运筹学 整数规划( Integer Programming )

合集下载

割平面法-运筹学整数规划

割平面法-运筹学整数规划

第二节 分枝定界法(Branch and Bound method)
引言:穷举法对小规模的问题可以。大规模问题则不行。
一、基本思想和算法依据
基本思想是:先求出相应的线性规划最优解,若此解不 符合整数条件,则其目标函数的值就是整数规划问题最优值 的上界,而任意满足整数条件的可行解的目标函数值将是其 下界(定界),然后将相应的线性规划问题进行分枝,分别 求解后续的分枝问题。如果后续分枝问题的最优值小于上述 下界, 则剪掉此枝; 如果后续某一分枝问题的最优解满足整数 条件,且其最优值大于上述下界,则用其取代上述下界,继
s .t
2 x1 x1 , x 2
x2 0
6
x1 , x 2取整数
19
解: 1 求解相应的线性规划得
cj
4
CB
XB
b
x1
0
x3
20
4
0
x4
6
2
检验数
0
4
0
x3
8
0
4
x4
3
1
检验数
-12
0
3
x2
8 /3
0
4
x1
5 /3
1
检验数
-4 4 /3
0
3
0
0
x2
x3
x4
5
1
0
1
0
1
3
0
0
3
1
-2
1 /2
-3x3 - x4 -3 引 得入松弛变量x5,将其加入到原规划的约束条件中,利用上述最终1表5
cj
1
CB
XB
b
x1
0
x3
1

运筹学常用的方法

运筹学常用的方法

运筹学常用的方法运筹学(Operations Research)是一门研究如何优化决策和资源分配的学科。

在实践中,运筹学常常使用一系列方法来解决问题。

以下是一些常用的运筹学方法:1. 线性规划(Linear Programming):线性规划是一种优化方法,用于求解线性约束条件下的最优解。

它的目标是最大化或最小化一个线性函数,同时满足一组线性等式或不等式约束条件。

2. 整数规划(Integer Programming):整数规划是线性规划的扩展,其中变量被限制为整数。

这种方法常用于需要作出离散决策的问题,如物流路线选择、生产安排等。

3. 优化理论(Optimization Theory):优化理论是研究最优化问题的数学理论。

它提供了一系列算法和技术,用于确定最优解的存在性、性质和求解方法。

4. 模拟(Simulation):模拟是通过构建模型来模拟实际系统的运行过程,以评估各种决策方案的效果。

它可以帮助决策者理解系统的行为和特性,并支持决策的制定。

5. 排队论(Queueing Theory):排队论研究等待行为和排队系统的性能。

它可以用于评估服务系统的效率、确定最优的服务策略,并优化资源的分配。

6. 博弈论(Game Theory):博弈论研究决策者在竞争或合作情境下的行为和策略选择。

它可以用于分析决策者之间的相互作用、制定最优策略,以及预测他们的行为。

7. 图论(Graph Theory):图论研究图和网络的性质和算法。

它可以应用于许多问题领域,如路径规划、资源分配、网络流等。

除了上述方法,运筹学还可以使用统计分析、模糊数学、决策树等技术来解决问题。

根据具体问题的特点和需求,运筹学方法可以相互组合和扩展,以提供更准确和有效的解决方案。

《运筹学》第6章 整数规划

《运筹学》第6章 整数规划
整数规划(Integer Programming,简称IP),是 要求全部或部分决策变量为整数的规划。整数规 划分为线性整数规划和非线性整数规划。本章只 介绍线性整数规划,简称为整数规划。
整数规划分为两大类:一般整数规划与0-1整数规 划(Binary Integer Programming,简称BIP)。
6.3 0-1整数规划
例6.2 分公司选址问题。某销售公司打算通过在武汉 或长春设立分公司(也可以在两个城市都设分公司) 以增加市场份额,管理层同时也在考虑建立一个配送 中心(也可以不建配送中心),但配送中心地点限制 在新设分公司的城市。
经过计算,每种选择使公司收益的净现值和所需费 用如表6-2所示。总的预算费用不得超过1000万元。目 标是在满足以上约束的条件下使总的净现值最大。
100万元 500万元
2
大型飞机
500万元 5000万元 没有限制
可获得的总资金 1亿元
6.1 整数规划基本概念、分类与解的特点
解:
(1)决策变量
设小型飞机与大型飞机的购买 数量分别为x1、x2(架)。 (2)目标函数
目标是年总净利润最大。
M ax z x1 5 x2
(3) 约束条件 ① 资金限制 ② 小型飞机数量限制(最多
在长春设立分公司 在武汉设立分公司 在长春建配送中心 在武汉建配送中心
净现值(万元) 800 500 600 400
所需资金(万元) 600 300 500 200
6.3 0-1整数规划
解:
(1)决策变量
本题的决策变量是是非决策的0-1决策变量,每一个决策只有 两种选择,是或者否,1表示对于这个决策选择“是”,0表 示对于这个决策选择“否” 。
是非决策问题

运筹学08整数规划

运筹学08整数规划

8.2 整数规划的应用
二、固定成本问题
例5.高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为 金属板、劳动力和机器设备,制造一个容器所需的各种资源的数量如表 所示。不考虑固定费用,每种容器售出一只所得的利润分别为 4万元、5 万元、6万元,可使用的金属板有500吨,劳动力有300人/月,机器有 100台/月,此外不管每种容器制造的数量是多少,都要支付一笔固定的 费用:小号是l00万元,中号为 150 万元,大号为200万元。现在要制定 一个生产计划,使获得的利润为最大。
8.2 整数规划的应用
解:1) 设xiA、xiB、xiC、xiD ( i =1,2,3,4,5)分别表示第 i 年年初给项目 A,B,C,D的投资额; 设yiA, yiB,是0—1变量,并规定取 1 时分别表示第 i 年给A、B投资, 否则取 0( i = 1, 2, 3, 4, 5)。 设yiC 是非负整数变量,并规定:第2年投资C项目8万元时,取值为4; 第 2年投资C项目6万元时,取值3;第2年投资C项目4万元时,取值2; 第2年投资C项目2万元时,取值1;第2年不投资C项目时,取值0; 这样我们建立如下的决策变量: 第1年 A x1A B C D x1D 第2年 x2A 第3 年 x3A x3B x2C=20000y2C x2D x3D 第4年 第5年 x4A x4D x5D
8.3整数规划与线性规划的关系


从数学模型上看,整数规划似乎是线性规划的一 种特殊情况,求解只需在线性规划解的基础上, 通过舍入取整,寻求满足整数要求的解即可。 但是实际上整数规划与线性规划之间确实有着很 大的不同,通过舍入取整得到的整数解也不一定 就是整数规划问题的最优解,有时甚至不能保证 所得的解是整数可行解.例98 Nhomakorabea1

运筹学模型的类型

运筹学模型的类型

运筹学模型的类型运筹学模型是指通过数学方法来描述和解决复杂问题的一种工具。

根据问题的性质和要求,运筹学模型可以分为以下几种类型:1. 线性规划模型(Linear Programming Model,简称LP):线性规划是一种优化问题,它的目标是在满足一些约束条件下,使某个线性函数取得最大或最小值。

线性规划模型广泛应用于生产调度、资源分配、物流运输等领域。

2. 整数规划模型(Integer Programming Model,简称IP):整数规划是线性规划的扩展,它要求决策变量只能取整数值。

整数规划模型常用于生产调度、排产计划、网络设计等问题。

3. 非线性规划模型(Nonlinear Programming Model,简称NLP):非线性规划是一种优化问题,它的目标函数和约束条件都可以是非线性的。

非线性规划模型广泛应用于经济学、金融学、工程学等领域。

4. 动态规划模型(Dynamic Programming Model,简称DP):动态规划是一种优化方法,它将一个复杂问题分解为若干个子问题,并逐步求解这些子问题。

动态规划模型常用于生产调度、资源分配、投资决策等问题。

5. 排队论模型(Queuing Theory Model,简称QT):排队论是一种研究等待线性的数学理论,它可以用来描述和分析顾客到达、服务时间、系统容量等因素对系统性能的影响。

排队论模型广泛应用于交通运输、通信网络、医疗卫生等领域。

6. 决策树模型(Decision Tree Model,简称DT):决策树是一种分类和回归的方法,它可以将一个问题分解为若干个子问题,并逐步求解这些子问题。

决策树模型常用于金融风险评估、医学诊断、市场营销等领域。

总之,不同类型的运筹学模型适用于不同的问题领域和求解目标,选择合适的模型可以帮助我们更好地解决实际问题。

运筹学基础及应用_(第四章_整数规划与分配问题)

运筹学基础及应用_(第四章_整数规划与分配问题)
号与7号必须同时开采;
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next

运筹学4整数规划

运筹学4整数规划
24
例4.4 对如下整数规划
max z x1 x2 x1 x2 1 s.t 3 x1 x2 4 x , x 0, x , x 为整数 1 2 1 2
17
步骤1:不考虑整数条件,引入松弛变量 x3 , x4,
化为标准形式,用单纯形法求解得到: 表4-2
xB
x1
b
3/4
x1
1
x2
0
x3
-1/4
x4
1/4
x2
7/4
0
0
1
0
3/4
-1/2
1/4
-1/2
最优解为: x1
3/ 4, x2 7 / 4

18
步骤2:
最优表中 x1 1/ 4x3 1/ 4x4 3/ 4 -1/4 -整数和非负真分数之和
x1 x3 3/ 4x3 1/ 4x4 3/ 4
5
解:设 x i (i 1, 2,,7) 表示是否在位置i 建立门市 部,有 ,当Ai点被选用 i 1, 2,, 7 1 xi 0,当Ai点没被选用
则可以建立如下的数学模型:
max z c i x i
i 1
7
目标函数表示寻求获利最大
x1 x 2 x 3 2 s.t x 4 x5 1 x6 x7 1 x i 0或1
问题(B1)和(B2)的可行域中包含了原整数 规划问题的所有整数可行解,而在 4 x1 5中不 可能存在整数可行解。
10
分别求解这两个线性规划问题,得到的解是:
x1 4, x2 2.1, z 349 和 x1 5, x2 1.57, z 341 变量 x2 仍不满足整数的条件,对问题(B1), 必有 x2 3或x2 2,将(B1)增加约束条件,得到

运筹学的优化算法

运筹学的优化算法

运筹学的优化算法运筹学是一门研究如何对复杂问题进行优化的学科,通过利用数学、统计学和计算机科学等方法,运筹学可以帮助解决各种决策和优化问题。

在该领域中,存在着许多不同的优化算法,下面将介绍其中几种常见的算法。

1. 线性规划(Linear Programming,LP):线性规划是一种常见的数学规划方法。

它的目标是优化一个线性目标函数,同时满足一组线性约束条件。

通过将问题转化为标准形式(即将约束条件和目标函数都表示为线性等式或不等式),线性规划可以使用诸如单纯形法、内点法等算法进行求解。

2. 整数规划(Integer Programming,IP):整数规划是一种在线性规划的基础上,引入了变量为整数的约束条件。

这样的问题更具挑战性,因为整数约束使得问题成为NP困难问题。

针对整数规划问题,常用的方法包括分支定界法、回溯法、割平面法等。

3. 非线性规划(Nonlinear Programming,NLP):与线性规划不同,非线性规划的目标函数或约束条件至少有一个是非线性的。

非线性规划的求解需要使用迭代算法,例如牛顿法、拟牛顿法、遗传算法等。

这些算法通过逐步优化解来逼近最优解。

4. 动态规划(Dynamic Programming,DP):动态规划通过将问题分解为子问题,并使用递归方式求解子问题,最终建立起最优解的数学模型。

动态规划方法常用于具有重叠子问题和最优子结构性质的问题。

例如,背包问题、最短路径问题等。

5. 启发式算法(Heuristic Algorithm):启发式算法是一种近似求解优化问题的方法,它通过启发式策略和经验知识来指导过程,寻找高质量解而不必找到最优解。

常见的启发式算法包括模拟退火算法、遗传算法、粒子群算法等。

6. 蒙特卡洛模拟(Monte Carlo Simulation):蒙特卡洛模拟是一种基于概率的数值模拟方法,用于评估随机系统中的不确定性和风险。

它通过生成大量随机样本,并使用这些样本的统计特征来近似计算数学模型的输出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组成两个新的松弛问题,称为分枝。新的松弛问题具有特征:当原问题 是求最大值时,目标值是分枝问题的上界;当原问题是求最小值时,目 标值是分枝问题的下界。
检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
割平面法的内涵:
Page 18
通过找适当的割平面,使得切割后最终得到这样的可行域( 不一定一次性得到), 它的一个有整数坐标的顶点恰好是 问题的最优解.
-Gomory割平面法
例: 求解
max z x1 x2 s.t. x1 x2 1
3x1 x2 4 x1 , x2 0, 整 数
1 x1 3/4 1 0 -1/4 1/4 0
1 x2 7/4 0 1 3/4 1/4 0
0 x5 -3 0 0 -3 -1 1
0 0 -1/2 -1/2 0
由对偶单纯形法, x5为换出变量, x3为换入变量, 得Page 29
cj CB XB b 1 x1 1 1 x2 1 0 x3 1
1 100 0 x1 x2 x3 x4 x5 1 0 0 1/3 1/12 0 1 0 0 1/4 0 0 1 -1 -1/3 0 0 0 -1/2 -1/6
收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
也是有效的.
分支定界法
Page 33
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下
一步; 2)分支与定界:
任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1

x1
,
x2

0
整数规划的特点及应用
整数规划图解法
x2
Page 14
3
2
1
B
A
1 2 3 4 5 6 7 x1
整数规划的特点及应用
图解法的启示:
Page 15
① A(4.8,0)点是LP问题的可行解,不是IP问 题的可行解,B(4,1)才是IP的最优解
②纯整数规划的可行解就是可行域中的整数点
其基本的步骤是:
(1) 把约束条件中所有的系数整数化;
(2) 不考虑决策变量的整数约束条件, 增加线性约束条件 (cutting plane), 使得原可行域中切割掉一部分,这部分只
包含非整数部分,但没有切割掉任何整数可行解;
(3) 求解上面的LP问题,若所得的最优解为整数, 则该解也 是原整数规划问题的最优解;否则, 转(2)
③非整数点不是可行解,对于求解没有意义,故 切割掉可行域中的非可行解,不妨碍整数规划问 题的优化
IP问题的最优解不优于LP问题的最优解
整数规划的特点及应用
整数规划问题的求解方法: 分支定界法和割平面法 匈牙利法(指派问题)
Page 16
解纯整数规划的割平面法
Page 17
割平面法的基础仍然是用解LP的方法去解整数规划问题.
从而得到
Page 32
xi Nik xk - Ni fi - fik xk
k
k
(3) 由变量(包括松驰变量)的非负整数条件, 从而可得
fi - fik xk 0
k
上式即为所要求的切割方程 割平面法是Gomory在1958年提出的, 当时引起了人们广
泛注意, 但至今完全用它解决实际问题仍是少数, 因为其
要求每人做一项工作,约束条件为:
x11 x12 x13 x14 1

x x
21 31

x22 x32

x23 x33

x24 x34

1 1
x41 x42 x43 x44 1
整数规划的特点及应用
每项工作只能安排一人,约束条件为:
x41 x42 x43 x44 200y2

x
i
j

0
(i, j 1,2,3,4)
yi 0,1 (i 1,2)
Page 8
混合整数规划问题
整数规划的特点及应用
Page 9
例4.3 指派问题或分配问题。人事部门欲安排四人到四个不 同岗位工作,每个岗位一个人。经考核四人在不同岗位的成 绩(百分制)如表所示,如何安排他们的工作使总成绩最好。
数规划。不考虑整数条件,由余下的目标函数和约束条件构
成的规划问题称为该整数规划问题的松弛问题。若该松弛问
题是一个线性规划,则称该整数规划为整数线性规划。
整数线性规划数学模型的一般形式:
n
max Z(或minZ ) c j x j j1


n
aij x j
bi
(i 1.2m)
j1
s.t. x1 x2 x3
1
3x1 x2 x4
4
3x3 x4 x5 3
x1 , x2 , x3 , x4 , x5 0
将所得等式约束加入到原标准化的松驰问题的最P优age单28 纯 形表之中,得
cj
1 1 000
CB XB b x1 x2 x3 x4 x5
Page 12
整数规划问题解的特征:
整数规划问题的可行解集合是它松弛问题可行解集合的一 个子集,任意两个可行解的凸组合不一定满足整数约束条件, 因而不一定仍为可行解。
整数规划问题的可行解一定是它的松弛问题的可行解(反 之不一定),但其最优解的目标函数值不会优于后者最优解 的目标函数值。
整数规划的特点及应用
Page 26
3 4


3 4
x3

1 4
x4


0

3x3 x4 3
上式就是所要求的一个切割方程(割平面).
引入松驰变量x5, 从而可得到一等式约束条件,将所Pag得e 27等 式约束加入到原标准化的松驰问题之中, 得到如下新的 松驰问题.
max z x1 x2
Page 30
显然,上表为最优单纯形表,且x1,x2的值已为整数, 从而知 原IP问题的最优解为(1,1), 最优值为2
问题的关键是求切割方程
求切割方程的步骤归纳为:
Page 31
(1) 令xi是相应的松驰问题最优解中为分数值的一个基变
量, 由单纯形表的最终表得到
xi aik xk bi
推论:对于目标最大化的纯整数或混合整数规划,其最优 目标值≤松弛问题的最优目标值;对于目标最小化,其最 优目标值≥松弛问题的最优目标值。
整数规划的特点及应用
Page 5
整数规划的典型例子 例4.1 某厂拟用火车装运甲、乙两种货物集装箱,每箱的体积、 重量、可获利润以及装运所受限制如下:
货物集装箱 体积(立方米) 重量(百斤) 利润(百元)
列单纯形表得: (初始单纯形表)
Page 20
cj
11 00
CB XB b x1 x2 x3 x4
0 x3 1 -1 1 1 0
0 x4 4 3 1 0 1
011 00
(最终单纯形表)
Page 21
cj
11 00
CB XB b x1 x2 x3 x4
1 x1 3/4 1 0 -1/4 1/4
1 x2 7/4 0 1 3/4 1/4

x12

x22

x32

x42

400

x13

x23

x33

x43

300
x14 x24 x34 x44 150
s.t


x11 x21

x12 x22

x13 x23

x14 x24

400 600

x
31

x32

x33

x34

200 y1
1 若建工厂
yi 0
(i 1,2) 若不建工厂
再设xij为由Ai运往Bj的物资数量,单位为千吨;z表示总费用, 单位万元。
则该规划问题的数学模型可以表示为:
整数规划的特点及应用
44
minz
c xij ij [1200y1 1500y2 ]
i1 j1
x11 x21 x31 x41 350
工作
人员
A
B
C
D

85
92
73
90

95
87
78
95

82
83
79
90

86
90
80Βιβλιοθήκη 88整数规划的特点及应用
Page 10

1
xij 0
数学模型如下:
分配第i人做j工作时 不分配第i人做j工作时
max Z 85x11 92x12 73x13 90x14 95x21 87 x22 78x23 95x24 82x31 83x32 79x33 90x34 86x41 90x42 80x43 88x44
x4
7 4
Page 24
将系数和常数项均分解成整数与真分数之和移项,P以age上25 两式变为:
x1

x3

3 4


3 4
x3

1 4
x4
相关文档
最新文档