五上数学期中知识重难点
5.6列方程解三步应用题-五年级上册数学重点难点一网打尽

【重点难点一网打尽—人教版】五年级上册数学同步重难点讲练教学目标知识与技能:结合具体事例,学生自主尝试列方程解决稍复杂的相遇问题。
过程与方法:根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
情感、态度与价值观:体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。
教学重难点重 点:正确寻找数量间的等量关系式。
难 点:创设情境提高学生的学习兴趣,并利用画线段图的方法帮助学生分析理解等量关系。
【复习典例1】故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米.天安门广场的面积多少万平方米?【完整解答】设天安门广场的面积x 万平方米,则:2x ﹣16=72,2x=88,x=44;答:天安门广场的面积44万平方米。
【复习典例2】豹是世界上跑的最快的动物,能达到每小时110千米,比大象的速度的2倍还多30千米,大象的速度是多少?【完整解答】设大象每小时能跑x 千米,5.6 列方程解三步应用题(相遇问题)第五单元 简易方程2x+30=1102x=80x=40答:大象每小时能跑40千米。
【复习典例3】四年级同学参加管弦乐队的有86人,比参加科技小组的4倍多6人,参加科技小组的有几人?【思路引导】设参加科技小组的有x人,根据等量关系:参加科技小组的人数×4+6人=参加管弦乐队的86人,列方程解答即可。
【完整解答】设参加科技小组的有x人,4x+6=864x=80x=20,答:参加科技小组的有20人。
【复习典例4】一架新式飞机每小时飞行3400千米,比一架普通飞机速度的4.5倍还多25千米.普通飞机每小时飞行多少千米?【思路引导】设普通飞机每小时飞行x千米,则其速度的4.5倍为4.5x千米,式飞机每小时飞行3400千米,比一架普通飞机速度的4.5倍还多25千米,由此可得方程:4.5x+25=3400。
【完整解答】设普通飞机每小时飞行x千米,可得方程:4.5x+25=34004.5x=3375x=750答:普通飞机每小时飞行750千米。
五年级上册数学期中复习教案

五年级上册数学期中复习教案一、教学目标:1. 知识点梳理:通过复习,使学生对五年级上册数学知识点进行梳理,加深对知识点的理解和记忆。
2. 提高解题能力:通过复习题目练习,提高学生的解题速度和准确性。
二、教学内容:1. 第一单元:小数乘法与除法复习内容:小数乘除法的计算方法及应用。
2. 第二单元:多边形与圆复习内容:多边形的面积计算,圆的周长与面积计算。
3. 第三单元:计量单位与统计复习内容:常用计量单位及换算,统计图表的绘制。
4. 第四单元:分数四则混合运算复习内容:分数四则混合运算的顺序及计算方法。
5. 第五单元:几何图形复习内容:平面图形的认识,三角形、四边形的性质及分类。
三、教学重点与难点:1. 教学重点:对五年级上册数学知识点进行系统复习,查漏补缺。
2. 教学难点:解决实际问题,灵活运用所学知识。
四、教学方法:1. 讲解法:对知识点进行讲解,帮助学生理解。
2. 练习法:通过练习题目,巩固知识点。
3. 讨论法:组织学生进行小组讨论,共同解决问题。
五、教学安排:1. 课时:共5课时。
2. 教学过程:第一课时:复习第一单元小数乘法与除法。
第二课时:复习第二单元多边形与圆。
第三课时:复习第三单元计量单位与统计。
第四课时:复习第四单元分数四则混合运算。
第五课时:复习第五单元几何图形。
3. 课后作业:布置适量课后练习,巩固复习内容。
六、教学策略:1. 创设情境:通过生活实例,引导学生理解数学知识在实际生活中的应用。
2. 启发思考:提出问题,引导学生思考,激发学习兴趣。
3. 互动教学:鼓励学生提问,教师解答,增强课堂互动。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习成果:对学生的课后练习进行评价,了解学生对复习内容的掌握程度。
3. 期末考试:通过期末考试,全面评估学生的复习效果。
八、教学资源:1. 教材:五年级上册数学教材。
2. 教辅资料:相关数学练习题及解析。
小学数学五年级知识点和重点、难点大全带必考应用题

五年级的知识重点1小数乘法;小数除法;简易方程;观察物体;多边形的面积;统计与可能性;数学广角和数学综合运用等。
在前面学习整数四则运算和小数加、减法的基础上;继续培养学生小数的四则运算能力。
2用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容;进一步发展学生的抽象思维能力;提高解决问题的能力。
3在空间与图形方面;这一册教材安排了观察物体和多边形的面积两个单元。
在已有知识和经验的基础上;通过丰富的现实的数学活动;让学生获得探究学习的经历;能辨认从不同方位看到的物体的形状和相对位置。
4探索并体会各种图形的特征、图形之间的关系;及图形之间的转化;掌握平行四边形、三角形、梯形的面积公式及公式之间的关系;渗透平移、旋转、转化的数学思想方法;促进学生空间观念的进一步发展。
5教材让学生学习有关可能性和中位数的知识。
通过操作与实验;让学生体验事件发生的等可能性以及游戏规则的公平性;学会求一些事件发生的可能性。
6理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。
7通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法;体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷;给人们的生活和工作带来便利;感受数学的魅力。
必考应用题集锦1、一辆摩托车和一辆货车同时从两站相对开出;摩托车每小时行驶29.5千米;货车每小时行驶70.5千米;经过2.7小时两车相遇。
两车站之间的公路长多少千米?2、将一根铁丝剪成两段;第一段长38.7米;第二段比第一段长度的1.5倍短6.8米。
第二段有多长?3、甲数是560;乙数是70;甲数给乙数多少后;甲数是乙数的4倍?4、一个房间的长是12米;宽是10米。
现用每块0.64平方米的瓷砖铺地面;至少需要多少块瓷砖?5、非洲鸵鸟奔跑的速度是每小时72km;比野兔的2倍少12km;野兔的奔跑速度是每小时多少千米?6、张老师给学校买了8个足球和4个排球;每个足球65元;张老师一共花了700元;每个排球多少元?7、一个长方形铁丝框的长是8米;周长是28米。
五上数学知识点归纳总结

五上知识点归纳总结第一单元小数乘法1、小数乘整数:①意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
②计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:①意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的0.8倍是多少)。
②计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数:保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:①加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)②减法:a-b-c=a-(b+c)a-(b+c)=a-b-c③乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】④除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:一组数对确定唯一一个点的位置。
新思维小学数学(浙教版)五年级上册知识要点

新思维小学数学(浙教版)五年级上册知识要点一、小数乘法和除法1.小数乘整数的意义:7.8×2表示2个7.8是多少(7.8的2倍是多少)2.向右移动小数点知识点:一个数的小数点分别向右移动一位、两位、三位……这个数分别是原数的10倍、100倍、1000倍……举例:计算2.42×10时,只要把2.42的小数点向右移动一位就可以了,即24.2。
计算10.8×100时,只要把10.8的小数点向右移动两位就可以了,即1080。
(小数部分位数不够的要补“0”)3.小数除以整数的计算方法:小数除以整数,按照整数除法的法则计算。
强调除到被除数哪一位商就写在那一位的上面;商的小数点要和被除数的小数点对齐。
(当被除数比除数小,整数部分不够商1时,要先在商的个位上写0,点上小数点。
如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
)4.向左移动小数点知识点:一个数的小数点分别向左移动一位、两位、三位……所得的数分别是原数的110,1 100,11000……举例:计算45.2÷10时,只要把45.2的小数点向左移动一位就可以了,即4.52。
计算5.3÷100时,只要把5.3的小数点向左移动两位就可以了,即0.053。
(整数部分位数不够的要补“0”)5.小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
6.除数是小数的除法的计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。
7.积与商的近似值保留整数(精确到个位);保留一位小数(精确到十分位或者精确到0.1);保留两位小数(精确到百分位或者精确到0.01);保留三位小数(精确到千分位或者精确到0.001)注意:求商的近似值的时候要多除一位。
例如商要求保留两位小数就须除到商的千分位(除到小数点右边第三位)。
XX五年级数学上册期中复习教案(苏教版)【DOC范文整理】

XX五年级数学上册期中复习教案(苏教版)课题找规律课时数4第1课时总课时数35教学目标1、使学生结合具体情境,探索并发现简单周期现象中的排列规律,能根据规律确定某个序号所代表的是什么物体或图形。
使学生主动经历自主探索、合作交流的过程,体会画图、列举、计算等解决问题的不同策略以及方法逐步优化的过程。
教学重点、难点探索并发现简单周期现象中的排列规律,能根据规律确定某个序号所代表的是什么物体或图形。
教学难点:抓住序数到基数的2个转化。
教学准备圆片○○●○○●……例1场景图,一些盆花、彩灯、彩旗图片。
教学程序师生活动教学手记一、创设情境,欣赏规律。
二、合作探究,发现规律。
三、竞赛激趣,巩固规四、联系生活,运用规律。
五、全课小结六、动手操作,创造规律出示例1场景图。
师:从图中你知道了什么?师:从左边起,盆花是按什么顺序摆放的?彩灯和彩旗呢?你能在小组里说一说吗?全班交流三种物体排列规律。
师:在图中,我们看到8盆花,照这样摆下去,左起第15盆花是什么颜色?全班交流:①画图法。
用●表示蓝花,用○表示红花,按照●○●○●○……的规律,画到第15个是蓝花。
②列举法。
发现1、3、5……都是蓝花,2、4、6……都是红花,按这样的规律,第15盆花应该是蓝花。
师可进一步引导:1、3、5……都是单数,凡单数位置都是蓝花,同样,2、4、6……这些双数位置都是红花,第15盆花在单数位置,所以是蓝花。
师:同学们真聪明,能用这么多好方法解决问题。
那么,照这样排下去,从左边起第17个彩灯是什么颜色?第18个彩灯呢?①师:自己先试一试,再在小组里说说自己的想法。
÷3=5……2只÷3=6②师:你用了什么方法?为什么?师:xxx介绍的真好,我们就用他的方法来试试看,是否真的要简便些?从左边起第21面、第23面彩旗分别是什么颜色?1÷4=5……1面―――――红3÷4=5……3面―――――黄师追问:为什么21要除以4,5是什么意思?1又表示什么?23除以4,4表示什么?5呢?3呢?巧闯三关――勇夺红旗关,继续课前活动,○○●○○●……第21枚摆的是黑子还是白子?第二关,做窗帘的珠串按绿、黄、蓝、红的顺序串起来,第18颗珠是什么颜色?第24颗呢?÷4=4组……2颗,24÷4=6组学生说想法,引导比较有余数与没有余数的区别。
苏教版五年级上册数学期中复习经典易错题重点题整理

苏教版五年级上册数学期中复习经典易错题重点题整理【第一单元:负数的初步认识】【基本知识点】0既不是正数,也不是负数。
也就是说整数被分成了三类:负数、0、正数。
0是负数和正数的分界线,正数都大于0,负数都小于0。
相对应的正数和负数可以表示一组相反意义的量。
【友情提醒】在看温度计上的温度时,一定要看清楚每一小格是多少度,有时一小格表示2度,有时一小格表示1度。
【经典例题】下面4个数中,最接近0的是()。
A.-1.5B.-2C.+3D.1.6☆☆☆最接近0的数不是挑其中最大的数,而是看哪个数在数轴上和“0”最接近,应该选“A”。
【第二单元:多边形的面积】【基本知识点】1.平行四边形的面积=底×高,即S=ah。
这里的“底×高”是指对应的“底”和“高”。
因为平行四边形有两种不同长度的高,分别对应两条不同长度的底,所以,在计算时一定要看清楚对应关系。
例如:如图所示,底BC(或AD)与高AF是对应的,底CD(或AB)与高CE是对应的。
而底BC(或AD)与高CE、底CD(或AB)与高AF是根本没有关系的。
2.三角形的面积=底×高÷2。
两个完全一样的三角形可以拼成一个平行四边形,拼成的平行四边形的面积是三角形的2倍,三角形的面积是拼成平行四边形的一半。
注意:这里一定要用两个完全一样的三角形来拼,两个等底等高的三角形或面积相等的三角形都不一定能拼成平行四边形,等底等高只能保证面积相等,而面积相等又有无数种情形。
另外,如图所示,直角三角形的两条直角边互为底和高。
也就是说如果将AB看作底,那么BC就是高;如果将BC看作底,那么AB就是高。
3.梯形的面积=(上底+下底)×高÷2。
其实,我们只要知道梯形的两底的和就可以了,不一定非得要分别知道梯形的上底和下底的数据才可以求面积。
例如:用50米长的篱笆,在靠墙的地方围一块菜地(如图所示),这块菜地的面积是多少平方米?我们将50-15=35(米),“35米”便是两底之和。
五年级上册数学期中复习教案

五年级上册数学期中复习教案一、教学目标1. 复习五年级上册数学中的基础知识,使学生对所学知识有一个系统的掌握。
2. 提高学生的数学思维能力,培养学生的解决问题的能力。
二、教学内容1. 第一章:数的认识复习内容:整数的概念、数的组成、数的读写、数的比较、数的运算等。
2. 第二章:数的运算复习内容:加减乘除的基本运算、四则混合运算、运算定律、简便计算等。
3. 第三章:几何图形复习内容:平面图形的认识、周长和面积的计算、图形的变换、立体图形的认识等。
4. 第四章:计量与单位复习内容:长度、面积、体积、质量、时间、人民币等单位的认识和换算。
5. 第五章:统计与概率复习内容:统计图表的认识和制作、概率的初步认识、数据分析等。
三、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,激发学生的学习兴趣。
2. 通过例题、练习题、游戏等方式,让学生在实践中掌握数学知识。
3. 组织学生进行小组合作学习,培养学生的团队精神和沟通能力。
四、教学步骤1. 回顾每章节的重点知识,引导学生自主整理学习笔记。
2. 通过讲解典型例题,让学生掌握解题方法和技巧。
3. 布置练习题,让学生独立完成,巩固所学知识。
4. 组织学生进行小组讨论,分享学习心得和解题思路。
五、教学评价1. 通过课堂表现、练习题和考试等方式,评价学生的学习效果。
2. 关注学生的学习态度和团队合作能力,给予积极的评价。
3. 对学生的不足之处给予指导和建议,帮助学生提高学习能力。
六、第六章:分数和小数复习内容:分数的概念、分数的比较、分数的运算、小数的认识、小数的运算、分数与小数的互换等。
教学方法:1. 通过实际例子,让学生理解分数和小数的关系。
2. 使用练习题,让学生掌握分数和小数的运算方法。
3. 引导学生进行自主学习,培养学生的自学能力。
教学步骤:1. 回顾分数和小数的基本概念,让学生自主复习。
2. 通过讲解典型例题,让学生掌握分数和小数的运算方法。
3. 布置练习题,让学生独立完成,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级数学上册复习知识点归纳总结
第一单元--小数乘法
1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
典型题例:
2.五年3班有54名同学合影,合影价格为32.5元,给5张照片,另外每加印一张1.2元,全班每人要1张,一共需要多少钱?
3. 一个长方形房间,长
4.8米,宽3.6米。
现在要铺上边长为0.6的正方形地砖,50块够吗?
第二单元-位置
确定物体的位置,要用到数对(先列:即竖,后行即横排)。
用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。
二是给出坐标中的一个点,要能用数对表示。
典型题例:
先写出图形各点的位置,然后画出将图形向右平移6格后的图形,并写出平移后图形的各个顶点的位置
第三单元--小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。
,商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。
10、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
11、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位
数,求出商的近似数。
12、除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。
如 6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数。
小数部分的位数是无限的小数,叫做无限小数。
典型题例:
一、竖式计算
2.75×1.4= 2.4×9.06= 2.46×30=
0.12×6.43= 6.52×27= 0.32×1.5=
0.08×0.425= 10.9×0.308= 24.72÷12=
2.057÷
3.4= 6.64÷3.3=
4.8÷22=
(1-3题保留一位小数,4-6小题保留两位小数)
0.92×3.7≈ 2.54×1.4≈0.35÷0.51≈
9.9×2.04≈ 3.3×2.68≈0.89÷3.3≈
二、填空
①78.36÷7,商的最高位在()位上,结果是()保留一位小数
②近似值是27.8的两位小数最大(),最小是()
③0.75平方米=()平方分米0.5小时=()分钟
④一个数的小数点向右移动两位后比原数大49.5,原数是()
⑤32.1561561···简便写法记作()
95.8787···简便写法记作()
5.028888···简便写法记作()
⑥7.9468保留整数是,保留一位小数是,保留两位小数是。
三、递等式计算
4.34÷0.35×10 4.62÷0.7+16.9 4.62-(0.62+3.9)
5.52+4.48÷0.28
四、简便计算
0.25×4.78×4 0.65×201 6.4-2.25-1.75 0.25×32×0.125
3.7×99 6.8×101-6.8 2.64+7.5+7.36+2.5 1000÷8÷12.5
五、解决问题
①每个油桶最多装油4.5千克,要装70千克油,需要多少个这样的油桶?
②一枝玫瑰2.2元,50元可以买多少枝玫瑰?
③明明和乐乐去文具店买笔芯,明明买4支黑色的和5支蓝色的,共付5元钱,乐乐买4支黑色的和6支蓝色的共付5.6元。
每支黑色笔芯多少钱?
④王老师从家骑车到学校要用0.25小时,他每小时骑15千米,王老师家离学校有多远?如果他改为步行,每小时走5千米,用0.5小时能到学校吗?
⑤1公顷的松柏林每天分泌杀菌素30千克,0.245平方千米松柏林31天分泌杀菌素多少千克?
⑦一个林场用喷雾器给树喷药,3台喷雾器4小时喷了300棵。
照这样计算,一台喷雾器每小时可以喷多少棵?
⑨小花每天跑步2000m,比小玲每天跑的米数的2倍少600m。
小玲每天跑步多少米?
11.人民币汇率兑换问题,详见课本P42,整理和复习,第2题!
第四单元-可能性
1.事件发生有三种情况:可能发生、不可能发生、一定发生。
2.可能发生的事件,可能性大小。
典型题例:
1.超市抽奖要设计一个转盘,请你动手设计,使指针停在三等奖区域的可能性最大,停在一等奖区域的可能性最小,二等奖区域适中!
期中复习练习
第一单元小数乘法
1、1.5×3表示( )或( )的简便运算。
2、1.5×1.8表示( )
3、一个数乘大于1的数,积比原来的数大;()
4、一个数(0除外)乘小于1的数,积比原来的数小。
()
5、求近似数的方法一般有三种:()()()
6、计算钱数,保留两位小数,表示计算到()。
保留一位小数,表示计算到()
7、小数四则运算顺序跟()是一样的。
8、运算定律和性质:
加法:加法交换律:加法结合律:
减法:减法性质:
乘法:乘法交换律:乘法结合律:
乘法:分配律:
除法:除法性质:
第二单元小数除法
1、0.6÷0.3表示( )
2、2.5=50÷()=()÷50=( ) ×0.5
3、除法中的变化规律:①商不变性质:被除数和除数同时()或()相同的倍数(0除外),商不变。
4、被除数和除数同时扩大或缩小相同的倍数,商不变。
( )
5、0.715712712712……的循环节是()0.5124121212……的循环节是()
公式默写
运算定律和性质:
加法:加法交换律:加法结合律:
减法:减法性质:
乘法:乘法交换律:乘法结合律:
乘法:分配律:(2个)
除法:除法性质:
10个数量关系式:
加法:和= 一个加数=
减法:差= 被减数= 减数=
乘法:积= 一个因数=
除法:商= 被除数= 除数=。