运筹学——.整数规划与分配问题

合集下载

运筹学-12分配问题

运筹学-12分配问题

具体求解过程(6)
• 4.没有找到m个独立的 “0”:
• (1)找最小直线覆盖所有 “0”
• 对没有打的行画横线; • 所有打的列画上垂线. • 找到了覆盖矩阵所有零
元素的最小直线数.

(0) 8 2 5 11 (0) 5 4 2 3 (0) 0 0 11 4 5
O3 26 17 16 19 0
增加一个虚拟工作T5
O4 19 21 23 17 0 O5 17 18 19 17 0
每一个工人干 这项工作需 要的时间比其他工作所需时 间要多的多,为什么?
O2下岗,
O1T1, T5 , O3T3 , O4T4 , O5T2 ,93-27=66
人员少,工作岗位多的情况P.125/4.5
• 如该列没有零元素或有 两个以上零元素(划去的不 计在内),则专下一列,直到 最后一列为止.
0 8 2 5 11 0 5 4 2 3 0 0 0 11 4 5
(0) 8 2 5 11 (0) 5 4 2 3 0 0 0 11 4 5 .
具体求解过程(4)

总时间:101

•加一个虚拟人员戊,
39 34
38 27
26 28
20 40
33 32
其效率为55(最大) 丁 24 42 36 23 45
甲B;乙D;丙C;丁A;戊E 戊 0 0
0
0
0
总时间:165-55=101
人员少,工作岗位多的情况P.125/4.5

25 29 31 42 37 25 0 4 6 17 12 0 4 5 17 7
• 即做2.找到m个独立
“0”

运筹学中的整数规划问题分析

运筹学中的整数规划问题分析

运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。

其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。

本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。

一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。

通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。

整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。

与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。

二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。

具体使用哪种方法需要根据问题的规模和特点来确定。

1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。

然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。

2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。

通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。

3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。

通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。

运筹学复习考点

运筹学复习考点
状态值,各条弧代表了可行的方案选择。 • 正确。
整理课件
59
• (4)动态规划的基本方程是将一个多阶段的决策问题转化为一系列具 有递推关系的单阶段决策问题。
• 正确。 • (5)建立动态规划模型时,阶段的划分是最关键和最重要的一步。 • 错误。 • (6)动态规划是用于求解多阶段优化决策的模型和方法,这里多阶段
• 错误。
• 唯一最优解时,最优解是可行域顶点,对应基本可行解;无穷多最优 解时,除了其中的可行域顶点对应基本可行解外,其余最优解不是可 行域的顶点。
• (12)若线性规划问题具有可行解,且其可行域有界,则该线性规划 问题最多具有有限个数的最优解。
• 错误。
• 如果在不止一个可行解上达到最优,它们的凸组合仍然是最优解,
结束时间不允许有任何延迟。 • 正确。 • (10)网络关键路线上的所有作业,其总时差和自由时差均为零。 • 正确。 • (11)任何非关键路线上的作业,其总时差和自由时差均不为零。 • 错误。
整理课件
57
• (12)若一项作业的总时差为零,则其自由时差一定为零。 • 正确。 • (13)若一项作业的自由时差为零,则其总时差比为零。 • 错误。 • (14)当作业时间用a,m,b三点估计时,m等于完成该项作业的期
既可以是时间顺序的自然分段,也可以是根据问题性质人为地将决策 过程划分成先后顺序的阶段。
• 正确。
整理课件
60

整理课件
61
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理课件
62
5 3 6 -6 0
0
801001
5
14 1 2 0 0 0
-6
4 0 1 -1 1 0

运筹第四章整数规划与分配问题

运筹第四章整数规划与分配问题
x1 ≤ 4 + y1 M x2 ≥ 1 − y1 M x1 > 4 − y2 M x ≤ 3+ y M 2 2 y1 + y2 = 1
i=1,2
则问题可以表示为
4 用以表示含固定费用的函数 总费用
K j + c j x j ( x j > 0) Cj(xj ) = ( x j = 0) 0
则上述条件可以表示成
r n ∑ aij x j ≤ ∑ b; y + ... + y = 1 m 2 1
3、 两组条件中满足其中的一组 、
若 x1 ≤ 4, 则 x2 ≥ 1
若 x1 > 4, 则 x2 ≤ 3
定义
1 第i组条件不起作用 yi = 0 第i 组 条件 起作 用
0 0 X = 1 0 0 0 1 1 0 0 0 0 0 0 1 0
用矩阵形式表示为: 用矩阵形式表示为: 解矩阵
一般分配问题 设有n项任务 需有n个人去完成 项任务, 个人去完成, 设有 项任务,需有 个人去完成,每个人只能完成一 项任务,每项任务只能由一个人去完成,设第i人完成 项任务,每项任务只能由一个人去完成,设第 人完成 项任务需要的时间是a 第j 项任务需要的时间是 ij , 问如何分配才能使完成任 务的总时间最少? 务的总时间最少? 设
2. 整数规划问题的特征与性质
特征—变 特征 变量整数性要求 来源 问题本身的要求 引入的逻辑变量的需要 性质—可 性质—可行域是离散集合
3. 整数规划的分类
纯整数规划 要求全部决策变量的取值都为整数, 要求全部决策变量的取值都为整数 则称为纯整数规划 (All IP); ; 混合整数规划 仅要求部分决策变量的取值为整数,则称为混合整数规 仅要求部分决策变量的取值为整数, 划(Mixed IP); ; 0-1整数规划 整数规划 要求决策变量只能取0或 值 则称为0-1规划 规划(0-1 要求决策变量只能取 或1值,则称为 规划 Programming)。 。

运筹学基础及应用第4章-整数规划与分配问题

运筹学基础及应用第4章-整数规划与分配问题

整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。

运筹学基础-整数规划(2)

运筹学基础-整数规划(2)

【例 2 】求解 0-1 规划最优解
minZ= 4x1+3x2 +2x3 2x1 -5x2+3x3 ≤4 (1) 4x1 + x2+3x3 ≥3 (2) x2+x3 ≥1 (3) x1 , x2 , x3 =0或 1
解: 先将问题化为如下的标准问题
minZ= 4x1+3x2 +2x3 2x1 - 5x2+3x3 ≤4 (1) - 4x1 - x2 - 3x3 ≤-3 (2) (3) - x2 - x3 ≤ - 1 x1 , x2 , x3 =0或 1
0 13 aij-列min 6 (0) 0 (0) 5 0 0 1 (0) 7 0 6 9 3 2 0 (0) 0 2 15 10 4 9 14 7 8 13 14 16 11 4 15 13 9
(a)从行开始,对只有一个的零元素,打上(),用直线划去所在列 (b)再从列开始,对只有一个的零元素,打上(),用直线划去所在行
∑ ∑
指派问题的解法--匈牙利法 指派问题的解法--匈牙利法 --
从时间表(效率表)出发构建效率矩阵 效率矩阵。 效率矩阵
时间表
任务 人员 甲 乙 丙 丁 E 2 10 9 7 J 15 4 14 8 G 13 14 16 11 R 4 15 13 9
2 15 10 4 9 14 7 8
13 14 16 11
分配表
任务 人员 甲 乙 丙 丁
合计
E x11 x21 x31 x41 1
i
J x12 x22 x32 x42 1
G x13 x23 x33 x43 1
ij x ij
R x14 x24 x34 x44 1
合计
1 1 1 1

运筹学基础及应用_(第四章_整数规划与分配问题)

号与7号必须同时开采;
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next

运筹学 第4章 整数规划与分配问题


匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356

运筹学习题解答(chap4 整数规划与分配问题)

第四章 整数规划与分配问题一、建立下列问题的数学模型1、P143, 4.1 利用0-1变量对下列各题分别表示成一般线性约束条件 (a) 221≤+x x 或53221≥+x x ; (b) x 取值0,3,5,7中的一个; (c) 变量x 或等于0,或50≥; (d) 若21≤x ,则12≥x ,否则42≤x ; (e) 以下四个约束条件中至少满足两个:6225433121≥+≥≤≤+x x x x x x ,,,。

解:(a) 设⎩⎨⎧=否则。

,个条件起作用;第1i ,0y i (i=1,2),M 为任意大正数。

则有 ⎪⎩⎪⎨⎧=+≥++≤+1y y My -5x 3x 2My 2x x 21221121(b) 设⎩⎨⎧=≠=ix i x y i ,1,0,7,5,3,0=i ,则原条件可表示为⎩⎨⎧=++++++=1753075307530y y y y y y y y x(c) 设⎩⎨⎧≥==50,10,0x x y ,则原条件可表示为⎪⎩⎪⎨⎧≥--≥≤0)1(50x M y x yM x(d)⎩⎨⎧=否则。

,组条件起作用;第1i ,0y i (i=1,2),M 为任意大正数。

则有⎪⎪⎪⎩⎪⎪⎪⎨⎧=++≤->-≥+≤.1,4,2,1,22122211211y y My x My x My x My x (e)设⎩⎨⎧=个条件不成立第个条件成立第i ,1i ,0y i ,4,3,2,1i =,则原条件可表示为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤+++-≥+-≥+≤+≤+2y y y y My 6x x My 2x M y 2x M y 5x x 43214433321121 2、P143, 4.2 某钻井队要从以下10个可供选择的井位确定5个钻井探油,目的是使得总的钻探费用最小。

若10个井位代号为101S ,...,S ,相应的钻探费用为101C ,...,C ,并且井位的选择要满足下列条件:(1)或选择1S 和7S ,或选择8S ;(2)选择了3S 或4S 就不能选择5S ,反过来也一样; (3)在10962S ,S ,S ,S 中最多只能选两个。

第四章整数规划与分配问题习题


1
0
X1 32/7 1 0 0 1/7 -1/7 0
X3 11/7 0 0 1 1/7 -22/7 0
S1 -4/7 0 0 0 [-1/7] -6/7 1
Cj—Zj
0 0 0 -1
-8
0
X2 3
0
00
1
0
X1 4 1 0 0 0
-1 1
X3 1 0 0 1 0
-4 1
X4 4 Cj—Zj
0001 0000
解:
(1)
LP(1)
1 x1 = 39
7 x2 = 29
5 Z1 = 329
z = 32 5 9
z = 28
x1≤3 LP(4) x1 = 3 x2 = 2 z4 = 28
剪去
x2≤2
x2≥3
LP(2) 1
x1 = 32 x2 = 2
z2 = 31
LP(3) 2
x1 = 25
x2 = 3 4
z3= 315
x3* = (1,2)T , z * = 3 由于表 3(b)中一非基变量x5的检验数为 0,故让x5进量,用单纯形法迭代一次,得另一最优解
(见表 4):
x3* = (2,1)T , z * = 3
8、 用完全枚举法求解 0—1 规划问题.
max z = 3x1 − 2x2 + 5x3 s.t. x1 + 2x2 − x3 ≤ 2
变换效益矩阵:
⎛0 1 2 3⎞⎛0 ⎞ ⎛0 1 2 3⎞ ⎛ⓞ Ø 2 3 ⎞
Ci'j
=
⎜ ⎜ ⎜
7 8
6 9
5 9
4 8
⎟ ⎟ ⎟
⎜ ⎜ ⎜
−4 −8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、整数规划的特点及作用
1.2 0-1整数规划
某公司拟在市东、西、南三区建立门市部。拟 议中有7个位置(点)Ai供选择。规定
在东区,由A1,A2,A3三个点中至多选两个; 在西区,由A4,A5两个点中至少选一个; 在南区,由A6,A7两个点中至少选一个。
如选用Ai点,设备投资估计为bi元,每年可获利 润估计为ci元,但投资总额不能超过B元。 问:应如何选址,可使年利润为最大?
第三步:从第一列开始,若该列只有一个零元素,对零元 素打上()括号(同样不考虑已划去的零元素),再用直线划 去其所在行;若该列没有零元素或有两个零元素,则转下 一列,依次进行到最后一列为止。
二、分配问题与匈牙利法
2.4 匈牙利法实例(5)
1. 效率矩阵每行都有一个打() 的零元素, 这些零元素都位于不同行不同列,令对 应打() 零元素的 xij=1 就得到最优解; 2. 矩阵中所有零元素或被划去,或被打上 () ,但打() 的零元素少于m个,这时转 第四步。 3. 打()的零元素小于m,但未被划去的零元 素之间存在闭回路。
i 1 j 1 某项任务只能由1人完成; m 某人只能完成1项任务。 xij 1 (i 1,, m)
j 1 建立整数规划模型 m 分配问题是0-1整数规划的 xij 1 ( j 1,, m) i 1 特例,也是运输问题的特 xij 0 或 1 (i 1,, m; j 1,, m) 例; n = m, aj = bj = 1。
例:某线性规划问题最优解为(x1, x2) = (4.6, 5.5),用凑整法需要比较与上述数据最接近的 几种组合:(4, 5), (4, 6), (5, 5), (5, 6), 共四种组合。若问题中有10个整数变量,则解 组合达到210 = 1024个整数组合。且最优解未 必在这些组合中。
例:求整数规划问题的最优解 max z 3 x1 2 x2 2 x1 3 x2 14 x1 0.5 x2 4.5 x , x 0, 且均取整数值 1 2
二、分配问题与匈牙利法
2.2 分配问题实例(1)
例:有一份中文说明书,需要译成英、日、德、 俄四种文字。现有甲、乙、丙、丁四人,他们 将中文说明书译成不同语种的说明书所需时间 如下,问应指派何人去完成工作,使所需总时 间最少? 人员
任务 译成英文 译成日文 译成德文 译成俄文 甲 乙 丙 丁 7 8 11 9 2 15 13 4 10 4 14 15 9 14 16 13
二、分配问题与匈牙利法
2.3 匈牙利法的基本思想
如果效率矩阵的所有元素aij≥0, 而其中存在一组位于不 同行不同列的零元素,则只要令对应于这些零元素位 置的xij = 1,其余的xij= 0,则所得到的可行解就是问 题的最优解。
0 9 23 7
14 20 0 12
9 0 3 14
二、分配问题与匈牙利法
2.4 匈牙利法实例(6)
顺着闭回路的走向,对每个间隔的零元素打 (),然后对 所有打()的零元素或所在行或所在列画一条直线,同样得 到最优解。
二、分配问题与匈牙利法
2.4 匈牙利法实例(7)
第四步:继续按照定理1,对矩阵进行变换。
从矩阵未被直线覆盖的数字中找出一个最小的数k;对矩 阵的每行,当该行有直线覆盖时,令ui=0,无直线覆盖的, 令ui=k;对矩阵中有直线覆盖的列,令vj= -k,对无直线覆 盖的列,令vj=0。 只有一条直线 覆盖的元素保 持不变
2.4 匈牙利法实例(2)
第二步:找出矩阵每列的最小元素,再分别从各列中减去。
必定满足:bij = aij–ui–vj
0 11 2 0 0
8 0 3 11 0
7 5 0 11 10 4 2 5 0 9 5 0 5 0
8 2 5 0 5 4 3 0 0 11 4 5
二、分配问题与匈牙利法
2.3 匈牙利法
分配问题可以用单纯形法或运输表求解。 库恩(W.W.Kuhn)于1955年提出了指派问题的解 法,他引用了匈牙利数学家康尼格(D.Kö nig)一 个关于矩阵中零元素的定理:系数矩阵中独立0 元素的最多个数等于能覆盖所有0元素的最少直 线数。这个解法称为匈牙利法。
第四章 整数规划及分配问题
第二节 分配问题与匈牙利法
二、分配问题与匈牙利法
2.1 分配问题(1)
指派n个人去完成n项任务,使完成 n项任 务的总效率最高(或所需总时间最少),这 类问题称为指派问题或分配问题。
安排工作(派工):有n项加工任务,怎样 指派到n台机床上完成; 有n条航线,怎样指定n艘船去航行的; ……
这时,分数或小数的解就不合要求,我们称这
样的问题为整数规划。
例:某厂拟用集装箱托运甲乙两种货物,每箱的体积、 重量、可获利润以及托运所受限制如下表: 问两种货物各托运多少箱,可使获得的利润为最大?
货物
甲 乙 托运 限制 体积 米3/箱 重量 利润 百斤/箱 百元/箱
MaxZ 20x1 10x 2 ST : 5 x1 4 x 2 24 2 x1 5 x 2 13 x ,x 0,且为整数 1 2
二、分配问题与匈牙利法
2.4 匈牙利法实例(1)
人员 任务 译成英文 译成日文 译成德文 译成俄文 甲 2 15 13 4 乙 10 4 14 15 丙 9 14 16 13 丁 7 8 11 9
2 10 9 7 15 4 14 8 [aij ] 13 14 16 11 4 15 13 9
效率矩阵用[aij]表示。aij > 0 ( i,j = 1,2,…,n )表示 指派第j人去完成第i项任务时的效率(时间、成 本等)。
二、分配问题与匈牙利法
2.2 分配问题实例(3)
1,分配第 i 个人去完成第 j 项任务 xij 0,不分配第 i 个人去完成第 j 项任务 m m (i 1, , m;j 1,, m) min z aij xij
一、整数规划的特点及作用
1.2 0-1整数规划
1 解:设x j 0 选Ai 不选Ai
MaxZ c1 x1 c 2 x 2 c7 x7 b1 x1 b2 x 2 b7 x7 B x x x 2 2 3 1 ST : x 4 x5 1 x x 1 7 6 x j 1或0, ( j 1, ,7)
二、分配问题与匈牙利法
2.4 匈牙利法实例(8)
第五步:回到第三步,迭代运算,直到矩阵的每一行都有 一个打() 的零元素为止。
最优分配方案为:甲译俄文,乙译日文,丙译英文,丁译 德文。所需时间为:4 + 4 + 9 + 11 = 28h
二、分配问题与匈牙利法
2.5 人数和任务数不相等的分配问题
有四项工作分配给六个人去完成,每个人分别完成各 项工作的时间如下,依然规定每个人完成一项工作。 每项工作只交给一个人去完成。即六个人中挑选哪四 个人去完成,花费时间最少。
主要内容
一、整数规划的特点及作用 二、分配问题与匈牙利法 三、分枝定界法 四、应用举例
第四章 整数规划及分配问题
第一节 整数规划的特点及作用
一、整数规划的特点及作用
1.1 整数规划的概念
整数规划(Integer Programming) :决策变 量要求取整数的线性规划。
如果所有的决策变量、技术系数和右端项都 是非负整数,就称为纯整数规划。 如果所有的决策变量都是非负整数,技术系 数和右端项为有理数,称为全整数规划。 如果仅一部分决策变量为整数,则称为混合 整数规划。 如果变量取值仅限于0或1,称为0-1整数规划。
0-1整数规划的一般形式:
MaxZ C T X Ax b ST : x j 1或0, ( j 1, , n)
0-1整数规划一般都 是纯整数规划。
一、整数规划的特点及作用
1.3 整数规划的作用
0-1整数规划在管理领域具有重要作用
1. m个约束条件中只有k个起作用; 2. 约束条件的右端项可能是r个值(b1, b2, … br) 中的某一个; 3. 两组条件中满足一组; 4. 用以表示含固定费用的函数。
解:用图解法得最优解为(3.25 , 2.5) 如果不考虑整数约束(称为整数规划 问题的松弛问题) (4,1) 凑整法求解:比较四个点(4 , 3), (4 , 2),(3 , 3),(3 , 2),前三个 都不是可行解,第四个虽然是可行解, 但 z=13 不是最优解。
最优解为(4 , 1), z*= 14。
3 23 8 0
显然令 x11=1, x23=1, x32=1, x44=1,即 将第一项工作分配给甲,第二项给丙, 第三项给乙,第四项给丁。这时完成 总工作的时间为最少。 如何寻找这组位于不同行不同列的零 元素?
二、分配问题与匈牙利法
2.3 匈牙利法的基本定理
定理1 如果从分配问题效率矩阵[aij]的每一行 元素中分别减去(或加上)一个常数ui(被称为该 行的位势),从每一列分别减去(或加上)一个常 数vj(被称为该列的位势),得到一个新的效率矩 阵[bij],若其中bij = aij –ui–vj,则[bij]的最 优解等价于[aij]的最优解。 定理2 若矩阵A的元素可分为“0”和非“0”两 部分,则覆盖“0”元素的最少直线数等于位于 不同行不同列的“0”元素的最大个数。
5 4 24
2 5 13
20 10
能否先不考虑对变量的整数约束,作为一般线性 规划来求解,当解为非整数的时候可以用“四舍 五入”或“凑整”方法寻找最优解?
对于变量取值很大时,用上述方法得到的解 与最优解差别不大;但当变量取值较小时,得 到的解就可能与实际整数最优解差别很大。 当问题规模较大(决策变量较多)时,用 “凑整”方法来算工作量很大。
相关文档
最新文档