小船渡河问题分析及模型求解方法总结
小船渡河模型解析版

小船渡河模型一、模型建构1、小船渡河问题:小船运动时一个方向上的位移不变,求解最短运动时间和最小位移。
2、两类问题第一类:静水船速大于水流速度一条河宽度为L,水流速度为为v水, 已知船在静水中的航速v船,v 水<v船,(1)渡河最短时间?(2)渡河最小位移?如图所示,沿河岸和垂直河岸建立坐标系船速在y轴方向:v y=v船sinθ,渡河所需的时间:t=L/v y=L/v船sinθ在L、v船一定时,t随sinθ增大而减小当θ=90时,sinθ=1,最大,即船头与河岸垂直时,渡河时间最短t min=L/v船船的合速度v的方向与河岸垂直时,渡河的最小位移即河的宽度L。
沿河岸方向的速度分量:v x=v船cosθv水<v船时,v水=v x=v船cosθ即cosθ=v水/v船v合=v船sinθ垂直河岸,位移最小等于河宽L。
一、解题思路:1、沿河岸和垂直河岸建立坐标系2、比较船速沿河岸分速度与水速关系3、判断小船能否垂直渡河4、列方程求最小位移和渡河时间二、解题方法:运动的合成与分解三、解题关键点:1、合理分解速度2、确定渡河位移最小时船速的方向四、解题易错点1、渡河最短时间与水速和船速的大小关系无关2、静水船速小于水流速度时,最小第二类:静水船速小于水流速度一条河宽度为L,水流速度为为v水,已知船在静水中的航速v船,v 水>v船,渡河最小位移?如图所示,沿河岸和垂直河岸建立坐标系沿河岸方向的速度分量:v x=v船cosθv水>v船时,v x始终小于v水即v合不会垂直河岸,不能垂直渡河以v水的矢尖为圆心,v船为半径画圆,当与圆相切时α角最大。
α角越大,船到下游的距离x越短。
此时sinα=v船/v水,船的最短航程为X min=L/sinα=Lv船/v水二、例题精析例题、河宽60m,水流速度v1=2m/s,小船在静水中速度v2=3m/s,则:(1)它渡河的最短时间是多少?(2)最短航程是多少?【解答】(1)、当静水速的方向与河岸垂直时,渡河时间最短,最短时间t===20s;(2)、船在静水中的速度v2=3m/s,大于水流速度v1=2m/s,因此当船的合速度垂直河岸时,则渡河位移最小,即为河宽60m;三、针对训练1.甲、乙两船在同一河流中同时开始渡河,河水流速为v0,船在静水中的速率均为v,甲、乙两船船头均与河岸成θ角,如图所示,已知甲船恰能垂直到达河正对岸的A点,乙船到达河对岸的B点,A、B之间的距离为L,则下列判断正确的是()A.甲乙船不可能同时到达对岸B.若仅是河水流速v0增大,则两船的渡河时间都变短C.不论河水流速v0如何改变,只要适当改变θ角甲船总能到达正对岸的A点D.若仅是河水流速v0增大,则两船到达对岸时,两船之间的距离仍然为L【解答】解:A、将小船的运动分解为平行于河岸和垂直于河岸两个方向,抓住分运动和合运动具有等时性,知甲、乙两船到达对岸的时间相等。
小船渡河问题分析及模型求解方法总结

小船渡河问题分析及模型求解方法总结小船渡河问题是一种经典的约束规划问题,它可以应用在工程实践中,最近几年受到了广泛的关注。
它的本质是将一组人、物从一岸渡到另一岸,要求每条船上的人和物的数量不能超过船的最大载重量,同时保证每个人和物都安全地渡河。
此外,小船渡河问题还要求尽可能地减少渡河次数(使用最少的船来渡河)。
小船渡河问题可以用代数式描述为:在一条河上有n 个人和物,分别用变量 Xi (i=1,2,…,n)表示;n个人和物要渡河,每条小船的最大载重量为C,小船的装载过程有以下几个约束:(1)t每条船上的人数和物品数S必须小于C,即S≤C(2)t每个人和物都必须在一次渡河中安全渡河,即∑Xi≤C(3)t每个人和物都必须通过渡河,即Xi≥1 (i=1,2,…,n)另外,问题还要求尽可能地减少渡河次数,即最小化Z=∑Xi(i=1,2,…,n)对于小船渡河问题,模型求解可以采用禁忌搜索法、遗传算法、人工神经网络、动态规划、贝叶斯网络等多种方法进行求解。
禁忌搜索法是一种模拟退火算法,具有搜索范围大、解空间大、可以接受较差解等优点,是一种非常有效的求解小船渡河问题的方法。
它根据小船渡河问题的特点,采用选择最优方案的操作,让解在解空间内搜索,人工调整算子以达到解的可控性。
此外,禁忌搜索法还可以设置“禁忌表”来限制未来的搜索,从而更好地改进搜索效率。
遗传算法是一种基于自然进化的模拟算法,可以用来求解小船渡河问题,它将解的搜索用种群的行为模拟,具有全局搜索的能力,能够有效的利用历史信息,可以得到比较满意的解,但局限在算法的参数调整,这使得实际应用中还存在改进的空间。
人工神经网络是一种机器学习技术,可以用来求解小船渡河问题,它是由输入、隐藏和输出三层组成,输入层使用小船渡河数据,每个神经元代表一条小船;隐藏层以及输出层使用激活函数,用来检测小船数量,以及小船上的总人和物数量。
通过训练可以获得一个局部最优的解,它比较适用于小规模的小船渡河问题,但对于大规模问题,效果可能不太好。
小船渡河问题归纳总结

小船渡河问题归纳总结在生活中,我们常常会遇到各种各样的问题,有些问题看似简单却隐藏着深刻的道理。
其中,小船渡河问题是一种经典的思考题,它涉及到数学逻辑、思维策略以及团队合作等多个方面。
通过对小船渡河问题的分析与总结,不仅可以锻炼我们的思维能力,还能帮助我们理解人际关系和团队合作的重要性。
小船渡河问题是一种经典的思维问题,故事背景一般是有若干人或物需要过河,但是河上只有一艘小船,而且船的载重有限。
最常见的版本是有一只狼、一只绵羊和一根青草需要过河,但狼会吃掉绵羊,绵羊会吃掉青草。
问题是,如何能够让所有的物品都安全地渡过河流?从这个问题中,我们可以看到思维逻辑的重要性。
一般来说,要解决这类问题,我们需要先从整体上思考,并找到解决问题的关键点。
在小船渡河问题中,关键点就是船的载重限制以及物品相互之间的关系。
通过分析这些关键点,我们可以得出一些解题的策略。
首先,我们可以考虑使用逆向思维。
即先让狼和绵羊过河,再让狼回来,最后再让绵羊和青草过河。
这样一来,狼和绵羊的关系和青草和绵羊的关系就不会产生冲突。
通过这种思维方式,我们可以找到一种安全的渡河方案。
其次,小船渡河问题也能帮助我们理解团队合作的重要性。
在现实生活中,我们经常需要与他人合作解决问题,而团队合作能够提高工作效率和解决问题的能力。
在小船渡河问题中,不同的角色代表了团队中的不同成员,互相之间的关系和配合至关重要。
船的载重限制则可以理解为资源的有限性,提醒我们要合理分配和利用资源。
只有通过合作和团队精神,才能成功地让所有的物品都安全地渡过河流。
除了思维逻辑和团队合作,小船渡河问题还可以引申出许多有意思的思考。
例如,我们可以思考如何扩大问题的规模,让更多的物品渡过河流。
我们还可以考虑如何应对不同的情境变化,例如增加船的载重限制或者改变物品之间的关系等等。
通过对这些问题的思考与探讨,我们可以发展出更加复杂和深入的解题策略。
小船渡河问题是一种锻炼思维能力和团队合作意识的好方式。
小船过河问题分析与题解

小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船〉v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船〈v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1。
5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+ 船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3t=s v d 93100= v 1 dv v 2 v 1 θ v v 2(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小,设船头与河岸夹角为β,如图所示: cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
曲线运动小船渡河问题分析

高中物理-曲线运动小船渡河问题分析【模型概述】在运动的合成与分解中,如何判断物体的合运动和分运动是首要问题,判断合运动的有效方法是看见的运动就是合运动。
合运动的分解从理论上说可以是任意的,但一般按运动的实际效果进行分解。
小船渡河和斜拉船等问题是常见的运动的合成与分解的典型问题【模型讲解】一、速度的分解要从实际情况出发例1.如图1所示,人用绳子通过定滑轮以不变的速度V拉水平面上的物体A,当绳与水平方向成e角时,求物体A的速度。
图1解法一(分解法):本题的关键是正确地确定物体A的两个分运动。
物体A的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。
绳长缩短的速度即等于v i v ;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度e的值。
这样就可以将V按图示方向进行分解。
所以V i及V2实际上就是V A的两个分速度,如A二V1V 二图1所示,由此可得0V A。
COSCOS解法二(微元法):要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率。
设船在e角位置经厶t时间向左行驶△ x距离,滑轮右侧的绳长缩短厶L,如图2所示,当绳与水平方向的角度变化很小时,△ABC可近似看做是一直角三角形,因而有LxLxcos,两边同除以△ t得:costt即收绳速率V O V A COS,因此船的速率为:VV A 0cos图2总结:“微元法”。
可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位 移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体 间速度大小的关系。
解法三(能量转化法):由题意可知:人对绳子做功等于绳子对物体所做的功。
人对绳子 的拉力为F ,则对绳子做功的功率为RFv ;绳子对物体的拉力,由定滑轮的特点可知,Q_拉力大小也为F , 则绳子对物体做功的功率为BF VA COS ,因为RF 2所以=v 0V A。
小船过河问题分析与题解

小船过河问题分析与题解之马矢奏春创作【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v船(即船在静水中的速度),水的流速为v水(即水对地的速度),船的合速度为v(即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v船>v水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v船<v水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不成能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v水矢量末端为圆心,以v船矢量的大小为半径画弧,从v水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v1表船速,v2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m,水流速度v1=3m/s,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为 1.5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少? [思路分析](1t min =d/v 2=100/4=25s合速度v=s m v v/543222221=+=+船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3t=s v d 93100=(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小,设船头与河岸夹角为β,如图所示:cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β[答案](1) 船头垂直于河岸时,渡河时间最短:t min=25s ,s =125m;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s93 100;(3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min=m200。
小船过河问题分析与题解文件.doc

小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度 :船相对水的速度为 v 船(即船在静水中的速度) ,水的流速为 v水(即水对地的速度),船的合速度为 v (即船对地的速度,船的实际速度,其方向就是船的航向) 。
(3)三种情景:①过河时间最短 :当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在 v 船>v水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在 v 船<v水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下 :如图所示,以 v 水矢量末端为圆心,以 v 船矢量的大小为半径画弧,从v水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中 v 1 表船速, v 2 表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行, 河宽 d=100m ,水流速度 v 1=3m/s ,求:(1)船在静水中的速度是 4m/s 时, 欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是 6m/s 时, 欲使船航行距离最短, 船应怎样渡河?渡河时间多长? (3)船在静水中的速度为 1.5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析 ](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25sv 2v d2222合速度 v= vv3 4 5m / s12v 1船的位移大小 s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的v3 61开行速度 v 2 与岸成 θ角,则 cos θ=v2所以 θ=60 0,合速度 v=v0=31 2,v 2θv3m /s0,合速度v=v 0=3 3m /s2sin60v1d 100 3t= sv 91(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小,设船头与河岸夹角为β,如图所示:v21 cos β=v 1.5312所以β=60 v2 vd 100最小位移s min= 200mcos cos 60βv1[答案](1) 船头垂直于河岸时,渡河时间最短:t min=25s ,s =125m;100 30 角航程最短,t= s(2) 船头向上游转过一定角度, 与岸成609;0 时航程最短,s(3) 船头垂直于合速度,船头与河岸夹角60min= 200m 。
小船渡河问题专题分析

关键:
运动的轨迹由合初速度和合加速度的 方向关系来决定。
小船渡河
在流动的河水中渡河的轮船的运动可分解为 两个运动:
假设轮船不开动,轮船随水流一起向下游运 动;
假设河水不流动,轮船相对河水的运动。
小船过河专题
小船在220m宽的河中横渡,水流速度为v1= 2m/s,船在静水中的速度是v2=4m/s,求: ⑴如果要求船划到对岸航程最短,则船头应指 向什么方向?最短航程是多少?所用时间多 少? ⑵如果要求船划到对岸时间最短,则船头应指 向什么方向?最短时间是多少?航程是多少?
B
C
v船
v合
d
Aθ
v水
上题中,如果水速V水=4m/s,船在静 水中的速度V船=2m/s,结果如何呢?
如果河水的速度大于船在静水的速度时,这 时船不可能垂直渡河,但仍存在最短位移,求 解的方法如下:
V船 V船
V合
d
V合 θ
V水
小船渡河问题
②渡河的最短位移
v船 < v水的情况
B
v船
θ 上游 A
E
smin θ
1、如果两个分运动都是匀速直线运动,合运动一定是 匀速直线运动。
2、如果一个分运动是匀速直线运动,另一个分运动是 匀变速直线运动,且互成角度,合运动一定是匀变 速曲线运动。
(可见,两直线运动的合运动不一定是直线运动)。
3、如果两个分运动都是匀变速直线运动, 合运动可能是匀变速直线运动(这时合加速 度方向与合初速度方向在同一条直线上如图 1)。合运动也可能是匀变速曲线运动(这时 合加速度方向与合初速度方向不在同一条直 线上如图2)。
基础重温
一、合运动与分运动 1、定义:
如果物体同时参与了几个运动,那么物体实际发 生的运动就叫做那几个运动的合运动,那几个运动叫 做这个实际运动的分运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d 180
一 丁。 … 一 干可
。
一
① 过 河 时 间 最 短 :船 头 正 对 河 岸 时 ,渡 时 间 最 短 , 一 为 河 宽 )。
m /
。
z — 一 9o m 。
.,
n.!l ;lI ,,
lnl, ,,
; 。 , 甲
图 2
游 与 河 岸 夹 角 为 ,。。 一 。
方 向 和 船 头 指 向 分 解 。 (3)渡 河 时 间 只 与
垂 直 河 岸 的 船 的 分 速 度 有 关 ,与 水 流 速 度
无 关 。 (4)求 最 短 渡 河 位 移 时 ,根 据 船 速
7.7 与 水 流 速 度 V 的 大 小 情 况 用 三 角 形 法
则 求 极 限 的 方 法 处 理 。
作 切 线 ,则 合 速 度 沿 此 切 线 方 向 行 程 最 短 。
由 图 可 知 :c。s d一 ’最 短 行 程 为 s 一
d
一
COS
z, 。
二 、例 题 解 析
例 题 一 小 船 渡 河 ,河 宽 d 一 180 m ,水
流 速 度 7.7 一 2-5 m/s。 若 船 在 静 水 中 的 速 度
小 船 渡 河 问 题 分 析 及 模 型 求 解 方 法 总 结
一 小 船 渡 河 问 题 分 析 、
合 速 度 为 倾 斜 方 向 ,
(1)船的实际运动是水流的运动和船相 垂 直 分 速 度 为 一
对 静水 的运 动 的合运 动 。
5 m/s。
、
(水 -v : 流 速 度 )、 (船 的 实 际 速 度 )。 (3)三 种 情 景 :
作 者 单 位 :江 苏 省 江 都 中 学
41
③ 过 河 路 径 最 短 ( z> 时 ):合 速 度 不
可能垂辜于ห้องสมุดไป่ตู้岸,无法垂直渡河。确定方法
支口 卜:夏口图 1 所 ’
/
示 ,以 矢 量 末 C
端 为 圆 心 ,以
,
径画弧 、 , 从 z 矢
/
-~
: ¥-’ 、
.
抛
图 1
量 的 始 端 向 圆 弧
力 z一 5 m/ ,则 : (1)欲 使 船 在 最 短 时 间 内 渡 河 ,船 头 应 朝
什 么 方 向 ? 用 多 长 时 间 ? 位 移 是 多 少 ? (2)欲 使 船 渡 河 的 行 程 最 短 ,船 头 应 朝 什
么 方 向 ? 用 多 长 时 间 ? 位 移 是 多 少 ? 解 析 :(1)欲 使 船 在 最 短 时 间 内 渡 河 ,船
头 应 朝 垂 直 河 岸 方 向 。 当 船 头 垂 直 河 岸 时 ,如 图 2所 示 。
夹 角 ,如 图 3所 示 。
由 2 sin口一 1,得 口一 30。
。
所以当船头向上游偏
30。时行 程最 短 。 z 一 d一 180 m
。
,一
co ∞ 丢
一
n
乙
图s
一 24 s。 三 、方 法 小 结 求 解 小 船 渡 河 问 题 有 两 类 :一 是 求 最 短
渡河 时 间 二 , 是 求 最 短 渡 河 位 移 。 无 论 哪 类
问 题 都 必 须 明 确 以 下 四 点 。 (1)解 决 这 类 问 题 的 关 键 是 :正 确 区 分
分 运 动 和 合 运 动 , 在 船 的 航 行 方 向 也 就 是 船 头 指 向 方 向 的 运 动 , 是 分 运 动 。 船 的 运 动 也 就 是 船 的 实 际 运 动 是 , 合 运 动 ,一 般 情 况 下 与 船 头 指 向 不 共 线 。 (2)运 动 分 解 的 基 本 方 法 ,一 般 用 平 行 四 边 形 法 则 沿 水 流