11静电场习题思考题

合集下载

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(完整版)

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(完整版)
ห้องสมุดไป่ตู้
1、 在地球表面上某处电子受到的电场力与它本身的重量相等, 求该处的电场强度 (已知电 子质量 m=9.1×10-31kg,电荷为-e=-1.610-19C). 解: 2、 电子所带的电荷量(基本电荷-e)最先是由密立根通过油滴实验测出的。密立根设计的 实验装置如图所示。一个很小的带电油滴在电场 E 内。调节 E,使作用在油滴上的电场力与 油滴的重量平衡。如果油滴的半径为 1.64×10-4cm,在平衡时,E=1.92×105N/C。求油滴上 的电荷(已知油的密度为 0.851g/cm3) 解: 3、 在早期(1911 年)的一连串实验中,密立根在不同时刻观察单个油滴上呈现的电荷, 其测量结果(绝对值)如下: 6.568×10-19 库仑 13.13×10-19 库仑 19.71×10-19 库仑 8.204×10-19 库仑 16.48×10-19 库仑 22.89×10-19 库仑 11.50×10-19 库仑 18.08×10-19 库仑 26.13×10-19 库仑 根据这些数据,可以推得基本电荷 e 的数值为多少? 解:油滴所带电荷为基本电荷的整数倍。则各实验数据可表示为 kie。取各项之差点儿 4、 根据经典理论,在正常状态下,氢原子中电子绕核作圆周运动,其轨道半径为 5.29× 10-11 米。已知质子电荷为 e=1.60×10-19 库,求电子所在处原子核(即质子)的电场强度。 解: 5、 两个点电荷,q1=+8 微库仑,q2=-16 微库仑(1 微库仑=10-6 库仑) ,相距 20 厘米。求 离它们都是 20 厘米处的电场强度。 解: 与两电荷相距 20cm 的点在一个圆周上,各点 E 大小相等,方向在圆锥在上。 6、 如图所示, 一电偶极子的电偶极矩 P=ql.P 点到偶极子中心 O 的距离为 r ,r 与 l 的夹角为。 在 r>>l 时,求 P 点的电场强度 E 在 r=OP 方向的分量 Er 和垂直于 r 方向上的分量 Eθ。 解:

大学物理习题答案第十一章

大学物理习题答案第十一章

[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。

如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。

若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。

解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。

于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。

图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。

(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。

11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。

若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。

解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。

AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。

所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。

在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。

外力的大小为,外力的方向为由左向右。

大学物理第11章习题答案(供参考)

大学物理第11章习题答案(供参考)
解:作辅助线 ,则在 回路中,沿 方向运动时,穿过回路所围面积磁通量不变
因此


表明 中电动势方向为 .
所以半圆环内电动势 方向沿 方向,
大小为
点电势高于 点电势,即
例2如图所示,长直导线通以电流 =5A,在其右方放一长方形线圈,两者共面.线圈长 =0.06m,宽 =0.04m,线圈以速度 =0.03m·s-1垂直于直线平移远离.求: =0.05m时线圈中感应电动势的大小和方向.

解: 设给两导线中通一电流 ,左侧导线中电流向上,右侧导线中电流向下.
在两导线所在的平面内取垂直于导线的坐标轴 ,并设其原点在左导线的中心,如图所示,由此可以计算通过两导线间长度为 的面积的磁通量.
两导线间的磁感强度大小为
取面积元 ,通过面积元的磁通量为
则穿过两导线间长度为 的矩形面积的磁通量为

2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。
3感生电场 :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电
场线是闭合的,所以感生电场也称有旋电场。
4感生电动势:仅由磁场变化而产生的感应电动势。
5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数 :
第11章 电磁感应
11.1 基本要求
1理解电动势的概念。
2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。
3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。
4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。
5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。

大学物理课本答案习题 第十一章习题解答

大学物理课本答案习题 第十一章习题解答
由于圆环材料相同,电阻率相同,截面积S相同,实际电阻与圆环弧的弧长 和 有关,即:
则 在O点产生的 的大小为
而 在O点产生的 的大小为
和 方向相反,大小相等.即

直导线 在O点产生的

直导线 在O点产生的
,方向垂直纸面向外。
则O点总的磁感强度大小为
方向垂直纸面向外
11-8一载有电流 的长导线弯折成如题图11-8所示的形状,CD为1/4圆弧,半径为R,圆心O在AC,EF的延长线上.求O点处磁场的场强。
原点O处的电流元 在(a,0,0)点产生的 为:
在(0,a,0)点产生的 为:
在(a, 为
11-7用两根彼此平行的长直导线将半径为R的均匀导体圆环联到电源上,如题图11-7所示,b点为切点,求O点的磁感应强度。
解:先看导体圆环,由于 和 并联,设大圆弧有电流 ,小圆弧有电流 ,必有:
任取半径,宽为d的电流环,该电流环共有电流为
该电流环在线圈中心产生的磁感强度大小为
圆心处总磁感强度大小
方向垂直纸面向外。
11-13如题图11-13所示,在顶角为 的圆锥台上密绕以线圈,共N匝,通以电流 ,绕有线圈部分的上下底半径分别为 和 .求圆锥顶O处的磁感应强度的大小.
解:只要将题11-12中的均匀密绕平面线圈沿通过中心的轴垂直上提,便与本题条件相一致,故解题思路也相似。
答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。
正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。
11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么?

第11章(高斯定理及安培环路定理)习题答案

第11章(高斯定理及安培环路定理)习题答案

ò ×
S
ò
S
= 0. ”这个推理正确吗? [ B 不一定要等于零 ] 答:不正确, B d S 各自有不同的方向,B 不一定要等于零 11­6 如图,在一圆形电流 I 所在的平面内,选取一个同心圆形闭合回路 L,则由安培 环路定理可知 (A) (B) I L O 思考题 11­6 图
q 1 1 ( - ) ] 4 pe 0 r R
解;
U 1 =
q 4 peo r
+
Q 4 peo R
U 2 =
q + Q 4 peo R
U1-U2 =
q 1 1 ( - ) 4 pe 0 r R
11­7 [
已 知 某 静 电 场 的 电 势 分 布 为 U = 8x + 12x2 y - 20y2 (SI) , 求 场 强 分 布 E .
B r r U C = U C - U B = ò E × d l = C
ò 4 pe r
o
2
11­5 两块面积均为 S 的金属平板 A 和 B 彼此平行放置,板间距离为 d(d 远小于板的 线度) , 设 A 板带有电荷 q1, B 板带有电荷 q2, 求 AB 两板间的电势差 UAB. [
(1)dq =
q dl 2 L
U = ò dU = ò
dq q q x + L = ò dl = ln 4pe o ( x - l ) 4pe o 2 L ( x - l ) 8pL e o x - L
(2)E= -
¶u q 1 1 1 q r = ( ) = i 2 ¶x 8p L e o x - L x + L 4 pe 0 x 2 - L

第五章 静电场

第五章   静电场
6.高斯定理中的E是由下述情况下,哪些电荷所激发的:(1)高斯面内的电荷?(2)高斯面外的电荷?(3)高斯面内外的所有电荷?
7.高斯定理中的 是(1)高斯面内的电荷?(2)高斯面外的电荷?(3)高斯面内外的所有电荷?
8.下列几个带电体能否用高斯定理来计算电场强度?作为近似计算,应如何考虑呢?(1)电偶极子;(2)长为L的均匀带电直线;(3)半径为R的均匀带电圆盘。
=0
所以
5.真空中两条平行的“无限长”均匀带电直线相距为a,其电荷线密度分别为-和+.试求:
(1)在两直线构成的平面上,两线间任一点的电场强度(选Ox轴如图所示,两线的中点为原点).
:(1)一根无限长均匀带电直线在线外离直线距离r处的场强为:
E=/ (20r)
解:设试验电荷置于x处所受合力为零,即该点场强为零。
得x2-6x+1=0, m
因 点处于q、-2q两点电荷之间,该处场强不可能为零。故舍去。得
m
2.如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度。
解:设杆的左端为坐标原点O,x轴沿直杆方向.带电直杆的电荷线密度为=q/L,在x处取一电荷元dq=dx=qdx/L,它在P点的场强:
答案:C
8.已知某电场的电场线分布情况如图所示.现观察到一负电荷从M点移到N点.有人根据这个图作出下列几点结论,其中哪点是正确的?
(A)电场强度EM<EN.(B)电势UM<UN.
(C)电势能WM<WN.(D)电场力的功A>0.
A
答案:C
三、计算题
1.电荷为+q和-2q的两个点电荷分别置于x=1 m和x=-1 m处.一试验电荷置于x轴上何处,它受到的合力等于零?

11-22章例题、习题答案

11-22章例题、习题答案

第十一章 静电场例题答案:11-1 (B ) 11-2(B ) 11-3(B ) 11-4.()30220824Rqdd R R qd εεπ≈-ππ;从O 点指向缺口中心点 11-5. 0/ελd ;()2204d R d-πελ ;沿矢径OP 11-6(D) 11-7.02εσ 向右 ; 023εσ向右 11-8 (1)o 2r 4r k E ε=,r <R ; (2) 204r r 4R k E ε=,r >R 。

[解](1)作与球体同心、而半径r <R 的球面S 1。

球体内电荷密度ρ随r 变化,因此,球面S 1内包含的电荷()dr r r 4Q ro 21⎰ρπ=。

根据高斯定理和已知的电荷体密度ρ(r ),可求得球体内任意点的场强。

即()⎰⎰ρπε=⋅=Φr 02s o r dr r r 41s d E 1 ,得:o2r 4r k E ε=,r <R 。

(2)作与球体同心、半径r >R 的球面S 2,因R 外电荷为零,故S 2内的电荷Q 2=Q 1,根据高斯定理得:Φ=()⎰⎰ρπε=⋅R02s 0r dr r r 41s d E 2 =4πr 2E r =⎰πεR3dr kr 41,∴204r r4R kE ε=,r >R 。

11-9(D) 11-10(C) 11-11.d 0L⋅=⎰E l 单位正电荷在静电场中沿任意闭合路径绕行一周,电场力作功等于零有势(或保守力)11-12. 45 V —15 V 11-13. -2000V 11-14. (B) 11-15.20R 4Q πε,0,R 4Q 0πε,20r 4Qπε。

11-16()()a b b c R R R R /ln /ln 21=λλ [解]:设B 上带正电荷,内表面上电荷线密度为λ1,外表面上电荷线密度为λ2,而A 、C 上相应地感应等量负电荷,如图所示.则A 、B 间场强分布为 E 1=λ1 / 2πε0r ,方向由B 指向AB 、C 间场强分布为 E 2=λ2 / 2πε0r ,方向由B 指向CB 、A 间电势差11100ln 22E r d d a a bbR R b BA R R aR r r R λλεε=⋅=-=ππ⎰⎰UB 、C 间电势差 22200ln 22E r d d c c bbR R c BC R R bR r U r R λλεε=⋅=-=ππ⎰⎰因U BA =U BC ,得到 ()()a b b c R R R R /ln /ln 21=λλ 练习详解:11-1. (1)E 0=0;(2)E 0=0;(3)0E =k 2a q 4i ;(4)0E = k 2aq 2i[解](1)如图(a )所示,各点电荷在点o 处产生的场强两两对应相消,所以,点o 处场强E 0=0(2)取图中(b )所示坐标。

2021高考复习:静电场考点突破微专题11 带电粒子在交变电场中的运动

2021高考复习:静电场考点突破微专题11 带电粒子在交变电场中的运动

静电场考点突破微专题11 带电粒子在交变电场中的运动一、知能掌握1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等.2.常见的题目类型(1)粒子做单向直线运动(一般用牛顿运动定律求解).(2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般根据交变电场特点分段研究).3.思维方法(1)注重全面分析(分析受力特点和运动规律),抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件.(2)分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系.(3)注意对称性和周期性变化关系的应用.(4)充分利用V-T图像结合运动过程示意图分析问题4.在解决交流电流综合问题时,应注意以下几点:1、由于交变电流的大小和方向、电压的大小和正负都随时间周期性变化,这就引起磁场、电场的强弱和方向周期性变化。

因此,在研究带电体在场中受力时,一定要细微地进行动态受力分析。

2、分析具体问题时,要在研究分析物体在整个过程中各个阶段的运动性质,建立起动态的物理图象上下功夫,不能简单地认为物体受力方向改变时,物体一定同时改变运动方向,要根据物体的初始状态和受力条件这两个决定因素来确定物体的运动性质。

3、分析时还应注意由于交流电的周期性变化引起的分析结果出现多解的可能。

4、因电场随时间变化,交变电场中带电粒子所受到电场力出现周期性变化,导致运动过程出现多个阶段,分段分析是常见的解题思路.若要分析运动的每个细节,一般采用牛顿运动定律的观点分析,借助速度图象能更全面直观地把握运动过程,处理起来比较方便.二、探索提升题型一交变电场作用下的直线运动【典例1】如图所示,AB两平行金属板,A板接地,B板的电势做如图的周期性变化,在两板间形成交变电场。

一电子以分别在下列各不同时刻从A板的缺口处进入场区,试分析电子的运动情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题11
11-1.直角三角形ABC 的A 点上,有电荷C 108.19
1-⨯=q ,B 点上有电荷
C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。

解:1q 在C 点产生的场强:1
12
04AC
q E i r πε=

2q 在C 点产生的场强:2
22
0BC
q E j =
, ∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯

C
点的合场强:43.2410V E m
==⨯, 方向如图: 1.8
arctan
33.73342'2.7
α=== 。

11-4.一个半径为R 的均匀带电半圆形环,均匀地带有电荷,电荷的线密度为λ,求环心处O 点的场强E 。

解:电荷元dq 产生的场为:2
04d q
d E R
πε=; 根据对称性有:0y d E =⎰
,则:
2
0sin sin 4x R d E dE d E R π
λθθθπε===⎰⎰⎰
02R
λ
πε=, 方向沿x 轴正向。

即:02E i R
λπε=。

11-9.在半径为R 的“无限长”直圆柱体内均匀带电,电荷体密度为ρ,求圆柱体内、外的场强分布,并作E ~r 关系曲线。

解:由高斯定律
1
i S
S E dS q ε⋅=∑⎰⎰

,考虑以圆柱体轴为中轴,半径为r ,长为l 的高斯面。

(1)当r R <时,202r l r l E ρππε⋅=,有0
2E r
ρε=;
(2)当r R >时,202R l r l E ρππε⋅=,则:2
02R r
E ρε=;
λ
r
即:0
2
0()2()2r
r R E R r R r
ρερε⎧<⎪⎪=⎨⎪>⎪⎩; 图见右。

11-12.设真空中静电场E 的分布为E cx i =
,式中c 为常量,求空间电荷的分布。

解:如图,考虑空间一封闭矩形外表面为高斯面, 由:S cx S E S
∆=⋅⎰0d
由高斯定理:∑⎰=
⋅内
S S
q S E 0
1d ε ,
设空间电荷的密度为()x ρ,有:00
00
()x x Sd x cx S ρε∆⋅∆=


00
()x x x d x cd x ρε=⎰
⎰,可见()x ρ为常数⇒0c ρε=。

11-14.电荷量Q 均匀分布在半径为R 的球体内,试求:离球心r 处(r R <)P 点的电势。

解:利用高斯定律:
01
S
S E dS q ε⋅=∑⎰⎰

可求电场的分布。

(1)r R <时,32
304Q r r E R πε=⋅内;有:304Q r E R πε=内; (2)r R >时,2
04Q r E πε=外;有:2
04Q E r πε=外;
离球心r 处(r R <)的电势:R
r r
R
U E dr E dr ∞
=
⋅+⋅⎰
⎰外内,即:
3200
44R
r r
R Q r Q
U d r d r R r πεπε∞=⋅+⋅⎰
⎰2300388Q Q r R R πεπε=-。

11-15.图示为一个均匀带电的球壳,其电荷体密度为ρ,球壳内表面半径为1R ,外表面半径为2R .设无穷远处为电势零点,求空腔内任一点的电势。

解:当1r R <时,因高斯面内不包围电荷,有:10E =, 当12R r R <<时,有:2
03132
031323)(4)
(3
4r R r r R r E ερπεπρ-=-=

当2r R >时,有:2
031322
0313
233)(4)
(3
4r
R R r R R E ερπεπρ-=-=
, 以无穷远处为电势零点,有:
2
1223R R R U E d r E d r ∞=⋅+⋅⎰⎰ ⎰⎰∞-+-=2R dr r
R R dr r R r R R 203
1
32203133)(3)(21ερερ)(221220R R -=ερ。

思考题11
11-2.下列几个说法中哪一个是正确的?
(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向; (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;
(C )场强方向可由q /F E =定出,其中q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力;
(D )以上说法都不正确。

答:(C )
11-6.对静电场高斯定理的理解,下列四种说法中哪一个是正确的?
(A )如果通过高斯面的电通量不为零,则高斯面内必有净电荷; (B )如果通过高斯面的电通量为零,则高斯面内必无电荷; (C )如果高斯面内无电荷,则高斯面上电场强度必处处为零; (D )如果高斯面上电场强度处处不为零,则高斯面内必有电荷。

答:(A )
11-7.由真空中静电场的高斯定理
1S
E d S q ε⋅=
∑⎰
可知
(A )闭合面内的电荷代数和为零时,闭合面上各点场强一定为零; (B )闭合面内的电荷代数和不为零时,闭合面上各点场强一定都不为零; (C )闭合面内的电荷代数和为零时,闭合面上各点场强不一定都为零; (D )闭合面内无电荷时,闭合面上各点场强一定为零。

答:(C )。

相关文档
最新文档