运筹学第四章整数规划和分配问题a

合集下载

运筹第四章整数规划与分配问题

运筹第四章整数规划与分配问题
x1 ≤ 4 + y1 M x2 ≥ 1 − y1 M x1 > 4 − y2 M x ≤ 3+ y M 2 2 y1 + y2 = 1
i=1,2
则问题可以表示为
4 用以表示含固定费用的函数 总费用
K j + c j x j ( x j > 0) Cj(xj ) = ( x j = 0) 0
则上述条件可以表示成
r n ∑ aij x j ≤ ∑ b; y + ... + y = 1 m 2 1
3、 两组条件中满足其中的一组 、
若 x1 ≤ 4, 则 x2 ≥ 1
若 x1 > 4, 则 x2 ≤ 3
定义
1 第i组条件不起作用 yi = 0 第i 组 条件 起作 用
0 0 X = 1 0 0 0 1 1 0 0 0 0 0 0 1 0
用矩阵形式表示为: 用矩阵形式表示为: 解矩阵
一般分配问题 设有n项任务 需有n个人去完成 项任务, 个人去完成, 设有 项任务,需有 个人去完成,每个人只能完成一 项任务,每项任务只能由一个人去完成,设第i人完成 项任务,每项任务只能由一个人去完成,设第 人完成 项任务需要的时间是a 第j 项任务需要的时间是 ij , 问如何分配才能使完成任 务的总时间最少? 务的总时间最少? 设
2. 整数规划问题的特征与性质
特征—变 特征 变量整数性要求 来源 问题本身的要求 引入的逻辑变量的需要 性质—可 性质—可行域是离散集合
3. 整数规划的分类
纯整数规划 要求全部决策变量的取值都为整数, 要求全部决策变量的取值都为整数 则称为纯整数规划 (All IP); ; 混合整数规划 仅要求部分决策变量的取值为整数,则称为混合整数规 仅要求部分决策变量的取值为整数, 划(Mixed IP); ; 0-1整数规划 整数规划 要求决策变量只能取0或 值 则称为0-1规划 规划(0-1 要求决策变量只能取 或1值,则称为 规划 Programming)。 。

运筹学--第四章 整数规划与分配问题

运筹学--第四章 整数规划与分配问题

一、整数线性规划问题的提出
引例:生产组织计划问题与选址问题 例4-1(生产组织计划问题)某工厂在一个计划期 内拟生产甲、乙两种大型设备。除了A、B两种部件 需要外部供应且供应受到严格限制之外,该厂有充 分的能力来加工制造这两种设备所需的其余零件, 并且所需原材料和能源也可满足供应。每种设备所 用部件数量和部件的供应限额以及设备的利润由表 3-1-1给出。问该厂在本计划期内如何安排甲、乙 设备的生产数量,才能获取最大利润?
例4-3某人有一背包可以装10公斤重、0.025m3的物
品。他准备用来装甲、乙两种物品,每件物品的重 量、体积和价值如表4-3-1所示。问两种物品各装 多少件,所装物品的总价值最大?
表4-3-1 物品 甲 乙 重量 (公斤/每件) 1.2 0.8 体积 (m3/每件) 0.002 0.0025 价值 (元/每件) 4 3
应寻找仅检查可行的整数组合的一部分,就能定出 分支定界法可用于解纯整数或混合整数线性规划问
最优的整数解的方法。分支定界解法就是其中之一。
题。
–20世纪60年代初由Land Doig和Dakin等提出,是 解整数线性规划的重要方法之一。
–由于这方法灵活且便于用计算机求解,所以现在
它已是解整数规划的重要方法。
了。 但这常常是不行的,因为化整后不见得是可行解; 或虽是可行解,但不一定是最优解。 因此,对求最优整数解的问题,有必要另行研究。
例4-4 说明整数规划问题的求解不能直接在单纯形
法最优解的基础上四舍五入 求下述整数规划问题的最优解(P105)
max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值 1 2

运筹学——.整数规划与分配问题45页PPT

运筹学——.整数规划与分配问题45页PPT

谢谢!
运筹学——.整数规划与分配 问题
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
ห้องสมุดไป่ตู้35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

运筹学基础及应用第4章-整数规划与分配问题

运筹学基础及应用第4章-整数规划与分配问题

整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。

运筹学基础及应用_(第四章_整数规划与分配问题)

运筹学基础及应用_(第四章_整数规划与分配问题)
号与7号必须同时开采;
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next

运筹学课件第四节0—1型整数规划

运筹学课件第四节0—1型整数规划
T (1,1,...,1) T , 选择( A1,...An) ( x1 ,...x n ) T : T (1,1,...,0 ) T , 选择( A1,...A n)
例:固定费用问题 有三种产品被用于生产三种产品,资源量、产品单件费用、 资源消耗量以及生产产品的固定费用。要求制定一个生产计 划,总收益最大。
,先加工某种产品 0 yj ( j 1 ,2 ,3 ,4 ) 1 ,先加工另外产品 机床1:x11+a11≤x21+My1 ; x21+a21≤x11+M(1-y1) 机床2:x22+a22≤x32+My2 ; x32+a32≤x22+M(1-y2) 机床3:x13+a13≤x33 +My3 ; x33+a33≤x13+M(1-y3) 机床4:x14+a14≤x24 +My4 ; x24+a24≤x14+M(1-y4) 当y1=0,表示机床1先加工产品1,后加工产品2;当y1=1,表示机床1先 加工产品2,后加工产品1.
4 求解: 7 C 6 6 6
8
7
9 17 9 12 7 14 9 12
15 12 14 10 8 7 6 10 10 6
第一步 造0 各行各列减其最小元素
0 0 0 0 0
4 3 2 10 3 1 3 6 8 6
11 7 2 0 4
第四节
0—1型整数规划
一、0-1变量及其应用 某些特殊问题,只做是非选择,故变量设置简化为0或1, 1代表选择,0代表不选择。
选取某个特定方案 1, 当决策选取方案 x 0 , 当决策不选取方案 问题含有较多的要素, 每项要素有 2 种选择,用 0 1变量描述。 有限要素 E1, E 2 ,...E n , 每项 E j 有两种选择 A j , A j 1, E j 选择 A j xj 0 , E j 选择 A j

运筹学 第4章 整数规划与分配问题

运筹学 第4章 整数规划与分配问题

匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356

运筹学第四章--整数规划和分配问题(新)aPPT课件

运筹学第四章--整数规划和分配问题(新)aPPT课件

-
1
整数线性规划的一般形式: n max(或min)z cj xj j 1
n
aij xj ( 或 )bi (i 1,2,...m)
j 1
xj 0( j 1,2,...n),且部分或全部取整数
例1.求下述整数规划问题的最优解
max z 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5
先不考虑整数解的限制,用单纯形法求 解其松弛问题,如果求得的解恰好是整数解, 则得整数规划最优解,停止计算。否则,将 松弛问题分解为两个子问题(也称后继问 题),每个子问题都是在原松弛问题的基础 上增加一个变量取整数的约束条件,这样就 缩小了原来的可行域,然后用单纯形法求解, 直至得到最终结果。
-
21
-
23
例.用分枝定界法求下述数整规划问题的最优
maxz 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5 x1, x2 0,且均取整数值
-
24
-
25
-
26
-
27
-
28
-
29
第四节 割平面法 一、割平面法的基本思想
先不考虑整数条件,用单纯形法求解其 松弛问题,若得整数解,即得整数规划最优 解。否则,增加线性约束条件(称为割平面 方程),将原问题的可行域切割掉一部分, 被切割掉的都是非整数解,再用单纯形法求 解新的线性规划问题,依次进行下去,直到 使问题的最优解恰好在可行域的某个具有整 数坐标的顶点上得到。
0.5 + 0.4 x4 + 0.4 x5≥ 1
-
35
2. 借助单纯形表法
对求解整数规划问题的松弛问题(LP问题)得到
最优单纯形表,设xi=bi 是最优解中取分数值(分数 部分最大)的基变量,则有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 重复1.、2.两个步骤,可能出现三种情况: (1)若能找到m个位于不同行不同列的0元素(即 带( )的0元素),则令(0)处的xij=1,求解结 束; (2)若有形成闭回路的0元素,则任选一个打 ( ),然后对每个间隔的0元素打( ),同时 对打( )的0元素所在行(或列)画一条直线。 (3)若位于不同行不同列的0元素[即带( )的0 元素]少于m,转第四步。
决策变量全部取整数,约束系数和约束常数项 可取非整数的整数线性规划。
纯整数线性规划可化为全整数线性规划。 3. 混合整数线性规划
决策变量中有一部分取整数值,另一部分可取 非整数值的整数线性规划。 4. 0-1整数线性规划
决策变量只能取0或1的整数线性规划。
三、0-1变量(或称逻辑变量)在模型中 的应用
设原整数规划问题为IP,其松弛问题为L0。 用单纯形法求L0,若L0无可行解,则IP也无可 行解,计算停止。若求得L0为整数解,则得IP 的最优解,停止。否则,转下一步; 第二步 分枝与定界
在L0的解中,任选一个不满足整数条件的 变量xi,设xi = bi ,则做两个子问题
L1,xi bi L2,xi bi1
先不考虑整数解的限制,用单纯形法求 解其松弛问题,如果求得的解恰好是整数解, 则得整数规划最优解,停止计算。否则,将 松弛问题分解为两个子问题(也称后继问 题),每个子问题都是在原松弛问题的基础 上增加一个变量取整数的约束条件,这样就 缩小了原来的可行域,然后用单纯形法求解, 直至得到最终结果。
二、分枝定界法的步骤(最大值问题) 第一步 寻找替代问题并求解
则分配问题的数学模型为
mm
min z
a ij x ij
i1 j1
m
x ij 1 ( i 1 , 2 ,...,
m)
j1
m
x ij 1 ( j 1 , 2 ,...,
m)
i1
x
ij
0 或 1,( i ,
j
1 , 2 ,...,
m)
பைடு நூலகம்
2-2 匈牙利法 定理1.如果从分配问题效率矩阵(aij)的每一 行元素中分别减去(或加上)一个常数ui (称为该行的位势);从每一列中分别减去 (或加上)一个常数 vj (称为该列的位 势);得到一个新的效率矩阵bij,其中bij= aij - ui - vj ,则aij的最优解等价于bij的 最优解。
不考虑整数条件,用单纯形法求解两个 子问题,若得整数解或子问题的最优值小于 前面分支中已计算得到的所有整数解的目标 函数最大值,则停止分枝;否则,选取所有 子问题中目标函数值最大的问题作为L0继续 分枝,直至得到整数规划的最优解。 第三步 剪枝
整数规划模型对研究管理问题有重
要意义。很多不能归结为线性规划数学 模型的管理问题,却可以通过设置逻辑 变量建立起整数规划数学模型。
第二节 分配问题(指派问题)与匈牙利法 2-1 问题的提出及数学模型
假设有m项任务分配给m个人去完成,并 指定每个人完成其中一项,每项任务也只由 一个人完成,问应如何分配任务,才能使总 效率最高?(或总费用最少,花费的总时间 最少等等。)
定理2. 若效率矩阵A的元素可分成0与非0两 部分,则覆盖所有0元素的最少直线数等于位 于不同行不同列的0元素的最大个数。
匈牙利法的步骤: 第一步 效率矩阵每行都减去该行的最小元素; 第二步 效率矩阵每列都减去该列的最小元素;
此时,效率矩阵的每行每列都有0元素。
第三步 寻找位于不同行不同列的0元素,也就是 寻找能覆盖所有0元素的最少直线数。 方法: 1. 从只有一个0元素的行开始,对0元素打上( ) 号,然后对打( )的0元素所在列画一条直线, 依次进行到最后一行; 2. 从只有一个0元素的列开始,对0元素打上( ) 号, 然后对打( )的0元素所在行画一条直线, 依次进行到最后一列;
运筹学第四章整数规划 和分配问题a
整数线性规划的一般形式: n max(或min)z cj xj j 1
n
aij xj ( 或 )bi (i 1,2,...m)
j 1
xj 0( j 1,2,...n),且部分或全部取整数
例1.求下述整数规划问题的最优解
max z 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5 x1, x2 0,且均取整数值
不考虑整数要求时, 最优解为: X=(3.25 ,2.5)T Z=13 (见下页图解法) 考虑整数要求时,最优解为: X=(4 ,1)T Z=14 凑整 (3,2)可行,非最优,Z=13。
(4,3),(4,2),(3,3) 不可行
二、整数规划的分类 1. 全整数线性规划
决策变量全部取整数,约束系数和约束常数项 也取整数的整数线性规划。 2. 纯整数线性规划
3. 对求最大值问题的处理
设目标函数为
mm
maxz
aijxij
可将其变换为
i1 j1 mm
minz'
(aij)xij
i1 j1
此时,效率矩阵的元素全成为负值,不符合要
求,根据定理1,令 Mma aijx
变换后的效率矩阵每行都加M即可。
作业:P126 4.7(a) 4.8(a) 第三节 分枝定界法 一、分枝定界法的基本思想
第四步 为产生m个位于不同行不同列的0元素, 用定理一对效率矩阵进行调整,使之生成新的0 元素。方法: 1. 在效率矩阵未被直线覆盖的元素中找出最小 元素k; 2. 效率矩阵未被直线覆盖的行都减k; 3. 效率矩阵被直线覆盖的列都加k; 4. 转回第三步。
2-3 特殊情况的处理 1. 人数多于任务数,加虚拟任务。 设有n人,m项任务,n>m,则增加n-m项任务。 2. 人数少于任务数,加虚拟人员。 设有n人,m项任务,n<m,则增加m-n项任务。
设每个人完成不同任务的耗费见下面的 效率矩阵,通常要求aij≥0。
a11 a12 ... a1m
A
aij
mm
a21 ...
a22 ...
...
a2m
... ...
am1 am2 ... amm
又 x ij 设 1 0 ,, 分 不i人 配 分 i人 去 第 配 去 j项 j项 完 第 完 任 任 ( 成 i,j成 务 1 ,2 务 第 ,.第 m .; ).。 ,
相关文档
最新文档