π<α-β<-π3,求2α-β的取值范围. 6.有两种正多边形,其中一正多边形的一内角的度数与另一正多边形的一内角的弧度数之比为144:π,求适合条件的正多边形的边数.参考答案【课前准备】2.基础预探(1)圆心角 rad 弧度(2)正数 负数 0(3)r l (4)π180 180π这个角的角度数这个角的弧度数 (5)αR21lR 21αR 2; 【知识训练】1. A【解析】取一个特殊角α=32π,则π-α=31π,其为第一象限角.2. D【解析】由于α=120o =32π,则l =αr =32π2.3. -3π4 【解析】由于-411π=-2π-3π4=-4π+5π4,那么满足条件的θ的值是-3π4. 4.4 6π【解析】弧长l =3π,圆心角α=3π4,由弧长公式l =α·r 得:r =l α=3π3π4=4,面积S =12lr =6π. 5.M ⊂≠N【解析】在M 中,x =2k +14π,其中2k +1是奇数,在N 中,x =k +24π,其中k +2是整数,所以M ⊂≠N ;或用列举法:M ={…,-π4,π4,3π4,5π4,…},N ={…,π4,π2,3π4,π,…},由此可知M ⊂≠N .6.【解】(1)∵180º=π弧度,∴-570º=-180570π=-619π,∴α1=-2×2π+65π, 同理α2=2×2π+61π,∴α1在第二象限,α2在第一象限; (2)∵53π=53×180º=108º,设θ=k ·360º+β1(k ∈Z ),由-720º≤θ<0º, ∴-720º≤k ·360º+108º <0º,∴ k =-2或k =-1,∴在-720º~0º间与β1有相同终边的角是-612º和-252º,同理β2=-37π=-360º-60º=-420º,且在-720º~0º间与β2终边相同的角是-420º和-60º. 【典例导析】例1:D【解析】角度制、弧度制是度量角的两种不同的方法,单位、进制不同,就象度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,又长度等于半径长的弧所对的圆心角称为1弧度的角,∴360︒=2π rad ,∴180︒=π rad ,故选择答案:D .变式练习1:D【解析】根据弧度的定义可以判断,1弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位.例2:【解】(1)∵-1725º=-5×360º+75º=-10π+125π, ∴-1725º与125π角的终边相同,又∵125π是第一象限角,∴-1725º是第一象限角; (2)∵364π=20π+34π,∴364π与34π角的终边相同,又∵34π是第三象限角,∴364π是第三象限角. 变式练习2:【解】(1)由于α的弧度数为π180×1690=169π18,∴169π18=8π+25π18, ∴α=4×2π+25π18(k =4,β=25π18); (2)由(1)可知-4π<2k π+25π18<-2π,k ∈Z ,得k =-2,θ=-4π+25π18=-47π18. 例3:【解】因为α是第二象限角,所以2k π+π2<α<2k π+π,k ∈Z , 即2π3k +π6<3α<2π3k +π3,k ∈Z , 当k =3n (n ∈Z )时,2n π+π6<3α<2n π+π3,n ∈Z ,即3α是第一象限角; 当k =3n +1(n ∈Z )时,2n π+5π6<3α<2n π+π,n ∈Z ,即3α是第二象限角; 当k =3n +2(n ∈Z )时,2n π+3π2<3α<2n π+5π3,n ∈Z ,即3α是第四象限角; 综上所述:3α是第一、二、四象限角. 变式练习3:【解】因为α是第二象限角,所以2k π+π2<α<2k π+π,k ∈Z , 即k π+π4<2α< k π+π2,k ∈Z , 当k =2n (n ∈Z )时,2n π+π4<2α<2n π+π2,n ∈Z ,即2α是第一象限角; 当k =2n +1(n ∈Z )时,2n π+5π4<2α<2n π+3π2,n ∈Z ,即2α是第三象限角; 综上所述:2α是第一或第三象限角. 例4:【解】设扇形的圆心角为θ rad ,∵扇形的弧长是rθ,∴扇形的周长是2r +rθ,由题意可知2r +rθ=πr ,∴θ=π-2(弧度)≈180°-2×57°18′≈65°24′,∴扇形的面积S =21r 2θ=21r 2(π-2). 变式练习4:【解】设扇形的半径为r ,圆心角为α,依题意有2r +rα=2πr ,即2+α=2π,所以α=(2π-2)弧度; 如果其半径等于2,那么它的面积S =12r 2α=12×2×(2π-2)=2π-2. 【随堂练习】1. D【解析】-1125°=-1801125π=-425π=-π4 -6π=7π4 -8π. 2. C 【解析】由于-3π=-4π+π,-52 π=-4π+23π,则区间(-3π,-52 π)表示的象限为第三象限,则角α所在象限是第三象限.3. A【解析】由于α=2,l =4,可得R =αl =2,则S =21αR 2=4.4.1或4【解析】由扇形的弧长公式l =θ·r 和面积公式S =12θr 2知:2r +θr =6,12θr 2=2,联立后解得:θ=1或θ=4.5.{α|-4≤α≤-π,或0≤α≤π}【解析】由数轴画图可知:对于集合A :当k =-1或k =0时,有-2π≤α≤-π或0≤α≤π,从而A ∩B ={α|-4≤α≤-π,或0≤α≤π}.6.【解】∵轮子以每秒5弧度的角速度旋转,∴P 点在以O 为圆心、半径为OP =4cm 的圆上以同样的角速度在旋转,5秒钟转的弧度数为5×5=25 rad ,又r =4cm ,∴l =∣α∣·r =25×4=100(cm ).【课后作业】1. C【解析】由于240°=4π3,则与240°角终边相同的角的集合为{α|α=2k π+4π3,k ∈Z },当k =-1时,得α=-2π3. 2. D【解析】由于α=6035×2π=7π6 ,R =10,可得l =αR =35π3. 3.22【解析】设圆内接正方形的边长为a ,圆的半径为R ,则2R =2a ,则圆弧所对的圆心角为α=a R =2,故所对的圆周角为22. 4.4π7或5π7【解析】∵0<θ<π,又有2θ∈(2k π+π,2k π+3π2)(k ∈Z ),∴k =0,于是π2<θ<3π4,又14θ=2n π(n ∈Z ),∴θ=n π7,π2<n π7<3π4,72<n <214,∴n =4或n =5,故θ=4π7或θ=5π7; 5.【解】设2α-β=A (α+β)+B (α-β)(A 、B 为待定系数),则2α-β=(A +B )α+(A -B )β,两边比较系数得:A +B =2,A -B =-1,解之得:A =12,B =-32, ∴2α-β=12(α+β)-32(α-β), 又π2<12(α+β)<2π3,-3π2<32(α-β)<-π2,即π2<-32(α-β)<3π2, ∴-π<12(α+β)-32(α-β)<π6,∴-π<2α-β<π6. 6.【解】设符合条件的正多边形的边数分别为m 、n (m 、n ≥3,且m 、n ∈N ), 则它们对应的正多边形的内角分别为m m ︒⋅-180)2(和nn π)2(-rad , 据题意:m m 180)2(-:2π(n )n-=144:π, ∴2π(n )n-×144=m m 180)2(-×π,∴4(1-n 2)=5(1-m 2),4-n 8=5-m 10,m 10=1+n 8,m 10=n n 8+,10m =8+n n ,m =10(1-88+n )=10-880+n , ∵m ∈N ,∴880+n 是自然数,n +8是80的约数,∵m ≥3,∴880+n ≤7,∴n +8≥780, 又n ≥3,且n +8是80的约数,∴n +8可取16、20、40、80,当n +8=16时,n =8,m =5; 当n +8=20时,n =12,m =6;当n +8=40时,n =32,m =8; 当n +8=80时,n =72,m =9;故所求的正多边形有四组,分别是:正五边形和正八边形;正六边形和正十二边形;正八边形和正三十二边形;正九边形和正七十二边形.。

人教a版必修4学案:1.1.2弧度制(含答案)

人教a版必修4学案:1.1.2弧度制(含答案)

1.1.2 弧度制自主学习知识梳理 1.角的单位制(1)角度制:规定周角的________为1度的角,用度作为单位来度量角的单位制叫做角度制.(2)弧度制:把长度等于__________的弧所对的圆心角叫做1弧度的角,记作________. (3)角的弧度数求法:如果半径为r 的圆的圆心角α所对的弧长为l ,那么l ,α,r 之间存在的关系是:__________;这里α的正负由角α的____________________决定.正角的弧度数是一个________,负角的弧度数是一个________,零角的弧度数是______.23.我们已经学习过角度制下的弧长公式和扇形面积公式,请根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α).对点讲练知识点一 角度制与弧度制的换算例1 (1)把112°30′化成弧度;(2)把-7π12化成角度.回顾归纳 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可解.把弧度转化为角度时,直接用弧度数乘以180°π即可.变式训练1 将下列角按要求转化: (1)300°=________rad ;(2)-22°30′=________rad ; (3)8π5=________度.知识点二 利用弧度制表示终边相同的角例2 把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:(1)-1 500°; (2)23π6; (3)-4.回顾归纳 在同一问题中,单位制度要统一.角度制与弧度制不能混用. 变式训练2 将-1 485°化为2k π+α (0≤α<2π,k ∈Z )的形式是________.知识点三 弧长、扇形面积的有关问题例3 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?回顾归纳 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.变式训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式.易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.课时作业一、选择题 1.与30°角终边相同的角的集合是( )A.⎩⎨⎧⎭⎬⎫α|α=k ·360°+π6,k ∈Z B .{α|α=2k π+30°,k ∈Z } C .{α|α=2k ·360°+30°,k ∈Z }D.⎩⎨⎧⎭⎬⎫α|α=2k π+π6,k ∈Z 2.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π2,k ∈Z }的关系是( )A .A =B B .A ⊆BC .B ⊆AD .以上都不对3.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2C.2sin 1D .2sin 1 4.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于( ) A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π}5.扇形圆心角为π3,半径长为a ,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9二、填空题6.若扇形圆心角为216°,弧长为30π,则扇形半径为________.7.若2π<α<4π,且α与-7π6角的终边垂直,则α=________.8.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=____________.三、解答题9.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图所示).10. 如右图,已知扇形OAB 的中心角为4,其面积为2 cm 2,求扇形的周长和弦AB 的长.1.1.2 弧度制答案知识梳理1.(1)1360 (2)半径长 1 rad(3)|α|=lr终边的旋转方向 正数 负数 0解 半径为r ,圆心角n °的扇形弧长公式为l =n πr180,扇形面积公式为S 扇=n πr2360.∵l 2πr =|α|2π,∴l =|α|r . ∵S 扇S 圆=S 扇πr 2=|α|2π,∴S 扇=12|α|r 2.∴S 扇=12|α|r 2=12lr .对点讲练例1 解 (1)∵112°30′=112.5°=⎝⎛⎭⎫2252° =2252×π180=5π8. (2)-7π12=-7π12×⎝⎛⎭⎫180π°=-105°.变式训练1 (1)5π3 (2)-π8(3)288例2 解 (1)∵-1 500°=-1 800°+300° =-5×360°+300°.∴-1 500°可化成-10π+5π3,是第四象限角.(2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角.(3)∵-4=-2π+(2π-4),∴-4与2π-4终边相同,是第二象限角.变式训练2 -10π+7π4解析 ∵-1 485°=-5×360°+315°,∴-1 485°可以表示为-10π+7π4.例3 解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r .∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.所以当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2. 变式训练3 解 设扇形的半径为R ,弧长为l ,则2R +l =4,∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad. 课时作业 1.D 2.A3.C [r =1sin 1,∴l =|α|r =2sin 1.]4.D [集合A 限制了角α终边只能落在x 轴上方或x 轴上.]5.B [设扇形的半径为R ,扇形内切圆半径为r ,则R =r +rsinπ6=r +2r =3r .∴S 内切=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切∶S 扇形=2∶3.] 6.25解析 216°=216×π180=6π5,l =30π=α·r =6π5r ,∴r =25.7.7π3或10π3解析 -7π6+7π2=14π6=7π3,-7π6+9π2=20π6=10π3. 8.-11π3,-5π3,π3,7π3解析 由题意,角α与π3终边相同,则π3+2π=7π3, π3-2π=-5π3,π3-4π=-11π3. 9.解 (1)⎩⎨⎧⎭⎬⎫α|2k π-π6≤α≤2k π+5π12,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α|2k π-34π≤α≤2k π+3π4,k ∈Z .(3)⎩⎨⎧⎭⎬⎫α|k π+π6≤α≤k π+π2,k ∈Z .10.解 设AB 的长为l ,半径OA =r ,则S 扇形=12lr =2,∴lr =4, ①设扇形的中心角∠AOB 的弧度数为α,则|α|=lr =4,∴l =4r , ② 由①、②解得r =1,l =4.∴扇形的周长为l +2r =6 (cm), 如图作OH ⊥AB 于H ,则AB =2AH =2r sin 2π-42=2r sin(π-2)=2r sin 2(cm).。

1.1.2弧度制(学生学案)

1.1.2弧度制(学生学案)

1 / 21.1.2弧度制(学生学案)例1:(课本P7例1)按照下列要求,把'6730︒化成弧度: (1) 精确值;精确到0.001的近似值. 变式训练1:将下列角度转化为弧度: (1)22°30′= (rad );(2)-210°=_____(rad );(3)1 200°= (rad ). 例2:(课本P7例2)将3.14rad 换算成角度(用度数表示,精确到0.001). 变式训练2:航海罗盘的圆周被分成32等份,把每一等份所对的圆心角的大小分别用度与弧度表示出来. 例3(课本P8例3).利用弧度制证明下列关于扇形的公式: (1)l R α=; (2)212S R α=; (3)12S lR =. 变式训练3:一个半径为R 的扇形,它的周长为4R ,则这扇形的面积为( ) A.2R 2 B.2 C. 12R 2 D.R 2 例4(课本P8例4).利用计算器比较sin1.5和sin85︒的大小. 变式训练4:5弧度的角所在的象限为( ) A.第一象限B.第二象限 C.第三象限 D.第四象限 课堂练习(课本P9练习NO :1;2;3;4;5) 【课时必记】 1、1弧度规定:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad 2、角度制与弧底制的互化: 10=180π弧度; 1弧度=(π180)0 (一般保留分数,不化简,除特殊要求精确数) 31.-300°化为弧度是( ) A.-43π B.-53π C.-74π D.-76π 2.下列转化结果错误的是( ) A.60°化成弧度是π3 B.-103π化成度是-600° C.-150°化成弧度是-76π D.π12化成度是15° 3.若α=-10,则α为( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π2,k ∈Z }的关系是( ) A.A =B B.A ⊆B C.B ⊆A D.以上都不对 5.下列与9π4的终边相同的角的表达式中,正确的是( ) A.2k π+45°(k ∈Z ) B.k ²360°+9π4(k ∈Z ) C.k ²360°-315°(k ∈Z ) D.k π+5π4(k ∈Z ) 6.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A.2 B.sin 2 C.2sin 1 D.2sin 1 7.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( ) A.-34π B.-2π C.π D.-π 8.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B =______________. 9.如果圆心角为2π3的扇形所对的弦长为23,则扇形的面积为________. 10.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________. 11. 如图所示,半径为1的圆的圆心位于坐标原点,点P 从点A (1,0)出发,依逆时针方向等速沿单位圆圆周旋转,已知P 点在1 s 内转过的角度为θ (0<θ<π),经过2 s 达到第三象限,经过14 s 后又回到了出发点A 处,求θ. 12.已知一扇形的圆心角是α,所在圆的半径是R . (1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积; (2)若扇形的周长是30,当α为多少弧度时,该扇形有最大面积?【课本作业】【课外完成】:1、(课本P9习题1.1 A组 NO:4)3、(课本P9习题1.1 A组 NO:6)4、(课本P9习题1.1 A组 NO:7)5、(课本P9习题1.1 A组 NO:8)B组:1、(课本P9习题1.1 B组 NO:2)2、(课本P9习题1.1 B组 NO:3)(直接做在书上)2 / 2。

学案10: 1.1.2 弧度制

学案10: 1.1.2 弧度制

1.1.2弧度制一、弧度制的概念1.角度制:规定周角的为1度的角,用度作为单位来度量角的单位制叫做角度制.2.弧度制:把长度等于长的弧所对的圆心角叫做1弧度的角,记作,用弧度作为角的单位来度量角的单位制称为弧度制.思考1:“1弧度的角”的大小和所在圆的半径大小有关系吗?二、角度制与弧度制的换算1.角度制与弧度制的换算正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0.思考2:角度制与弧度制之间如何进行换算?三、扇形的弧长公式及面积公式1.弧度制下的弧长公式:如图,l 是圆心角α所对的弧长,r 是半径,则圆心角α的弧度数的绝对值是|α|= ,弧长l = 特别地,当r =1时,弧长l = . 2.扇形面积公式:在弧度制中,若|α|≤2π,则半径为r ,圆心角为α的扇形的面积为S =|α|2π·πr 2= lr .初试身手1.思考辨析(1)大圆中1弧度角比小圆中1弧度角大.( ) (2)圆心角为1弧度的扇形的弧长都相等.( ) (3)长度等于半径的弦所对的圆心角是1弧度.( ) 2.将下列弧度与角度互换 (1)-2π9=________;(2)2=________; (3)72°=________; (4)-300°=________.3.半径为1,圆心角为2π3的扇形的弧长为________,面积为________.题型探究题型一 角度制与弧度制的互化【例1】 把下列弧度化成角度或角度化成弧度: (1)-450°;(2)π10;(3)-4π3;(4)112°30′.思路点拨:利用“180°=π”实现角度与弧度的互化. 规律方法角度制与弧度制换算的要点:提醒:度化弧度时,应先将分、秒化成度,再把度化成弧度. 跟踪训练1.将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.题型二 用弧度制表示角的集合【例2】 用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如图所示).思路点拨:先写出边界角的集合,再借助图形写出区域角的集合. 规律方法表示角的集合,单位制要统一,不能既含有角度又含有弧度,如在“α+2k πk ∈Z ”中,α必须是用弧度制表示的角,在“α+k ·360°k ∈Z ”中,α必须是用角度制表示的角. 提醒:用不等式表示区域角的范围时,要注意角的集合形式是否能够合并,这一点容易出错. 跟踪训练2.如图,用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界).① ②题型三 扇形的弧长及面积问题[探究问题]1.公式l=|α|r中,“α”可以为角度制角吗?2.在扇形的弧长l,半径r,圆心角α,面积S中,已知其中几个量可求其余量?举例说明.【例3】一个扇形的周长为20,则扇形的半径和圆心角各取什么值时,才能使扇形面积最大?思路点拨:设出扇形的圆心角、半径、弧长→用半径表示圆心角→求扇形面积→转化为二次函数求最值1.(变条件)本例条件变为“扇形圆心角是72°,半径等于20 cm”,求扇形的面积.2.(变结论)本例变为“扇形周长为10 cm,面积为4 cm2,求扇形圆心角的弧度数.”请解答.规律方法灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r的二次函数的最值问题.提醒:1在弧度制中的弧长公式及扇形面积公式中的圆心角可正可负.2看清角的度量制,选用相应的公式.3扇形的周长等于弧长加两个半径长.课堂小结1.本节课的重点是弧度与角度的换算、扇形的弧长公式和面积公式,难点是对弧度制概念的理解.2.本节要牢记弧度制与角度制的转化公式 (1)π=180°;(2)1°=π180 rad (3)1 rad =⎝⎛⎭⎫180π°. 3.本节课要重点掌握以下规律方法 (1)弧度制的概念辨析; (2)角度与弧度的换算;(3)扇形的弧长公式和面积公式的应用. 4.本节课的易错点表示终边相同角的集合时,角度与弧度不能混用.当堂检测1.将下列各角的弧度(角度)化为角度(弧度): (1)2π15=________;(2)-6π5=________; (3)920°=________;(4)-72°=________.2.若扇形的周长为4 cm ,面积为1 cm 2,则扇形的圆心角的弧度数是________. 3.用弧度制表示终边落在x 轴上方的角的集合为______. 4.设α1=-570°,α2=750°,β1=3π5,β2=-π3. (1)将α1,α2用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将β1,β2用角度制表示出来,并在[-720°,0°)范围内找出与它们终边相同的所有角.参考答案新知初探一、1.13602. 1 rad思考1:[提示] “1弧度的角”是一个定值,与所在圆的半径大小无关. 二、1. 2π 360° π 180° π180180π 3.正数 负数 0思考2: [提示] 利用1°=π180弧度和1弧度=⎝⎛⎭⎫180π°进行弧度与角度的换算.三、1.lr |α|r |α|.2.12初试身手1. (1)× (2)× (3)×2.(1)-40° (2)⎝⎛⎭⎫360π° (3)2π5 rad (4)-5π3 rad 【解析】(1)-2π9 rad =-29×180°=-40°.(2)2 rad =2×⎝⎛⎭⎫180π°=⎝⎛⎭⎫360π°. (3)72°=72×π180 rad =2π5rad.(4)-300°=-300×π180 rad =-5π3 rad.]3.2π3 π3【解析】∵α=2π3,r =1,∴弧长l =α·r =2π3,面积=12lr =12×2π3×1=π3.题型探究【例1】 [解] (1)-450°=-450×π180 rad =-5π2 rad ;(2)π10 rad =π10×⎝⎛⎭⎫180π°=18°; (3)-4π3 rad =-4π3×⎝⎛⎭⎫180π°=-240°;(4)112°30′=112.5°=112.5×π180 rad =5π8 rad.跟踪训练 1.[解] (1)20°=20π180 rad =π9rad. (2)-15°=-15π180 rad =-π12 rad.(3)7π12 rad =712×180°=105°. (4)-11π5 rad =-115×180°=-396°.【例2】 [解] 用弧度制先写出边界角,再按逆时针顺序写出区域角,(1)⎩⎨⎧⎭⎬⎫θ⎪⎪ -π6+2k π<θ<512π+2k π,k ∈Z . (2)⎩⎨⎧⎭⎬⎫θ⎪⎪ -3π4+2k π<θ<3π4+2k π,k ∈Z . (3)⎩⎨⎧⎭⎬⎫θ⎪⎪ π6+k π<θ<π2+k π,k ∈Z . 跟踪训练2.[解] (1)如题图①,以OA 为终边的角为π6+2k π(k ∈Z );以OB 为终边的角为-2π3+2k π(k∈Z ),所以阴影部分内的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪-2π3+2k π<α<π6+2k π,k ∈Z . (2)如题图②,以OA 为终边的角为π3+2k π(k ∈Z );以OB 为终边的角为2π3+2k π(k ∈Z ).不妨设右边阴影部分所表示的集合为M 1,左边阴影部分所表示的集合为M 2,则M 1=⎩⎨⎧⎭⎬⎫α⎪⎪ 2k π<α<π3+2k π,k ∈Z ,M 2=⎩⎨⎧⎭⎬⎫α⎪⎪2π3+2k π<α<π+2k π,k ∈Z . 所以阴影部分内的角的集合为M 1∪M 2=⎩⎨⎧⎭⎬⎫α⎪⎪2k π<α<π3+2k π或2π3+2k π<α<π+2k π,k ∈Z . [探究问题]1.提示:公式l =|α|r 中,“α”必须为弧度制角.2.提示:已知任意两个量可求其余两个量,如已知α,r ,可利用l =|α|r ,求l , 进而求S =12lr ;又如已知S ,α,可利用S =12|α|r 2,求r ,进而求l =|α|r .【例3】 [解] 设扇形的圆心角为α,半径为r ,弧长为l ,则l =αr ,依题意l +2r =20,即αr +2r =20,∴α=20-2rr.由l =20-2r >0及r >0得0<r <10,∴S 扇形=12αr 2=12·20-2r r ·r 2=(10-r )r =-(r -5)2+25(0<r <10).∴当r =5时,扇形面积最大为S =25.此时l =10,α=2, 故当扇形半径r =5,圆心角为2 rad 时,扇形面积最大.1. [解] 设扇形弧长为l ,因为72°=72×π180=2π5(rad),所以l =αr =2π5×20=8π(cm),所以S =12lr =12×8π×20=80π(cm 2).2. [解] 设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为r , 依题意有⎩⎪⎨⎪⎧l +2r =10, ①12lr =4. ②①代入②得r 2-5r +4=0, 解得r 1=1,r 2=4. 当r =1时,l =8(cm), 此时,θ=8 rad>2π rad(舍去).当r =4时,l =2(cm),此时,θ=24=12rad.1.(1)24° (2)-216° (3)469π rad(4)-2π5rad【解析】(1)2π15 rad =215×180°=24°.(2)-6π5 rad =-65×180°=-216°.(3)920°=920×π180 rad =469π rad.(4)-72°=-72×π180 rad =-2π5rad.2. 2 【解析】设扇形所在圆的半径为r cm ,扇形弧长为l cm. 由题意得⎩⎪⎨⎪⎧l +2r =4,12lr =1,解得⎩⎪⎨⎪⎧l =2,r =1.所以α=lr =2.因此扇形的圆心角的弧度数是2.3. {}α| 2k π<α<2k π+π,k ∈Z 【解析】若角α的终边落在x 轴的上方,则2k π<α<2k π+π,k ∈Z .4.[解] (1)∵180°=π rad ,∴α1=-570°=-570×π180=-19π6=-2×2π+5π6,α2=750°=750×π180=25π6=2×2π+π6.∴α1的终边在第二象限,α2的终边在第一象限. (2)β1=3π5=3π5×⎝⎛⎭⎫180π°=108°,设θ=108°+k ·360°(k ∈Z ),则由-720°≤θ<0°,即-720°≤108°+k ·360°<0°, 得k =-2,或k =-1.故在[-720°,0°)范围内,与β1终边相同的角是-612°和-252°. β2=-π3=-60°,设γ=-60°+k ·360°(k ∈Z ),则由-720°≤-60°+k ·360°<0°,得k =-1,或k =0. 故在[-720°,0°)范围内,与β2终边相同的角是-420°.。

高中数学 1.1.2弧度制 精品导学案

高中数学 1.1.2弧度制 精品导学案

第一章 §1.1.2 弧度制【学习目标】1.理解弧度制的意义,正确地进行弧度制与角度制的换算,熟记特殊角的弧度数. 2.了解角的集合与实数集R 之间可以建立起一一对应关系.3.掌握弧度制下的弧长公式、扇形面积公式,会利用弧度制、弧长公式、扇形面积公式解决某些简单的实际问题.【学习重点】理解弧度制的概念,能用弧度制表示角,并能进行角度与弧度的换算.【基础知识】1. 弧度制的定义:把长度等于半径长的弧所对的圆心角叫做1弧度,记做1rad. 2.角度制与弧度制的换算:∵ 360︒=2π rad, ∴180︒=π rad. ∴ 1︒=rad rad 01745.0180≈π.'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad .3.公式:α⋅=r l . 4扇形面积公式 lR S 21=,其中l 是扇形弧长,R 是圆的半径. 注意几点:1.在具体运算时,“弧度”二字和单位符号“rad ”可以省略,如:3表示3rad ,sin π表示πrad 角的正弦;角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 弧度角度 210° 225° 240° 270° 300° 315° 330° 360° 弧度3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系. 任意角的集合 实数集R【例题讲解】例1、把下列各角从度化为弧度:(1)0252 (2)0/1115 (3) 030 (4)'3067︒oR Sl正角 零角 负角正实数 零 负实数变式练习:把下列各角从度化为弧度:(1)22 º30′ (2)—210º (3)1200º例2、把下列各角从弧度化为度: (1)35π (2) 3.5 (3) 2 (4)4π变式练习:把下列各角从弧度化为度: (1)12π (2)—34π (3)103π例3 已知扇形的周长为8cm ,圆心角α为2rad ,,求该扇形的面积.【达标检测】1.若α=5 rad ,则角α的终边所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限2.终边在y 轴的非负半轴上的角的集合是( )A .{α|α=k π,k ∈Z }B .ππ+,2k k αα⎧⎫=∈⎨⎬⎩⎭ZC .{α|α=2k π,k ∈Z }D .π2π+,2k k αα⎧⎫=∈⎨⎬⎩⎭Z3.圆弧长度等于其圆内接正四边形的边长,则其圆心角的弧度数为( )B A .π4 B .π2 C .2 D .2 4.2π5化成角度为__________.5.在直径为20 cm 的圆中,圆心角为150°时所对的弧长为__________. 6.在ABC ∆中,若::3:5:7A B C ∠∠∠=,求A ,B ,C 弧度数。

学案5:1.1.2 弧度制和弧度制与角度制的换算

学案5:1.1.2 弧度制和弧度制与角度制的换算

1.1.2 弧度制和弧度制与角度制的换算课堂导学三点剖析一、弧度制的定义例1 如图所示,圆心角∠AOC所对的弧AC的长l分别为r,2r,2πr,4πr,如果圆心角表示正角,它的弧度数分别是多少?如果圆心角表示负角,它的弧度数又分别是多少?温馨提示(1)角的大小与圆的半径长短无关,仅与弧长与半径的比值有关;(2)一般地,正角的弧度数是一个正数.负角的弧度数是一个负数.零角的弧度数是零.各个击破类题演练1下列诸命题中,真命题是( )A.一弧度是一度的圆心角所对的弧B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位变式提升1下列四个命题中,不正确的一个是( ) A.半圆所对的圆心角是π rad B.周角的大小等于2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度 二、角度与弧度之间的互化 (1)将角度化成弧度: 360°=2π rad ;180°=π rad ; 1°=π180rad≈0.017 45 rad. (2)将弧度化成角度:2π rad=360°;π rad=180°; 1 rad=(180π)°≈57.30°=57°18′. (3)弧度制和角度制的互化是本节的重点,也是难点.互化的实质是一种比例关系:π180°=这个角的角度数这个角的弧度数,将要求的部分解出,再添上相应的单位即可.需记住特殊角的弧度数.(见教材,本书略) 例2 -300°化为弧度是( ) A.4π3-B.5π3-C.7π4-D.67-π 类题演练 2(1)将112°30′ 化为弧度; (2)将5π12- rad 化为度. 温馨提示弧度与角度互化,要牢记π rad=180°.时钟经过一小时,时针转过了( )A.π6rad B.π6-radC.π12-rad D.π12rad例3 设角α1=-570°,α2=750°,β1=3π5,β2=7π3-.(1)将α1,α2用弧度制表示出来,并指出它们各自所在的象限;(2)将β1,β2用角度制表示出来,并在-720°—0°之间找出它们有相同终边的所有角.类题演练3用弧度制表示顶点在原点,始边重合于x轴的非负半轴,终边落在阴影部分的角的集合.(如图所示)温馨提示(1)回答问题要弄清角的大小,防止出现矛盾不等式而造成混乱.(2)在表示角的集合时,一定要使用统一单位(统一制度).若集合A ={α|α=π2k -π5,k ∈Z },B ={α|-π<α<π},求A ∩B .三、弧长公式和扇形面积公式在弧度制下,弧长公式和扇形的面积公式分别为l =α·r ;S =21l ·r =21α·r 2. 在角度制下,弧长公式和扇形的面积公式分别为l =π180n r ;S =2π360n r .例4 解答下列各题: (1)求半径为2,圆心角为5π3的圆弧的长度. (2)在半径为6的圆中,求长度为6的弦和它所对的劣弧围成的弓形面积. (3)如图(1),在半径为10,圆心角为π3的扇形铁皮ADE 上,截去一个半径为4的小扇形ABC ,求留下部分环形的面积.类题演练 4已知扇形OAB 的圆心角α为120°,半径为6,求扇形弧长及所含弓形的面积.温馨提示弧长公式l =|α| ·r 以及扇形面积公式S =21lr 都是弧度制下的公式.因此,运用时必须把角度化成弧度. 变式提升 4已知一扇形的中心角是α,其所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积? 温馨提示用弧度制表示的弧长和扇形面积公式l =|α|·r 和S =21l ·r ,比角度制的求弧长和面积公式l =π180n r 和S =2π360n r 更简单,在实际中的应用也更广泛.参考答案课堂导学例1 解:从圆心角与弧度的关系出发,结合正角、负角的概念,分别求出各角的弧度数.当圆心角∠AOC 表示正角时,弧长l 为r ,2r ,2πr ,4πr 的圆心角∠AOC 的弧度数分别是1,2,2π,4π.当圆心角∠AOC表示负角时,弧长l为r,2r,2πr,4πr的圆心角∠AOC的弧度数分别是-1,-2,-2π,-4π.各个击破类题演练1【答案】D【解析】本题考查弧度制下,角的度量单位:1弧度的概念.根据一弧度的定义:我们把长度等于半径长的弧所对的圆心角叫做一弧度的角.对照各选项,可知D为真命题.变式提升1【答案】D【解析】本题考查弧度制下,角的度量单位:1弧度的概念.根据一弧度的定义:我们把长度等于半径长的弧所对的圆心角叫做一弧度的角.对照各选项,可知D不正确.例2 【答案】B【解析】∵1°=π180rad,∴-300°=5π3-rad.∴应选B.类题演练2解:(1)∵1°=π180rad,∴112°30′=π180×112.5 rad=5π8rad.(2)∵1 rad=(180π)°,∴5π12-rad=-(5π12rad×180π)°=-75°.变式提升2【答案】B【解析】由于时钟经过12小时转了-2π rad,所以时钟经过1小时转了π6-rad.例3 思路分析:运用弧度与角度的互化公式,用待定系数法去找一个k,α1,α2化为2kπ+α的形式,而β1,β2化为k·360°+α的形式(k∈Z).解:(1)∵180°=π rad,∴-570°=-570×π180=19π6-.∴α1=19π6-=-2×2π+5π6.同理,α2=2×2π+π6 .∴α1在第二象限,α2在第一象限.(2)∵β1=3π5=(3π5×180π°)=108°,设θ=k·360°+β1(k∈Z).由-720°≤θ<0°,∴-720°≤k·360°+108°<0°.∴k=-2或k=-1.∴在-720°—0°间与β1有相同终边的角是-612°和-252°.同理,β2=-360°-60°=-420°,且在-720°—0°间与β2有相同的终边的角是-420°和-60°.类题演练3解:先找准两个边界所对应的在0°—360°范围内的角.边界在第二象限对应的角为120°,边界在第三象限对应的角是225°.如上图所示,以OB为终边的角225°可看成-135°,化为弧度3π4-,而120°=2π3.∴终边落在阴影部分的角的集合为{θ|2kπ3π4-<θ<2kπ+2π3,k∈Z}.变式提升3解:由交集定义,知-π<π2k-π5<π,即-1<2k-51<1,∴51258<<-k . 由k ∈Z ,知k =-1,0,1,2. 当k =-1,0,1,2时,α=7ππ3π4π105105,,,--,故A ∩B ={7ππ3π4π105105,,,--}. 例4 解:(1)∵半径R =2,圆心角α=5π3, ∴弧长l =α·R =10π3. (2)如图(2)所示. ∵AB =6,OA =OB =6,∴∠AOB =π3. ∴扇形AOB 的面积S △AOB =21l ·R =21α·R 2=21×π3×62=6π. 又∵△AOB 是等边三角形, ∴S △AOB =43×62=39. ∴弓形面积S =6π-39.(3)∵圆心角α=60°=π3, ∴S 扇形ADE =21α·AD 2=50π3,S 扇形ABC =21α·AB 2=8π3.∴环形BCED 的面积为S =50π3-8π3=42π3=14π.类题演练 4 解:∵120°=120×π180=2π3,r =6,∴l =|α|r =2π3×6=4π.又∵S 扇形=21lr =21×4π×6=12π, S △AOB =21r 2sin 2π3=39,∴S 弓形=S 扇形-S △AOB =12π-39. 变式提升 4解:(1)设弧长为l ,弓形面积为S 弓形. ∵α=60°=π3,R =10 cm , ∴l =|α|R =10π3cm. ∴S 弓形=S 扇形-S △=21lR -21R 2sin α=21×10π3×10-21×102sin60°=50(π3-23) cm 2.(2)∵扇形周长C =2R +l =2R +|α|R ,∴R =α+2C. ∴S 扇=21αR 2=21α·(α+2C )2 =16424124412441222222C C C C =•+•≤++•=++•ααααααα, 当且仅当α=α4,即α=2(α=-2舍去)时,扇形面积最大,最大面积是162C .。

2024-2025学年高中数学第一章三角函数1.1.2弧度制(1)教学教案新人教A版必修4

2024-2025学年高中数学第一章三角函数1.1.2弧度制(1)教学教案新人教A版必修4
设计课堂互动环节,提高学生学习弧度制的积极性。
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入弧度制学习状态。
回顾旧知:
简要回顾上节课学习的角度制内容,帮助学生建立知识之间的联系。
提出问题,检查学生对角度制的掌握情况,为弧度制新课学习打下基础。
(三)新课呈现(预计用时:25分钟)
3. 学生可能遇到的困难和挑战:在学习了角度制后,学生可能对弧度制的概念和运用感到困惑,特别是在理解和转换弧度制与角度制时。此外,学生可能对弧度制在三角函数中的应用感到困难,特别是如何利用弧度制来表示和计算三角函数值。学生可能还需要加强对弧度制与角度制之间关系的直观想象,以更好地理解和运用这一概念。六、 Nhomakorabea学资源拓展
(一)拓展资源:
1. 弧度制在实际应用中的例子:
- 物理学科中,可以介绍弧度制在描述角速度、角加速度等方面的应用。
- 工程学科中,弧度制在测量角度、绘制曲线等方面的应用。
2. 数学软件资源:
- 介绍几何画板等软件,让学生学会用软件绘制弧度制的图形。
- 介绍MATLAB等软件,让学生学会用软件进行弧度制的计算。
(4)数学工具软件:教授学生使用数学工具软件,如几何画板、MATLAB等,进行弧度制的图形绘制和计算,提高学生的实践操作能力。
(5)互动环节:设置课堂互动环节,如提问、解答、游戏等,激发学生的学习兴趣,提高学生的参与度和积极性。
(6)课后辅导:提供课后在线辅导,解答学生疑问,及时了解学生的学习情况,针对性地进行教学调整。
在教学反思中,我发现自己在课堂导入和知识讲解环节做得比较好,能够有效地激发学生的兴趣和引导学生深入思考。但在互动探究和技能训练环节,我发现自己在组织学生讨论和指导学生实践方面还有待提高,需要进一步加强对学生的引导和鼓励。此外,我在板书设计方面也有所欠缺,需要更加简洁明了地展示教学内容,方便学生理解和记忆。

学案4:1.1.2 弧度制

学案4:1.1.2 弧度制

1.1.2弧度制【课标要求】1.了解角的另外一种度量方法——弧度制.2.能进行弧度与角度的互化.3.掌握弧度制中扇形的弧长公式和面积公式.【核心扫描】1.对弧度制概念的理解.(难点)2.弧度制与角度制的互化.(重点、易错点)新知导学1.度量角的单位制(1)角度制用度作为单位来度量角的单位制叫做角度制,规定1度的角等于周角的1360.(2)弧度制①弧度制的定义长度等于的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制.②任意角的弧度数与实数的对应关系正角的弧度数是一个;负角的弧度数是一个;零角的弧度数是零.③角的弧度数的计算如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是|α|=l r.温馨提示:圆心角α所对的弧长与半径的比值lr与半径的大小无关,仅与角的大小有关.2.角度制与弧度制的换算(1)温馨提示:角度制与弧度制是两种不同的度量单位,两者之间可相互转化,并且角度与弧度是一一对应的关系.在表示角时,角度制与弧度制不能混用,在表达式中,要保持单位一致,防止出现π3+k ·180°或60°+2k π等这类错误的写法.3.扇形的弧长及面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则 温馨提示:扇形的面积公式S =12lR 与三角形的面积公式极为相似(把弧长看作底),可以类比记忆.在弧度制下的弧长公式、面积公式有诸多优越性,但如果已知角是以“度”的单位,则必须先化成弧度后再计算.互动探究探究点1 角α=2这种表达方式正确吗?探究点2 弧度制与角度制有何区别与联系?探究点3 如何用弧度制表示直角坐标系中的角?题型探究类型一 角度制与弧度制的换算 【例1】 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.[规律方法] (1)进行角度与弧度换算时,要抓住关系:π rad =180°.(2)熟记特殊角的度数与弧度数的对应值.【活学活用1】 (1)把112°30′化成弧度; (2)把-5π12化成度.类型二 用弧度制表示终边相同的角【例2】 (1)将-1 500°表示成2k π+α(0≤α<2π,k ∈Z )的形式,并指出它是第几象限角; (2)在0°~720°范围内,找出与角2π5终边相同的角.[规律方法] 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.【活学活用2】 设α1=-570°,α2=750°,β1=3π5,β2=-π3.(1)将α1,α2用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将β1,β2用角度制表示出来,并在-720°~0°范围内找出与它们终边相同的所有角.类型三 扇形的弧长及面积公式的应用【例3】 已知一个扇形的周长为a ,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.[规律方法] (1)联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.(2)当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数. 【活学活用3】 已知一个扇形的周长为8π9+4,圆心角为80°,求这个扇形的面积.易错辨析 角的度量单位不统一及角的大小不清楚【示例】 用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在如图所示的阴影部分内的角的集合(不包括边界).[错解] (1)330°+2k π<θ<75°+2k π(k ∈Z ),(2)225°+2k π<θ<135°+2k π(k ∈Z ).[错因分析] 在用角度或弧度表示角时,不要混用;此外,对于区域角,要注意旋转方向,并注意把结果写成集合的形式.[正解] (1)∵330°的终边也可看作-30°的终边,∴-30°=-π6,75°=5π12,∴⎩⎨⎧⎭⎬⎫θ⎪⎪-π6+2k π<θ<5π12+2k π,k ∈Z . (2)∵225°的终边也可看作-135°的终边,∴-135°=-3π4,135°=3π4,∴⎩⎨⎧⎭⎬⎫θ⎪⎪-3π4+2k π<θ<3π4+2k π,k ∈Z . [防范措施] 一定要使用统一的角的度量单位,另外要弄清角的大小,不要出现矛盾不等式.课堂达标1.下列说法中,错误的说法是( ). A .半圆所对的圆心角是π rad B .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度 2.α=-2,则α的终边在( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.-2312π rad 化为角度应为________.4.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.5.已知集合A ={α|2k π<α<π+2k π,k ∈Z },B ={α|-4≤α≤4},求A ∩B .课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单 位取弧度.参考答案新知导学1.(2)①半径长②正数负数2.角度制与弧度制的换算(1) 2π 360° π 180°(2) 90° 180°3.α·R互动探究探究点1提示正确.用弧度制表示角时,“弧度”二字或“rad”通常略去不写,角α=2就表示α是2 rad的角.探究点2提示(1)区别:①弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制.②1弧度的角是指等于半径长的弧所对的圆心角,而1度的角是指等于周角的1360的角,二者大小显然不同.③用弧度制表示角时,单位“弧度”两个字可以省略不写,但用角度制表示角时,单位“°”不能省略.(2)联系:无论是以“弧度”还是以“度”为单位,角的大小都是一个与“半径”大小无关的值.探究点3提示(1)利用弧度制表示终边落在坐标轴上的角的集合.(2)类型一 角度制与弧度制的换算 【例1】 【解】(1)20°=20π180=π9.(2)-15°=-15180π=-π12.(3)7π12=712×180°=105°. (4)-11π5=-115×180°=-396°.【活学活用1】 【解】(1)112°30′=⎝⎛⎭⎫2252°=2252×π180=5π8. (2)-5π12=-⎝⎛⎭⎫5π12×180π°=-75°. 类型二 用弧度制表示终边相同的角【例2】 【解】(1)-1 500°=-1 500×π180=-25π3=-10π+5π3.∵5π3是第四象限角,∴-1 500°是第四角限角. (2)∵2π5=25×180°=72°,∴终边与角2π5相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°,∴在0°~720°范围内,与2π5角终边相同的角为72°,432°.【活学活用2】 【解】(1)∵180°=π rad , ∴α1=-570°=-570π180=-19π6=-2×2π+5π6,α2=750°=750π180=25π6=2×2π+π6.∴α1的终边在第二象限,α2的终边在第一象限. (2)β1=3π5=35×180°=108°,设θ=108°+k ·360°(k ∈Z ),则由-720°≤θ<0°,即-720°≤108°+k ·360°<0°,得k =-2,或k =-1.故在-720°~0°范围内,与β1终边相同的角是-612°和-252°.β2=-π3=-60°,设γ=-60°+k ·360°(k ∈Z ),则由-720°≤-60°+k ·360°<0°,得k =-1,或k =0. 故在-720°~0°范围内,与β2终边相同的角是-420°.类型三 扇形的弧长及面积公式的应用【例3】 【解】设扇形的弧长为l ,半径为r ,圆心角为α,面积为S . 由已知,2r +l =a ,即l =a -2r . ∴S =12l ·r =12(a -2r )·r =-r 2+a 2r=-⎝⎛⎭⎫r -a 42+a 216. ∵r >0,l =a -2r >0,∴0<r <a 2,∴当r =a 4时,S max =a 216.此时,l =a -2·a 4=a2,∴α=lr=2.故当扇形的圆心角为2 rad 时,扇形的面积最大,为a 216.【活学活用3】【解】设扇形的半径为r ,面积为S ,由已知,扇形的圆心角为80×π180=4π9, ∴扇形的弧长为4π9r ,由已知,得4π9r +2r =8π9+4,∴r =2, ∴S =12·4π9r 2=8π9.故扇形的面积是8π9.课堂达标1.D【解析】根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误. 2.C【解析】1 rad≈57.30°,∴-2 rad≈-114.60°.故α的终边在第三象限. 3.-345°【解析】-2312π=-2312×180°=-345°.4.34【解析】由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .5.【解】∵A ={α|2k π<α<π+2k π,k ∈Z }, 令k =1,有2π<α<3π,而2π>4;令k=0,有0<α<π;令k=-1,有-2π<α<-π.而-2π<-4<-π,故A∩B={α|-4≤α<-π或0<α<π}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 弧度制
一、【课前导学】 1.弧度角的定义:
思考:圆的半径为r ,圆弧长为r π、2r 、3r 的弧所对的圆心角分别为多少?
说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。

思考:弧度角π是什么?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?
2.弧度的推广及角的弧度数的计算: 规定:
说明:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的
度量。

3.角度与弧度的换算
3602π=rad 180π=rad
180

=
︒rad 0.01745≈rad 1rad =︒)180
(
π
5718'≈
5.在角度制下,弧长公式及扇形面积公式如何表示? 圆的半径为r ,圆心角为n 所对弧长为: 扇形面积为 :
6.弧长公式:
在弧度制下,弧长公式和扇形面积公式又如何表示? 二、【典例示范】
例1 (1)'3067︒化成弧度.
(2)35
πrad 化成度。

例2 用弧度制分别表示轴线角、象限角的集合。

(1)终边落在x 轴的非正、非负半轴,y 轴的非正、非负半轴的角的集合。

(2)第一、二、三、四象限角的弧度表示。

O
A
B
例3 将下列各角化为2(02,)k k Z πααπ+≤<∈的形式,并判断其所在象限。

(1)π3
19
; (2)o 315-; (3)o 1485-.
(练习)写出阴影部分的角的集合:
例4 (1)已知扇形OAB 的圆心角α为120,半径6r =,求弧长AB 及扇形面积。

(2)已知扇形周长为20cm ,当扇形的中心角为多大时它有最大面积,最大面积是多少?
例5 如图,扇形OAB 的面积是2
4cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长。

150
210
1.1.2 弧度制(作业)
一、选择题 1.π4
3
sin
的值是( ). A . 22
-
B . 2
2
C . 21-
D . 21
2.一条弦长等于半径的
2
1
,则此弦所对圆心角( ). A .等于
6π弧度 B .等于 3
π
弧度 C .等于
2
1
弧度 D .以上都不对 3.扇形的周长是16,圆心角是2弧度,则扇形面积是( ).
A .
B .
C .16
D .32
4.集合|,,|2,22A k k Z B k k Z ππααπααπ⎧⎫⎧⎫==+∈==±∈⎨⎬⎨⎬⎩⎭⎩⎭
的关系是( ) (A )A B = (B )A B ⊆ (C )A B ⊇ (D )以上都不对
5.已知集合{}{}|2(21),,|44A k k k Z B απαπαα=≤≤+∈=-≤≤,则A B =( )
(A )φ (B ){}|44αα-≤≤
(C ){}|0ααπ≤≤ (D ){|4ααπ-≤≤-或0}απ≤≤
二、填空题
6.把
化为
的形式是 . 7.圆的半径变为原来的
1
2
,而弧长不变,则该弧所对的圆心角是原来的 倍。

8.若2弧度的圆心角所对的弧长是4cm ,则这个圆心角所在的扇形面积是 .
9.在以原点为圆心,半径为1的单位圆中,一条弦AB AB 所对的圆心角α的弧度数为 .
10. 3弧度的角的终边在第_____________象限,7弧度的角的终边在第_____________象限.
三、解答题
11.在半径为 的圆中,扇形的周长等于半圆的长,那么扇形的圆心角是多少度?扇形的 面积是多少?
12.(1)写出所有与
π12
73
角终边相同的角的集合; (2)求不等式)(212730Z k k ∈<+<
πππ的整数解,并在π2~0范围内求出与π12
73
角终边相同的角。

13.扇形 的面积为
,它的周长为
,求扇形圆心角的弧度数及弦长

14.一扇形周长是
,扇形的圆心角为多少弧度时,这个扇形的面积最大?最大面积
是多少?。

相关文档
最新文档