找规律试题几道经典题目(含答案)

合集下载

初中数学找规律练习题(有答案)

初中数学找规律练习题(有答案)

精心整理一、简答题1、已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?(4分)2、先阅读,再解题:因为,?,?……所以.参照上述解法计算:3、目前市场上有一种数码照相机,售价为3800元/架,预计今后几年内平均每年比上一年降价4%.3年后这种数码相机的售价估计为每架多少元(精确到1元)?4、已知a、b互为相反数,m、n互为倒数,x绝对值为2,求的值5、如果规定符号“﹡”的意义是﹡=,求2﹡﹡4的值。

6、某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?7、王叔叔家的装修工程接近尾声,油漆工程结束了,经统计,油漆工共做50工时,用了150升油漆,已知油漆每升128元,共粉刷120平方米,在结算工钱时,有以下几种结算方案:(1)按工时算,每6工时300元。

(2)按油漆费用来算,油漆费用的15%为工钱;(3)按粉刷面积来算,每6平方米132元。

请你帮王叔叔算一下,用哪种方案最省钱?8、定义一种新的运算:观察下列式子1⊙3=1×4+3=7;3⊙(-1)=3×4+(-1)=11;5⊙4=5×4+4=24;4⊙(-3)=4×4+(-3)=13.⑴请你想一想:a⊙b=??????????;⑵请你判断a⊙b??????b⊙a(填入“=”或“≠”)???⑶若a=-2,b=-4,求(2a-b)⊙(a-2b)的值.9、阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=________;(3)1×2×3+2×3×4+3×4×5=________.10、从2004年8月1日起,浙江省城乡居民生活用电执行新的电价政策:安装“一户一表”的居民用户,按所抄见电量(每家用户电表所表示的用电量)实行阶梯式累进加价,收费标准如下:月用电量不超过50千瓦时的部分超过50千瓦时不超过200千瓦时的部分超过200千瓦时的部分收费标准(元/千瓦时)0.53 0.56 0.63 ????例:若某户月用电300千瓦时,需交电费为????(元)(1)若10月份许老师家用电量为130千瓦时,则10月份许老师家应付电费多少元??(2)已知许老师家10月份的用电量为千瓦时,请完成下列填空(用代数式表示):①若千瓦时,则10月份许老师家应付电费为?????????????元;②若千瓦时,则10月份许老师家应付电费为???????元;③若千瓦时,则10月份许老师家应付电费为??????????元。

找规律练习题及答案

找规律练习题及答案

找规律练习题及答案找规律练习题一.数字排列规律题1. 4、10、16、22、28……,求第n位数( )。

2. 2、3、5、9,17增幅为1、2、4、8. 第n位数( )3. 观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是----,第n个数是---------。

4. 1,9,25,49,(),(),的第n项为(),5: 2、9、28、65.....:第n位数()6:2、4、8、16...... 第n位数. ()7:2、5、10、17、26……,第n位数. ()8 : 4,16,36,64,?,144,196,…?第一百个数()9、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。

10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?11. =8 =16 =24 ……用含有N的代数式表示规律()12. 12,20,30,42,( )127,112,97,82,( )3,4,7,12,( ),2813 . 1,2,3,5,( ),1314. 0,1,1,2,4,7,13,( )15 .5,3,2,1,1,( )16. 1,4,9,16,25,( ),4917. 66,83,102,123,( ) ,18. 1,8,27,( ),12519。

3,10,29,( ),12720, 0,1,2,9,( )21; ( )。

则第n项代数式为:()22 , 2/3 1/2 2/5 1/3 ( )。

则第n项代数式为()23 , 1,3,3,9,5,15,7,( )24. 2,6,12,20,( )25. 11,17,23,( ),35。

26. 2,3,10,15,26,( )。

27. : 1,8,27,64,( )28. :0,7,26,63 ,( )29. -2,-8,0,64,( )30. 1,32,81,64,25,( )31. 1,1,2,3,5,( )。

找规律填数练习(含解析)

找规律填数练习(含解析)

找规律填数练习1.找出下面数列的规律,并根据规律在横线上填上合适的数.(1)14,17,20,23,26,,(2)86,75,64,53,,(3)2,6,11,17,,(4)1,3,9,27,,2.先找出规律,再在括号里填上合适的数。

(1)18,3,15,4,12,5,,(2)1,15,3,13,5,11,,(3)1,2,3,2,4,6,3,8,9,,,3.在1、4、9、16、()36、49这个数列中,括号里应填的数是()A.30B.25C.324.先找出下列数列的排列规律,再在括号里填上合适的数。

(1)2,5,14,41,,(2)252,124,60,28,,5.下面括号里的两个数是按一定的规律组合的,在□里填适当的数。

(1)(1,24),(2,12),(3,8),(4,)(2)(64,62),(48,46),(29,27),(15,)6.找规律,填一填找规律填数-解析1.找出下面数列的规律,并根据规律在横线上填上合适的数.(1)14,17,20,23,26,,(2)86,75,64,53,,(3)2,6,11,17,,(4)1,3,9,27,,【分析】(1)17﹣14=3,20﹣17=3,23﹣20=3,26﹣23=3,依次加3即可。

(2)86﹣75=11、75﹣64=11、64﹣53=11,…,相邻两个数之间相差11,从第一个数开始,依次减11就是它后面的数。

(3)在这一组数列中每相邻两个数的差依次是4,5,6,由此可以推算出下一个加7,加8。

(4)前一个数乘3等于后一个数。

【解答】(1)26+3=29,29+3=32;(2)86,75,64,53,42,31;(3)17+7=24,24+8=32;(4)27×3=81,81×3=243;2.先找出规律,再在括号里填上合适的数。

(1)18,3,15,4,12,5,,(2)1,15,3,13,5,11,,(3)1,2,3,2,4,6,3,8,9,,,【分析】(1)观察这组数可得,每两个数为一组,其中第一个数依次减3,第二个数依次加1,据此填空即可;(2),观察这组数可得,每两个数为一组,其中第一个数依次加2,第二个数依次减2,据此填空即可;(3),观察这组数可得,每三个数为一组,其中第一个数依次加1,第二个数依次乘2,第三个数依次加3,据此填空即可。

找规律奥数试题及答案

找规律奥数试题及答案

找规律奥数试题及答案
找规律奥数试题及答案
1.找规律:根据规律填数
(1)2、4、6、8、()、
(2)1、4、7、()、
(3)30、25、20、()、
2.找规律:根据规律填数
(1)30、28、26、()、()……
(2)1、3、6、()……
(3)15、20、25、()……
3.题目:观察列的前面几项,找出规律,写出该数列的第100项来?
12345,23451,34512,45123,……
1.找规律答案:
(1)在这数列中,后一个比前一个数多2,根据这个规律,括号里里应该填10、12;
(2)在这个数列里,后一个比前一个数多3,根据这个规律,括号里里应该填10、13;
(3)在这个数列里,前一个数比后一个数多5,根据这个规律,括号里应填15、10。

2.找规律答案:
(1)在这数列中,前一个比后一个数多2,根据这个规律,括号里里应该填24、22、20;
(2)在这个数列里,第一个数加2是第二个数,第三个数加3是第三个数,依次规律,括号里应填10和15
(3)在这个数列里,前一个数比后一个数少5,根据这个规律,括号里应填30、35。

3.找规律答案:
为了寻找规律,再多写出几项出来:
12345,23451,34512,45123,51234,12345,23451,34512,45123,51234,12345,23451……
仔细观察,可发现该数列的.第6项同第1项,第7项同第2项,第8项同第3项……也就是说该数列各项的出现具有周期性,他们是循环出现的,一个循环节包含5项。

100÷5=20
可见第100项与第5项、第10项一样(项数都能被5整除),即第100项是51234。

找规律练习题及答案

找规律练习题及答案

找规律练习题一.数字排列规律题1. 4、10、16、22、28……,求第n位数( )。

2. 2、3、5、9,17增幅为1、2、4、8. 第n位数( )3. 观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是----,第n个数是---------。

4. 1,9,25,49,(),(),的第n项为(),5: 2、9、28、65.....:第n位数()6:2、4、8、16...... 第n位数. ()7:2、5、10、17、26……,第n位数. ()8 : 4,16,36,64,,144,196,…第一百个数()9、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。

10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的11. =8=16=24 ……用含有N的代数式表示规律()12. 12,20,30,42,( )127,112,97,82,( )3,4,7,12,( ),2813 . 1,2,3,5,( ),1314. 0,1,1,2,4,7,13,( )15 .5,3,2,1,1,( )16. 1,4,9,16,25,( ),4917. 66,83,102,123,( ) ,18. 1,8,27,( ),12519。

3,10,29,( ),12720, 0,1,2,9,( )21;( )。

则第n项代数式为:()22 , 2/3 1/2 2/5 1/3 ( )。

则第n项代数式为()23 , 1,3,3,9,5,15,7,( )24. 2,6,12,20,( )25. 11,17,23,( ),35。

26. 2,3,10,15,26,( )。

27. : 1,8,27,64,( )28. :0,7,26,63 ,( )29. -2,-8,0,64,( )30. 1,32,81,64,25,( )31. 1,1,2,3,5,( )。

奥数 找规律(30道选择题、20道解答题)试题及解析

奥数 找规律(30道选择题、20道解答题)试题及解析

找规律一、选择题(共30小题)1.一个数串219⋯,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有( )个不出现在该数串中.A.1B.2C.3D.42.有一种数,是以法国数学家梅森的名字命名的,它们就是形如21(n n -为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如2213-=就是第一个梅森质数,第一个梅森合数是( )A.4B.15C.127D.20473.一些小球按下面的方式堆放,第7堆小球有( )个.A.19B.20C.21D.22 4.如图由“”复制组合成的,探索复制组合100次后的阴影部分占整个组合图的几分之几问题,解决的最优策略是( )A.猜想与尝试B.特例找规律C.画图D.列表5.如图,一张桌子可以坐4人,两张桌子拼起来可以坐6人,三张桌子拼起来可以坐8人.像这样( )张桌子拼起来可以坐40人.A.17B.18C.19D.206.先找出规律,然后在括号里填上适当的数:23,4,20,6,17,8,14,10,( ),()( )A.12,13B.13,12C.11,12D.12,147.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成45度角,最高的小树高2.8米,最低的小树高峰1.4米,那么从左向右数第4棵树的高度是( )米.A.2.6B.2.4C.2.2D.2.08.在下面的两个图形中发现其中四个数的关系,进而在第三个图形中的空白三角形中填入适当的数( ),使该图中四个数也符合上述关系.A.9B.12C.10D.119.如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,⋯,依此类推,由正n 边形“扩展”而来的多边形的边数记为(3n a n … ),则345111120146051n a a a a +++⋯+=,那么(n = )A.2014B.2015C.2016D.201710.观察下列图形,“?”位置对应的图形是( )A. B. C. D.11.把足够大的一张厚度为0.1mm纸连续对折,要使对折后的整叠纸总厚度超过12mm,至少要对折()A.6次B.7次C.8次D.9次12.有一组式子:2a,32a-,43a,54a-⋯从左往右数的第10个式子是下面算式的第()个.A.1110aB.1110a- C.1011a- D.1111a-13.找出规律,将你认为合适的数填入(),2、4、3、9、4、16、5、()、()、36、7、⋯那么正确的数是()A.18、6B.22、6C.25、6D.2514.有一列数,开头四个是2,0,1,3;从第5个数开始,每个数是前面四个数的和除以4所得的余数,那么这列数中的第2013个数是()A.0B.1C.2D.315.有一列数,第1个数是22,第2个数是12,从第3个数开始,每个数是它前面两个数的平均数,这列数的第10个数的整数部分是()A.17B.14C.15D.1616.杰克和吉莉每人各有一只水壶,其中都装有1升水.第一天,杰克把他壶中的1毫升水倒入吉莉的壶中,第二天吉莉把她的壶中的3毫升水倒入杰克的壶中,第三天杰克把他壶中的5毫升水倒入吉莉的壶中,这样继续做下去,其中每个人倒出的水比前一天从对方得到的水多2毫升.那么第101天结束后,杰克壶中有()毫升水?(1升1000=毫升)A.799B.899C.900D.100017.下列图形,第10个图中△比〇多()个A.44B.60C.56D.4518.根据1()1A,1()8B,1()27C,1()64D,(E)⋯⋯中数的变化规律,E中的数是()A.165B.181C.1125D.121619.一本童话书,每两页之间有3页插图,也就是说3页插图前后各有1页文字.那么第36页是()A.插图B.文字20.下面空白的椭圆内应填入的数是()A.1730B.1750C.1780D.179021.观察下面图形我们发现:第一个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第6个图形中正方形的个数是()A.80B.81C.90D.9122.下列一列数中:5、8、11、14⋯,第()个数为2009.A.667B.668C.669D.70023.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入⋯12345⋯输出⋯1225310417526⋯那么,当输入数据是8时,输出的数据是()A.861B.863C.865D.86724.动物园里猩猩比狒狒多,猴子比猩猩多.一天,饲养员拿了十箱香蕉分给它们.每只猩猩比每只狒狒多分一根,每只猴子比每只猩猩多分一根.分完后,只剩下2根香蕉.如果每箱香蕉数量相同,都是40多个,而且猴子比狒狒多6只,猩猩有16只.那么,动物.园里有( )只猴子.A.18B.19C.20D.1725.数列1,2,4,5,10,11,22,23,46,47⋯,它形成的规律:第2项等于第1项加1的和,第3项等于第2项的2倍,第4项等于第3项加1的和,第5项等于第4项的2倍,⋯,如此继续下去,得到上面的数列.那么,这个数列的第100项的个位数字是( )A.2B.5C.7D.826.盒中原有7个小球,魔术师从中取出若干个球,把每个球都变成7个小球,将其放回盒中;他又由其中取出若干个球,把每个球都变成7个小球,再将其放回盒中;⋯,如此进行到某一时刻,当魔术师停止变魔术时,盒中球的总数可能是()A.2003个B.2004个C.2005个D.2006个27.在一个没有余数的除法算式里,如果被除数扩大6倍,除数缩小2倍,那么商的变化是()A.扩大12倍B.缩小2l倍C.扩大3倍D.缩小3倍28.按照如图所示的规律,图6中小三角形共有()个.A.53B.51C.49D.4729.给出一列11,21,12,31,22,13,L,1k,12k-,L,1k.在这列数中,第40个值等于1的项是这列数中第()项.A.3120B.3121C.3200D.320130.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,那么第10个图形中的小黑点个数是( )个.A.100B.90C.91D.101二、解答题(共20小题)31.以下一串密码代表一句话,数字代表拼音字母顺序,其中(28,20)代表“我”,那么这串密码代表的这句话是什么?(28,20)(6,14)(19,14)(31,13,20,19,12)(12,26,20)32.小强编了一个程序:从a 开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法).每次做加法时,将上次运算的结果加2或加(3)-;每次做乘法时,将上次运算的结果乘以2或乘以3.例如:24a 可以这样得到3a ⨯−−→2232322332646112212124224a a a a a a a a +⨯-⨯-⨯+−−→+−−→+−−→+−−→+−−→-−−→-−−→请你用此程序得到8a ,写出过程.33.有12个位置,每个位置放一个自然数.若第二个数与第一个数相等,从第三个数开始,每个数恰好是它前边所有数的总和,则我们称这样的12个数为“好串数”.请问含1992这个数的好串数共 个.34.称分母是分子的3倍少1的分数为“可儿”,例如25就是“可儿”,将分数320写成两个“可儿”之积,这两个“可儿”是 .35.2017位同学排成一列依次报数.若某位同学报的是一位数,后面的同学就报这个数的2倍;若某位同学报的是两位数,后面的同学就报其个位数字与5的和.已知一位同学报1,到了第100位同学,他却把前面那位同学报的数加上了另一个一位自然数,其他人都没有注意到,仍然按以前的规则继续报数,直到最后一位同学报的数是5.那么第100位同学所报的数是把前一位同学报的数加上了多少?36.有一列数2,9,8,2,6,⋯从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9872⨯=的个位数字是2.问这一列数第2003个数是几?37.2017位同学从左到右排成一行,然后按如下规律从左向右报数:先让第一位同学报4,第二位同学报9,然后从第三位同学开始,每位同学都把自己前面两位同学所报的数相乘,再报出乘积的个位来.试问,最后一位同学报的是几?38.(1)今天是3月1日,小明买了一些橙子,他如果每天吃3个,十多天能吃完,最后一天只吃2个;如果小明每天吃4个,不到十天就吃完了,最后一天吃了3个,那么,这些橙子原来有多少个?(2)小明好奇地看了看这一年3月份的日历,发现3月份有四个星期日,却有五个星期六,那么今天(3月1日)是星期几?39.黑板上先写下一串数:1,2,3,⋯,100,如果每次都擦去最前面的6个,并在这串数的最后再写上擦去的6个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足6个.问:(1)最后黑板上剩下的这些数的和是多少?(2)最后所写的那个数是多少?40.例2.根据下表中数的排列规律,在空格里填上适当的数.(1)13207917859(2)247536126141641.按照下面的规律在黑板上写整数,:一开始写1,然后每一次操作在它后面写上比它大1的数.例如,一开始的时候,黑板上的数是1.第一次操作:比1大1的数是2,就在它后面写上2,现在黑板上的数是12;第二次操作:比黑板上的12大1的数是13,就在它后面连写上13,现在黑板上的数就是1213;以此类推⋯(1)请求出第三次操作后黑板上的数是多少?(2)当黑板上第一次出现“321”时,是在第几次操作之后?(3)请求出从左数第2016位数字是多少?42.某年,端午节距离儿童节和父亲节的天数相同,在月历中与六月最后一天同列,父亲节是六月的第三个星期日,则该年的父亲节是六月日.(如图是某个月的月历示意图)43.将自然数1,2,3,4,从小到大无间隔地排列起来,得到:1234567891011121314,这串数码中,当偶数数码首次连续出现5个时,其中的第一个(偶)数码所在位置从左数是第多少位?44.等边三角形的边长3厘米,现将三角形ABC沿一条直线翻滚30次,如图:求A点经过的路程的长是多少厘米?(π取3.14).45.一棵生命力极强的树苗,第一周在树干上长出2条树枝(如图1),第二周在原先长出的每条树枝上又长出2条新的树枝(如图2),第三周又在第二周新长出的每条树枝上再长出2条新枝(如图3),这棵树苗按此规律生长,到第十周新的树枝长出来后,共有条树枝.46.1,1,3,2,5,4,7,8,9,16, , ,13,64.47.一列数,其前七项依次为1,1,3,4,5,9,7,第8项是什么?说明理由.48.在棋盘上滚动骰子,使骰子的一面和棋盘格的大小相等,然后将骰子以棱为轴,滚动到邻近的棋盘格,每滚动一次,骰子朝上一面的数字就会变化.如果骰子的初始位置如图1,当骰子滚动六次到达对角顶点时(如图2),那么,第一步、第四步、第六步朝上的面分别是几点?(说明:骰子的相对两个面的点数之和为7)49.在平面上用长度为5cm 的火柴棒摆正方形,摆出1个边长为5cm 的正方形需要4根火柴,摆出2015个这样的正方形最少需要多少根火柴?说明你的摆法(不必画图).50.如图所示,圆周上的两个点1A 、2A 将圆等分成2份,在这两个点处写上14;圆周上的两个点1A 、2A 再将两段半圆弧等分,在点3A 、4A 处分别写上相邻2个数之和;如此继续这样操作,问能否出现圆周上所有数字之和2015?若可能,请求出经过了多少次操作?若不能,请说明理由.参考答案与试题解析一、选择题(共30小题)1.一个数串219⋯,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有( )个不出现在该数串中.A.1B.2C.3D.4【答案解析】枚举法219的数字和是12,接下来就是2192数字和是12,接下来就是2922的数字和是13,接下来就是3223的数字和为7,接下来就是7237的数字和为12,接下来的数2以此类推数字为:2192237221584790651281102⋯规律总结数字和的尾数呈现两奇数两个偶数的周期规律.故选:C .2.有一种数,是以法国数学家梅森的名字命名的,它们就是形如21(n n -为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如2213-=就是第一个梅森质数,第一个梅森合数是( )A.4B.15C.127D.2047【答案解析】选项:214n A -=,n 无整数解;选项:2115n B -=,n 为4,但n 不是质数,故舍去;选项:21127n C -=,n 为7,127不是合数,故舍去;选项:212047n D -=,n 为11,n 为质数,且20472389=⨯,是合数,满足条件. 故选:D .3.一些小球按下面的方式堆放,第7堆小球有( )个.A.19B.20C.21D.22【答案解析】5813+=第7堆小球有:13821+=;故选:C.4.如图由“”复制组合成的,探索复制组合100次后的阴影部分占整个组合图的几分之几问题,解决的最优策略是()A.猜想与尝试B.特例找规律C.画图D.列表【答案解析】如图由“”复制组合成的,探索复制组合100次后的阴影部分占整个组合图的几分之几问题,解决的最优策略是特例找规律;故选:B.5.如图,一张桌子可以坐4人,两张桌子拼起来可以坐6人,三张桌子拼起来可以坐8人.像这样()张桌子拼起来可以坐40人.A.17B.18C.19D.20【答案解析】第一张桌子可以坐4人;拼2张桌子可以坐4216+⨯=人;拼3张桌子可以坐4228+⨯=人;故n张桌子拼在一起可以坐42(1)22+-=+.n n当2240n=,n+=时,19答:像这样19张桌子拼起来可以坐40人.故选:C.6.先找出规律,然后在括号里填上适当的数:23,4,20,6,17,8,14,10,(),()()A.12,13B.13,12C.11,12D.12,14【答案解析】根据上面的分析,第9个数应该是14311+=,-=,第10个数应该是10212故选:C.7.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成45度角,最高的小树高2.8米,最低的小树高峰1.4米,那么从左向右数第4棵树的高度是()米.A.2.6B.2.4C.2.2D.2.0【答案解析】因为:树根成一条直线,树顶也成一条直线,45∠=︒,最高的小树高 2.8米,最低的小树高峰A1.4米,所以 2.8BC AC AB=-=米,AC=米, 1.4AB=米, 1.4又因为:这排树的间距相同,所以:÷=(米)1.470.2⨯+0.24 1.4=+0.8 1.4=(米)2.2答:那么从左向右数第4棵树的高度是2.2米.故选:C.8.在下面的两个图形中发现其中四个数的关系,进而在第三个图形中的空白三角形中填入适当的数(),使该图中四个数也符合上述关系.A.9B.12C.10D.11【答案解析】54210⨯÷=所以,第三个图形中的空白三角形中填入的数是10.故选:C.9.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a,第(2)个多边形由正方3形“扩展”而来,边数记为a,⋯,依此类推,由正n边形“扩展”而来的多边形的边4数记为(3na n…),则345111120146051na a a a+++⋯+=,那么(n=)A.2014B.2015C.2016D.2017【答案解析】33(22)34a=+=⨯,44(23)45a=+=⨯,55(24)56a=+=⨯,⋯(1)na n n=+,∴11112014344556(1)6051n n+++⋯+=⨯⨯⨯+,∴11111111201434455616051n n-+-+-+⋯+-=+,∴112014316051n-=+,12017n∴+=,2016n∴=.10.观察下列图形,“?”位置对应的图形是()A. B. C. D.【答案解析】再逆时针旋转90︒是.故选:C .11.把足够大的一张厚度为0.1mm 纸连续对折,要使对折后的整叠纸总厚度超过12mm ,至少要对折( ) A.6次B.7次C.8次D.9次【答案解析】设对折n 次,由此可得, 0.1212n ⨯> 2120n = 72128= 6264= 64120128<<所以,7n = 答:至少要对折7次. 故选:B .12.有一组式子:2a ,32a -,43a ,54a -⋯从左往右数的第10个式子是下面算式的第( )个.A.1110a B.1110a -C.1011a -D.1111a -【答案解析】由题意,奇数项为正,偶数项为负,分母是正整数,分子是1n a +,所以从左往右数的第10个式子是1110a -,故选:B .13.找出规律,将你认为合适的数填入( ),2、4、3、9、4、16、5、( )、( )、36、7、⋯那么正确的数是( ) A.18、6B.22、6C.25、6D.25【答案解析】注意到:4是2的平方,9是3的平方,16是4的平方,25是5的平方,36是6的平方,⋯根据这个规律,可知中间两个括号分别应填25和6.故选:C.14.有一列数,开头四个是2,0,1,3;从第5个数开始,每个数是前面四个数的和除以4所得的余数,那么这列数中的第2013个数是()A.0B.1C.2D.3【答案解析】(2013)4+++÷64=÷=⋯12所以第5个数是2;(0132)4+++÷=÷64=⋯12第6个数是2;+++÷(1322)4=÷8420=⋯第7个数是0;+++÷(3220)4=÷74=⋯13(2203)4+++÷=÷74=⋯13第9个数是3;+++÷(2033)4 =÷8420=⋯第10个数是0;+++÷(0330)4 =÷64=⋯12第11个数是2;(3302)4+++÷=÷84=⋯20第12个数是0;+++÷(3020)4 =÷5411=⋯第13个数是1;+++÷(0201)4 =÷34=⋯03此时这些数是:2,1,0,3,2,2,0,3,3,0,2,0,1,3再向下计算又会是2,2,0,3,3,0,2,0,1,3⋯看以看出这些数是以“2,1,0,3,2,2,0,3,3,0”为一个循环不断循环出现这个循环节中有10个数字;2013102013÷=⋯余数是3,所以第2013个数第202个循环中的第3个数字,是0.故选:A.15.有一列数,第1个数是22,第2个数是12,从第3个数开始,每个数是它前面两个数的平均数,这列数的第10个数的整数部分是()A.17B.14C.15D.16【答案解析】第三个数:(2212)217+÷=第四个数:(1217)214.5+÷=第五个数:(1714.5)215.75+÷=第六个数:(14.515.75)215.125+÷=第七个数:(15.7515.125)215.4375+÷=⋯再向下计算由于两个数都不大于15.5,所以它们的平均数的整数部分只能是15.答:这列数的第10个数的整数部分是15.故选:C.16.杰克和吉莉每人各有一只水壶,其中都装有1升水.第一天,杰克把他壶中的1毫升水倒入吉莉的壶中,第二天吉莉把她的壶中的3毫升水倒入杰克的壶中,第三天杰克把他壶中的5毫升水倒入吉莉的壶中,这样继续做下去,其中每个人倒出的水比前一天从对方得到的水多2毫升.那么第101天结束后,杰克壶中有()毫升水?(1升1000=毫升)A.799B.899C.900D.1000【答案解析】-=(毫升)312752-=(毫升)⋯1012501÷=⋯(天)前100天杰克的壶中增加250100⨯=(毫升)第101天杰克倒出(1011)21201-⨯+=(毫升)201100101-=(毫升)1升1000=(毫升)1000101899-=(毫升)故选:B.17.下列图形,第10个图中△比〇多()个A.44B.60C.56D.45【答案解析】第10图中△的个数1010100⨯=(个)〇的个数4(102)444⨯+-=(个)1004456-=(个)故选:C.18.根据1()1A,1()8B,1()27C,1()64D,(E)⋯⋯中数的变化规律,E中的数是()A.165B.181C.1125D.1216【答案解析】35125=所以,这个分数是1 125.故选:C.19.一本童话书,每两页之间有3页插图,也就是说3页插图前后各有1页文字.那么第36页是()A.插图B.文字【答案解析】3649÷=(组),所以第36页和第四页相同,应该是插图;故选:A.20.下面空白的椭圆内应填入的数是()A.1730B.1750C.1780D.1790【答案解析】1700501750+=故选:B.21.观察下面图形我们发现:第一个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第6个图形中正方形的个数是()A.80B.81C.90D.91【答案解析】第一个图形有1个正方形,第二个图形有22512=+个正方形,第三个图形有22214123=++个正方形,⋯第六个图形有14916253691+++++=个正方形.故选:D.22.下列一列数中:5、8、11、14⋯,第()个数为2009.A.667B.668C.669D.700【答案解析】这是一个首项是5,公差是3的等差数列由5(1)32009n+-⨯=,可得669n=.故选:C.23.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入⋯12345⋯输出⋯1225310417526⋯那么,当输入数据是8时,输出的数据是()A.861B.863C.865D.867【答案解析】28165+=,所以输出的数是8 65.故选:C.24.动物园里猩猩比狒狒多,猴子比猩猩多.一天,饲养员拿了十箱香蕉分给它们.每只猩猩比每只狒狒多分一根,每只猴子比每只猩猩多分一根.分完后,只剩下2根香蕉.如果每箱香蕉数量相同,都是40多个,而且猴子比狒狒多6只,猩猩有16只.那么,动物.园里有( )只猴子.A.18B.19C.20D.17【答案解析】动物园里有x只猴子,则狒狒6x-只,猩猩有16只,狒狒分y根香蕉,猩猩1y+根,猴子2y+根,(2)(6)16(1)400x y y x y++-++>,261616xy x xy y y++-++,2(1)1016x y y=+++,假设19x=,383810164854400y y y+++=+>,48346y>,7.2y>,设:8y=,4854438y+=. 符合题意.故选:B.25.数列1,2,4,5,10,11,22,23,46,47⋯,它形成的规律:第2项等于第1项加1的和,第3项等于第2项的2倍,第4项等于第3项加1的和,第5项等于第4项的2倍,⋯,如此继续下去,得到上面的数列.那么,这个数列的第100项的个位数字是( )A.2B.5C.7D.8【答案解析】(991)248-÷=,48412÷=,没有余数,个位数就是4,它的下一项(第100项)的个位数就是:故选:B.26.盒中原有7个小球,魔术师从中取出若干个球,把每个球都变成7个小球,将其放回盒中;他又由其中取出若干个球,把每个球都变成7个小球,再将其放回盒中;⋯,如此进行到某一时刻,当魔术师停止变魔术时,盒中球的总数可能是()A.2003个B.2004个C.2005个D.2006个【答案解析】根据以上分析知:-÷=⋯,2003减7的差不是6的倍数,(20037)63324-÷=⋯,2004减7的差不是6的倍数,(20047)63325-÷=,2005减7的差是6的倍数,(20057)6333-÷=⋯,2006减7的差不是6的倍数,(20067)63331所以盒中球的总数可能是2005个.故选:C.27.在一个没有余数的除法算式里,如果被除数扩大6倍,除数缩小2倍,那么商的变化是()A.扩大12倍B.缩小2l倍C.扩大3倍D.缩小3倍【答案解析】例如80108÷=,被除数扩大6倍,由80变成480,除数缩小2倍,由10变成5,则商变为:480596÷=,商由8变成96,是商扩大了12倍;据此可知:被除数扩大6倍,除数缩小2倍,那么商扩大6212⨯=倍.故选:A.28.按照如图所示的规律,图6中小三角形共有()个.A.53B.51C.49D.47【答案解析】根据分析可得,2++(16)453=(个)答:图6中小三角形共有53个.故选:A.29.给出一列11,21,12,31,22,13,L,1k,12k-,L,1k.在这列数中,第40个值等于1的项是这列数中第()项.A.3120B.3121C.3200D.3201【答案解析】分子分母和为2的有1个,分子分母和为3的有2个,分子分母和为4的有3个,⋯,分子分母和为79的数有78个,123783081+++⋯+=(项),第40个值等于1的项分子分母和为80且为4040是这一数列中的第40项,3081403121+=(项).故选:B.30.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,那么第10个图形中的小黑点个数是()个.A.100B.90C.91D.101【答案解析】根据图形分析可知:(用s表示图中小黑点的个数)1n=时,1s=;2n=时,3211s==⨯+;3n=时,7321s==⨯+;4n=时,13431s==⨯+;5n=时,21541s==⨯+;⋯;第n个图中小黑点的个数为(1)1n n-+.第10个图形中的小黑点个数是10(101)191⨯-+=.故选:C .二、解答题(共20小题)31.以下一串密码代表一句话,数字代表拼音字母顺序,其中(28,20)代表“我”,那么这串密码代表的这句话是什么?(28,20)(6,14)(19,14)(31,13,20,19,12)(12,26,20)【答案解析】28代表w ,20代表o ,根据这个规律可以确定:(6,14)代表ai(19,14)代表ni(31,13,20,19,12)代表zhong(12,26,20)guo这些拼音对应的中文是“我爱你中国”.答:这串密码代表的这句话是“我爱你中国”.32.小强编了一个程序:从a 开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法).每次做加法时,将上次运算的结果加2或加(3)-;每次做乘法时,将上次运算的结果乘以2或乘以3.例如:24a 可以这样得到3a ⨯−−→2232322332646112212124224a a a a a a a a +⨯-⨯-⨯+−−→+−−→+−−→+−−→+−−→-−−→-−−→请你用此程序得到8a ,写出过程.【答案解析】利用其程序运算如下:2232322224214241828a a a a a a a a +⨯-⨯-⨯+−−→+−−→+−−→+−−→+−−→-−−→-−−→.33.有12个位置,每个位置放一个自然数.若第二个数与第一个数相等,从第三个数开始,每个数恰好是它前边所有数的总和,则我们称这样的12个数为“好串数”.请问含1992这个数的好串数共 4 个.【答案解析】通过以上分析得出含1992这个数的好串数共.4个:249 249 498 996 1992 3984498⋯ 498 996 1992 3984 7968996⋯ 996 1992 3984 7968159361992⋯ 1992 3984 7968 15936 31872⋯34.称分母是分子的3倍少1的分数为“可儿”,例如25就是“可儿”,将分数320写成两个“可儿”之积,这两个“可儿”是25、38.【答案解析】362323 20405858⨯===⨯⨯即,这两个“可儿”是25、38.故答案为:25、38.35.2017位同学排成一列依次报数.若某位同学报的是一位数,后面的同学就报这个数的2倍;若某位同学报的是两位数,后面的同学就报其个位数字与5的和.已知一位同学报1,到了第100位同学,他却把前面那位同学报的数加上了另一个一位自然数,其他人都没有注意到,仍然按以前的规则继续报数,直到最后一位同学报的数是5.那么第100位同学所报的数是把前一位同学报的数加上了多少?【答案解析】按照规则将前面几位同学所报数写出:1,2,4,8,16,11,6,12,7,14,9,18,13,8,16⋯可以发现从第3位同学开始,每10位同学为一个周期,所以第99位同学报的数为7;由于最后一位同学报的数是5,往前倒推,应该是5、10、5、10⋯可知,第100位同学报的数只能为倒数第偶数个,应该是10,所以第100位同学报的数是把前一位同学报的数加上了3.36.有一列数2,9,8,2,6,⋯从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9872⨯=的个位数字是2.问这一列数第2003个数是几?【答案解析】(20032)63333-÷=⋯,可以知道这一列数第2003个数为第333组后面的第3个数是“6”.答:这一列数第2003个数是6.故答案为:637.2017位同学从左到右排成一行,然后按如下规律从左向右报数:先让第一位同学报4,第二位同学报9,然后从第三位同学开始,每位同学都把自己前面两位同学所报的数相乘,再报出乘积的个位来.试问,最后一位同学报的是几?【答案解析】从第三个同学开始,他们依次报出的数为6、4、4、6、4、4、6⋯(20172)36712-÷=⋯即循环周中的第2个数是4.答:最后一位同学报的是4.38.(1)今天是3月1日,小明买了一些橙子,他如果每天吃3个,十多天能吃完,最后一天只吃2个;如果小明每天吃4个,不到十天就吃完了,最后一天吃了3个,那么,这些橙子原来有多少个?(2)小明好奇地看了看这一年3月份的日历,发现3月份有四个星期日,却有五个星期六,那么今天(3月1日)是星期几?【答案解析】(1)【3,4】12=,12336-=(个)⨯=,36135答:这些橙子原来有35个.(2)31473-⨯=3月3日是星期六,那么3月2日是星期五,3月1日是星期四答:今天(3月1日)是星期四.39.黑板上先写下一串数:1,2,3,⋯,100,如果每次都擦去最前面的6个,并在这串数的最后再写上擦去的6个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足6个.问:(1)最后黑板上剩下的这些数的和是多少?(2)最后所写的那个数是多少?【答案解析】依题意可知:(1)擦去1,2,3,4,5,6但是写上了21数字和没有变化.最后的数字和是123100+++⋯+的数字和为5050.(2)第一次擦下去的数字是1,2,3,4,5,6写上去的是21,第二次擦去的是7,8,9,10,11,12写上的数字是57.那么21与57的数字差为36.÷=⋯.说明擦去96个数字填上了16 个数字,这16个数字是以21位首项公差为100616436的等差数列.后来共20个数字.这20个数字为:97,98,99,100,21,57,93,129,165,201,237,273,309,345,381,417,453,489,525,561.然后20632÷=⋯.说明最后两个数字剩下了,新添加了3个数字,那么最后写的数字就是309,345,381,417,453,489的数字和为2394.答:(1)最后黑板上剩下的这些数的和是5050.(2)最后所写的那个数是2394.40.例2.根据下表中数的排列规律,在空格里填上适当的数.(1)13207917859(2)2475361261416【答案解析】(1)5914+=(2)(1416)260+⨯=故填14和60.41.按照下面的规律在黑板上写整数,:一开始写1,然后每一次操作在它后面写上比它大1的数.例如,一开始的时候,黑板上的数是1.第一次操作:比1大1的数是2,就在它后面写上2,现在黑板上的数是12;第二次操作:比黑板上的12大1的数是13,就在它后面连写上13,现在黑板上的数就是1213;以此类推⋯(1)请求出第三次操作后黑板上的数是多少?(2)当黑板上第一次出现“321”时,是在第几次操作之后?(3)请求出从左数第2016位数字是多少?【答案解析】(1)第二次操作:比黑板上的1213大1的数是1214,就是在它的后面写上1214,则需在黑板的数就是12131214答:第三次操作后黑板上的数是12131214.(2)黑板上的数是12,末位是12;第二次操作后,黑板上的数是1213,末两位是13;第三次操作后,黑板上的数是12131214,末两位14;⋯第n次操作后,黑板上的数的末两位是11n+,要想黑板出现“321”,须在末两位是32,与开头的1连起来才可以,第21。

找规律练习题及答案

找规律练习题及答案

找规律练习题一.数字排列规律题1. 4、10、16、22、28……,求第n位数( )。

2. 2、3、5、9,17增幅为1、2、4、8. 第n位数( )3. 观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是----,第n个数是---------。

4. 1,9,25,49,(),(),的第n项为(),5: 2、9、28、65.....:第n位数()6:2、4、8、16...... 第n位数. ()7:2、5、10、17、26……,第n位数. ()8 : 4,16,36,64,?,144,196,…?第一百个数()9、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。

10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?11. =8=16=24 ……用含有N的代数式表示规律()12. 12,20,30,42,( )127,112,97,82,( )3,4,7,12,( ),2813 . 1,2,3,5,( ),1314. 0,1,1,2,4,7,13,( )15 .5,3,2,1,1,( )16. 1,4,9,16,25,( ),4917. 66,83,102,123,( ) ,18. 1,8,27,( ),12519。

3,10,29,( ),12720, 0,1,2,9,( )21;( )。

则第n项代数式为:()22 , 2/3 1/2 2/5 1/3 ( )。

则第n项代数式为()23 , 1,3,3,9,5,15,7,( )24. 2,6,12,20,( )25. 11,17,23,( ),35。

26. 2,3,10,15,26,( )。

27. : 1,8,27,64,( )28. :0,7,26,63 ,( )29. -2,-8,0,64,( )30. 1,32,81,64,25,( )31. 1,1,2,3,5,( )。

找规律试题几道经典题目(含答案)

找规律试题几道经典题目(含答案)

1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○1 2 3n … … 第1个图第2个图第3个图 …○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档