运筹学第4章整数规划与分配问题解析

合集下载

运筹学——.整数规划与分配问题

运筹学——.整数规划与分配问题

2.4 匈牙利法实例(2)
第二步:找出矩阵每列的最小元素,再分别从各列中减去。
必定满足:bij = aij–ui–vj
0 11 2 0 0
8 0 3 11 0
7 5 0 11 10 4 2 5 0 9 5 0 5 0
8 2 5 0 5 4 3 0 0 11 4 5
二、分配问题与匈牙利法
2.3 匈牙利法
分配问题可以用单纯形法或运输表求解。 库恩(W.W.Kuhn)于1955年提出了指派问题的解 法,他引用了匈牙利数学家康尼格(D.Kö nig)一 个关于矩阵中零元素的定理:系数矩阵中独立0 元素的最多个数等于能覆盖所有0元素的最少直 线数。这个解法称为匈牙利法。
二、分配问题与匈牙利法
2.2 分配问题实例(1)
例:有一份中文说明书,需要译成英、日、德、 俄四种文字。现有甲、乙、丙、丁四人,他们 将中文说明书译成不同语种的说明书所需时间 如下,问应指派何人去完成工作,使所需总时 间最少? 人员
任务 译成英文 译成日文 译成德文 译成俄文 甲 乙 丙 丁 7 8 11 9 2 15 13 4 10 4 14 15 9 14 16 13
一、整数规划的特点及作用
1.2 0-1整数规划
某公司拟在市东、西、南三区建立门市部。拟 议中有7个位置(点)Ai供选择。规定
在东区,由A1,A2,A3三个点中至多选两个; 在西区,由A4,A5两个点中至少选一个; 在南区,由A6,A7两个点中至少选一个。
如选用Ai点,设备投资估计为bi元,每年可获利 润估计为ci元,但投资总额不能超过B元。 问:应如何选址,可使年利润为最大?
第一步:找出每 行的最小元素, 每行对应减去这 个元素。

运筹学 第四章整数规划与分配问题(研究生)

运筹学 第四章整数规划与分配问题(研究生)

若xj=0时,yj=0, 时 若xj>0时,yj=1。 时
逻辑变量在整数规划建模中的作用 1、 m个约束条件中只有 个起作用。 、 个约束条件中只有 个起作用。 个约束条件中只有k个起作用
∑a
j =1
n
ij
x j ≤ bi
( i = 1, 2, ..., m )
定义
第i个约束不起作用 yi = 0 否则
工厂选址问题: 例 3 工厂选址问题: 某商品有n 个销地,各销地的需求量为b 某商品有 个销地,各销地的需求量为 j 吨/天;现拟在 个 天 现拟在m个 地点中选址建生产厂,一个地点最多只能建一个工厂; 地点中选址建生产厂,一个地点最多只能建一个工厂;若选 i 地建厂,生产能力为 i 吨/天,固定费用为 i 元/天;已知 地建厂,生产能力为a 天 固定费用为d 天 已知i 地至第j 销地的单位运费为c 地至第 销地的单位运费为 ij元/吨。问如何选址和安排调运, 吨 问如何选址和安排调运, 才能使总费用最小? 才能使总费用最小? 设:yi=1,表示选择第i 地建厂, yi=0,表示不选择第i 地建 ,表示选择第 地建厂, ,表示不选择第 从厂址i 运量为x 总费用为z。 厂;从厂址 至销地 j 运量为 ij,总费用为 。
北京物资学院运筹学课件
第四章 整数规划与分配问题
Integer Programming and Assignment Problem
2010年11月 年 月
• 线性规划的决策变量取值可以是任意非负实数,但 线性规划的决策变量取值可以是任意非负实数, 许多实际问题中, 许多实际问题中,只有当决策变量的取值为整数时才 有意义。 有意义。 例如,产品的件数、机器的台数、装货的车数、 例如,产品的件数、机器的台数、装货的车数、完 成工作的人数等,分数或小数解显然是不合理的。 成工作的人数等,分数或小数解显然是不合理的。 • 要求全部或部分决策变量的取值为整数的线性规划 问题,称为整数线性规划 简称整数规划 整数线性规划, 整数规划(Integer 问题,称为整数线性规划,简称整数规划 Programming)。 。

Chapter04分配问题与整数规划.ppt

Chapter04分配问题与整数规划.ppt
证明思路 只证明(II)的最优解也是(I)的最优解,将cij用dij表示,注 意约束条件的特点,利用定义即可,具体过程见黑板。 [注意实际操作中ui+vj的限制]
19.03.2019
8
一个说明性的例子(构造等价效率矩阵-书P111)
dij 甲 cij 甲 乙 A 3 4 B 5 2 dij 甲 乙

A 0 2 A 0 1
B 2 0 B 3 0

定理4.3 (划线法求独立零元素集合,证明略) 在效率矩阵中,覆盖零元素的最少直线数等于位于不同行 不同列的0元素的最大个数。
19.03.2019 9
※匈牙利法求解分配问题-步骤1
Step1. 效率矩阵每行减去本行的最小元素,再从每列 减去本列的最小元素 ;
7 6 5 4 3 2 1 O 1 2 3 4 5 6 7 (3.25,2.5)
例1. 一个整数线性规划求解 的例子 max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值。 1 2
用凑整数的 枚举法是否 有效呢?
B 29 38 27 42 27
C 31 + 26 + 28 36 28
D 42 20 40 23 23
E 37 33 32 + 45 45
甲 乙 丙 丁 某人
+ 24
34
求解过程大家一起在黑板上完成
18
19.03.2019
整数规划 – 分枝定界法

整数线性规划的特点
① ②
可行解的集合是离散点,有限多个 x2 最优解未必在顶点达到

2 15 13 4

运筹学中的整数规划问题分析

运筹学中的整数规划问题分析

运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。

其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。

本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。

一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。

通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。

整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。

与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。

二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。

具体使用哪种方法需要根据问题的规模和特点来确定。

1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。

然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。

2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。

通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。

3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。

通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。

运筹学--第四章 整数规划与分配问题

运筹学--第四章 整数规划与分配问题

一、整数线性规划问题的提出
引例:生产组织计划问题与选址问题 例4-1(生产组织计划问题)某工厂在一个计划期 内拟生产甲、乙两种大型设备。除了A、B两种部件 需要外部供应且供应受到严格限制之外,该厂有充 分的能力来加工制造这两种设备所需的其余零件, 并且所需原材料和能源也可满足供应。每种设备所 用部件数量和部件的供应限额以及设备的利润由表 3-1-1给出。问该厂在本计划期内如何安排甲、乙 设备的生产数量,才能获取最大利润?
例4-3某人有一背包可以装10公斤重、0.025m3的物
品。他准备用来装甲、乙两种物品,每件物品的重 量、体积和价值如表4-3-1所示。问两种物品各装 多少件,所装物品的总价值最大?
表4-3-1 物品 甲 乙 重量 (公斤/每件) 1.2 0.8 体积 (m3/每件) 0.002 0.0025 价值 (元/每件) 4 3
应寻找仅检查可行的整数组合的一部分,就能定出 分支定界法可用于解纯整数或混合整数线性规划问
最优的整数解的方法。分支定界解法就是其中之一。
题。
–20世纪60年代初由Land Doig和Dakin等提出,是 解整数线性规划的重要方法之一。
–由于这方法灵活且便于用计算机求解,所以现在
它已是解整数规划的重要方法。
了。 但这常常是不行的,因为化整后不见得是可行解; 或虽是可行解,但不一定是最优解。 因此,对求最优整数解的问题,有必要另行研究。
例4-4 说明整数规划问题的求解不能直接在单纯形
法最优解的基础上四舍五入 求下述整数规划问题的最优解(P105)
max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值 1 2

运筹学(第4章 整数规划与分配问题)(1)

运筹学(第4章 整数规划与分配问题)(1)
运筹学基础及应用 ( Operations Research )
主讲:杨启明
第4章 整数规划与分配问题1Fra bibliotek2 3
整数规划的特点及应用
分配问题与匈牙利法
分枝定界法 割平面法 解0-1规划问题的隐枚举法
4
5




4.1.1 整数规划的模型分类 纯整数规划模型 0-1整数规划模型 混合整数规划模型 4.1.2 实例 投资决策问题 背包问题 4.1.3 解整数线性规划的困难性 4.1.4 逻辑变量在建模中的作用

x11 x23 x32 1其余的xij=0
问题: 如何产生并寻找这组位于不同行不同列的零元素?
匈牙利数学家克尼格(Konig)
基础: 两个基本定理 如果从分配问题效率矩阵[aij]的每一行元素中分别 减去(或加上)一个常数ui(被称为该行的位势), 从每一列分 别减去(或加上)一个常数vj(被称为该列的位势), 得到一个 新的效率矩阵[bij], 若其中bij=aij-ui-vj , 则[bij]的最优解等价 于[aij]的最优解 作用:
用图解法求出最优解为: x1=3/2, x2 = 10/3,且有Z = 29/6
现求整数解(最优解):如用舍 入取整法可得到4个点即(1, 3),(2,3),(1,4),(2,4)。显然, 它们都不可能是整数规划的最优 解。 按整数规划约束条件,其可行 解肯定在线性规划问题的可行域 内且为整数点。故整数规划问题 的可行解集是一个有限集,如右 图所示。其中(2,2),(3,1)点的目 标函数值最大,即为Z=4。
xij 1(i 1,, m) 第i人完成
m
x1j

x2j
xi1 xi2 xij xi m-1 xim

运筹学基础及应用第4章-整数规划与分配问题

运筹学基础及应用第4章-整数规划与分配问题

整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。

运筹学基础及应用_(第四章_整数规划与分配问题)

运筹学基础及应用_(第四章_整数规划与分配问题)
号与7号必须同时开采;
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理2 若矩阵A的元素可分成“0”与非“0”两部 分,则覆盖“0”元素的最少直线数等于位于不同 行不同列的“0”元素的最大个数。
证明:略。
下面以实例说明匈牙利法的解题步骤:
例2 有一份中文说明书,需译成英、日、德、俄四种文字, 现有甲、乙、丙、丁四人,他们将中文说明书翻译成不同 语种说明书所需时间如表4-2所示。问应指派何人去完成何 工作,使所需总时间最少?
令M为任意大的正数,则
n
aij x j bi Myi
j 1
y1 y2 ym m k
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。
② 约束条件的右端项可能是r个值 b1, b2 ,中, b的r 某一个
即:
n
aij x j b1
j 1, 2, , n i 1, 2, , n
指派问题是运输问题的特例,即n=m, aj=bi=1。可用 运输问题的解法去求解。根据分配问题的特点,下面给
出匈牙利法。
匈牙利法思路:若能在[Cij]中找出n个位于不 同行不同列的0元素(称为独立0元素),则令 解矩阵[xij]中对应这n个独立0元素的元素取 值为1,其他元素取值为0,则它对应目标 函数zb=0是最小的。这就是以[Cij]为系数矩 阵分配问题的最优解,也得原问题的最优 解。
或b2或或br
j 1
定义:
1 yi 0
假定约束右端项为 bi 否则
上述约束条件可表示为:
n
r
aij x j bi yi
j 1Leabharlann i 1y1 y2 yr 1
§2 分配问题与匈牙利法
2-1 问题的提出与数学模型 某单位需完成n项任务,恰好有n个人可承担这些任务。 由于每人的专长不同,完成任务不同,效率也不同。于 是产生应指派哪个人去完成哪项任务,使完成n项任务 的总效率最高(或所需总时间最小)。这类问题称为分配 问题或指派问题(assignment problem)。
第4章 整数线性规划
• §1 整数规划的特点及作用 • §2 分配问题与匈牙利法 • §3 分枝定界法 • §4 割平面法 • §5 应用举例
§1 整数规划的特点及作用
1、整数规划的特点
线性规划问题的最优解通常是非整数,但对某些具 体问题,要求解必须是整数。例如,所求解是机器的台 数、完成工作人数等问题,非整数解就不合要求。将非 整数解通过“舍入化整”,不见得是可行解,或虽是可 行解,但不一定是最优解。
设:用[cij]表示分配问题的效率矩阵,令
1 分配第i个人去完成第j项任务 xij 0 不分配第i个人去完成第j项任务
i 1, 2, , n; j 1, 2, , n
当问题要求极小化时,数学模型是:
nn
min Z
cij xij
i1 j1
n
xij 1
i 1 n
xij
1
j1 xij 0 或 1
因此,求整数最优解问题,有必要另行研究。我们 称此问题为整数线性规划(integer linear programming), 简称ILP。
整数线性规划中如果所有的变量都限制为(非负)整数, 就称为纯整数线性规划(pure integer linear programming)或称为全整数线性规划(all integer linear programming);
② 打( )号的0元素个数小于m,但未被划去的0元素之间存 在闭回路,这时可顺着闭回路的走向,对每个间隔的0元 素打一( )号,然后对所有打( )号的0元素,或所在行,或 所在列画一条直线。
n n
nn
z
bij xij
cij i v j xij
i1 j1
i1 j1
nn
n
n
n
n
cij xij i xij v j xij
i1 j1
i1 j1
j1 i1
nn
n
n
cij xij i v j
i1 j1
i1
j 1
第一项是[cij]解的目标函数 z,后两项是常数,因而,当 z 达到最小值时,相应地 z 也达到最小值。
4
15 13
9
4
0 8 7 5
11 0 10 4
0 3 5 0
0
11
9
5
0050
0 8 2 5
11 0 5 4
2 3 0 0
0
11
4
5
第3步:若找出n个独立0元素,就以这些元素对应解矩阵[xij] 中的元素为1,余为0,得最优解。否则,按下列步骤解决
(1) 从第一行开始,若该行只有一个0元素,就对这个元素打 上( )号,对打上( )号0元素所在列画一条直线。若该行没 有0元素或有两个以上0元素(已划去的不计在内),则转下 一行,依次进行到最后一行。
表4-2
人员 甲 乙 丙 丁
任务
英文
2 10 9 7
日文
15 4 14 8
德文
13 14 16 11
俄文
4 15 13 9
第1步:找出效率矩阵每行的最小元素,并分别从每行 中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2
15
4
14
8
4
13 14 16 1111
(2) 从第一列开始,若该列只有一个0元素,就对这个元素打 上( )号,对打上( )号0元素所在行画一条直线。若该列没 有0元素或有两个以上0元素(已划去的不计在内),则转下 一列,依次进行到最后一列。
重复(1)、(2)两步,可能出现三种情况:
① 效率矩阵每行都有一个打( )号的0元素,此时,令对应 打( )号0元素的xij=1,得到最优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
证明:将从[bij]中得到的解代入目标函数
如果仅一部分变量限制为整数,则称为混合整数规划 (mixed integer linear programming)。
2、逻辑变量在数学模型中的作用
① m个约束条件中只有k个起作用
设m个约束条件可表为:
n
aij x j bi
j 1
i 1, 2, , m
定义
1 假定第i个约束条件不起作用 yi 0 假定第i个约束条件起作用
相关文档
最新文档