人教版初一数学上册第四章测验题
人教版七年级上册数学第四章测试题

A B C D人教版七年级数学测试卷(考试题)第四章几何知识初步测试题选择题:(30分)1.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是()A.垂线段最短 B.两点确定一条直线C.两点之间,直线最短 D.两点之间,线段最短2.点C在线段AB上,下列条件中不能确定....点C是线段AB中点的是A、 AC =BCB、 AC +BC= ABC、 AB =2ACD、 BC =AB3.下列图形中,是棱锥展开图的是4.如果一个角的补角是120°,那么这个角的余角是()(A)30°(B)40°(C)50°(D)60°5、下列四个角最有可能与70°角互补的是()6圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线211 24AA·····BCD EBACDO1237、将一个正方体的表面沿某些棱剪开,展成一个平面图形,至少要剪开()条棱。
A. 3;B. 5;C. 7;D. 9;8、已知点C是直线AB上一点,AB=6cm,BC=2cm,那么AC的长是()A. 2cm;B. 4cm;C. 8cm;D. 4cm或 8cm;9、如图,点C为线段AB上一点, AC︰CB=3︰2,D、E两点分别为AC、AB的中点,若线段DE=2cm,则AB 的长为()A.8 cmB.12 cmC.14 cmD. 10 cm10、如图,将一副三角尺按不同位置摆放,摆放方式中∠与∠互余的是()填空题:(24分)11、若一个多边形内角和等于12600,则该多边形边数是。
12、如图是正方体的展开图,则原正方体相对两个面上的数字之和得最小值的是。
13、如图,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有条线段,条射线。
14、如图,点C是线段AB上一点,D、E分别是线段AC,BC的中点,若AB=10cm,AD=2cm,则CE= .15、一个锐角是38°,则它的余角是。
人教七年级数学上册试卷第四章测试卷

第四章测试卷时间:90分钟满分:100分一、选择题(每小题3分,共36分)1.下列几何体中,从正面看和上面看都为矩形的是( B )2.经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( A )A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短D.两点确定一条射线3.下面的等式成立的是( C )A.26°12'42″=26.124 2°B.26°50'=26.5°C.78°30'÷4=19°37'30″D.15°14'38″×4.5=67.5°5'51″4.如图是由相同小正方体组成的立体图形,它的左视图为( A )5.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是( D )6.在直线l 上顺次取A ,B,C 三点,使得AB=5 cm,BC=3 cm,如果O 是线段AC 的中点,那么线段OB 的长度是( B )A.0.5 cmB.1 cmC.1.5 cmD.2 cm7.如果点C 在线段AB 上,那么下列各表达式中:①AC =BC;②AC =AB;③AC+BC =AB;④AB =2AC,能表示点C 是线段AB 的中点的有( B )A.1个B.2个C.3个D.4个8.如果一个角的补角是140°,那么这个角的度数是( B )A.20°B.40°C.70°D.130°9.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC 等于( A )10.如图,OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式中正确的是( D )11.如图所示,B,C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN =a,BC=b,则线段AD的长是( B )A.2(a-b)B.2a-bC.a+bD.a-b12.钟表在8:25时,时针与分针的夹角度数是( B )A.101.5B.102.5C.120D.125二、填空题(每小题3分,共18分)13.如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去 1 或2 或6 (填序号).14.如图,点A ,B,C 在直线l 上,则图中共有 3 条线段,有 6 条射线.15.如图,B 处在 A 处的南偏西40°方向,C 处在A 处的南偏东12°方向,C 处在B 处得北偏东80°方向,则∠ACB 的度数为 88° .16.如图,直线AB 与CD 相交于点O,∠AOD =50°,则∠BOC= 50° .17.往返于A ,B 两地的客车,中途停靠四个站,共有 15 种不同的票价,要准备 30 种车票.18.钟表上11时40分钟时,时针与分针的夹角为 110 度.三、解答题(共46分)19.(7分)下面的几何体是用 7 个大小相同的小正方体搭成的,请你在右边的方格中画出该几何体的三种视图.20.(7分)已知,B,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm,求CM 和AD的长.AD =5 =AM -AB =5 =6 cm,所以解:设AB=2,CD =3 =MD =123x=6,解得D -CD =5x-3x=2),AD =10).21.(8分)计算:(1)90°-78°19'40″; (2)34°25'20″×3+35°42';解:(1)90°-78°19'40″=89°59'60″-78°19'40″=11°40'20″; (2)34°25'20″×3+35°42'=102°75'60″+35°42'=103°16'+35°42'=138°58';(3)132°26'42″-41.325°×3; (4)95°37'21″-60°52'40″.解:(3)132°26'42″-41.325°×3=132°26'42″-123.975°=132°26'42″-123°58'30″=8°28'12″;(4)95°37'21″-60°52'40″=95°36'81″-60°52'40″=94°96'81″-60°52'40″=34°44'41″.22.(8分)如图,∠AOC 与∠BOC 互余,OD 平分∠BOC,∠EOC=2∠AOE.(1)若∠AOD =75°,求∠AOE 的度数;(2)若∠DOE=54°,求∠EOC 的度数.解:设∠AOE =x,∵∠EOC =2∠AOE,∴∠EOC =2x,∴∠AOC = ∠AOE +∠COE =3x,∵∠AOC与∠BOC互余,∴∠BOC =90°-3x,∵OD平分∠BOC,∴∠COD=12∠BOC=45°-32x.(1)若∠AOD =75°,则∠AOD =∠AOC+∠COD =75°,即3x+45°-32x=75°,解得x=20°,即∠AOE 的度数为20°;(2)若∠DOE=54°,则∠DOE=∠EOC+∠COD =54°,即2x+45°-32x=54°,解得x=18°,2x=36°,即∠EOC 的度数是36°.23.(8分)射线OA 表示的方向是北偏东15°,射线OB 表示的方向是北偏西40°.(1)若∠AOC=∠AOB,则射线OC 表示的方向是北偏东70° ;(2)若射线OD 是射线OB 的反向延长线,则射线OD 表示的方向是南偏东40° ;(3)∠BOD 可以看作是由OB 绕点O 逆时针方向旋转至OD 形成的角,作∠BOD 的平分线OE;(4)在(1),(2),(3)的条件下,求∠COE 的度数.解:(3)如图所示,OE 为∠BOD 的平分线;(4)∵∠AOB=55°,∠AOC=∠AOB,∴∠BOC=110°.∴∠COD =180°-110°=70°.又∵射线OD 是OB 的反向延长线,∴∠BOD =180°,∵射线OE 平分∠BOD ,∴∠DOE=90°,∴∠COE=∠DOE+∠COD =90°+70°=160°.24.(8分)如图,B 是线段AD 上一动点,沿A →D →A 的路线以2 cm/s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm,设点B 的运动时间为t s(0≤t ≤10).(1)当t=2时,求线段AB 和线段CD 的长度; (2)用含t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 的中点为E,则EC 的长是否变化? 若不变,求出EC 的长;若发生变化,请说明理由.解:(1)∵B 是线段AD 上一动点,沿A →D →A 以2 cm/s 的速度往返运动,∴ 当t=2时,AB =2×2=4(cm);∵AD =10cm,AB=4cm,∴BD=10-4=6(cm),∵C 是线段BD 的中点,∴CD=12BD =12×6=3 (cm);(2)∵B 是线段AD 上一动点,沿A →D →A 以 2 cm/s 的速度往返运动,∴当0≤t ≤5时,AB =2t;当5<t ≤10时,AB=10-(2t-10)=20-2t;(3)不变.∵AB 中点为E,C 是线段BD 的中点,∴EC=12(AB+BD)= 12AD =12×10=5 (cm).。
人教版七年级上册数学第四章《几何图形》单元测试卷(Word版,含答案)

人教版七年级上册数学第四章《几何图形》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共十小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的.)1.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象2.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.3.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.4.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是()A.∠1=∠3B.∠1=∠2C.∠1<∠2D.∠2=∠35.如图是顺义区地图的一部分,小明家在怡馨家园小区,小宇家在小明家的北偏东约15°方向上,则小宇家可能住在()A.裕龙花园三区B.双兴南区C.石园北区D.万科四季花城6.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学7.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形,其中作法错误的为()A.B.C.D.9.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC的余角是()A.15°B.30°C.45°D.75°10.某乡镇的4个村庄A,B,C,D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四二、填空题(本大题共10小题,每小题2分,共20分)11.有一正角锥的底面为正三角形.如果这个正角锥其中两个面的周长分别为27,15,则此正角锥所有边的长度和为.12.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是.13.如图是一个立方体的平面展开图形,每个面上都有一个自然数,且相对的两个面上两数之和都相等,若13,9,3的对面的数分别是a,b,c,则a2+b2+c2﹣ab﹣ac﹣bc的值为.14.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.15.经过A,B两点的直线上有一点C,AB=10,CB=6,D和E分别是AB,BC的中点,则DE 的长是.16.上午8:30钟表的时针和分针构成角的度数是.17.下列几何体属于柱体的有个.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的七个点最多可确定条直线.19.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).20.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.三、解答题(21 ~23题每题7分,25题8分,26题8分,27题8分)21.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M,N分别是线段AC,BC的中点,求MN的长度.22.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,已知正方体相对两个面上的代数式的值相等.求a+的值.。
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)

七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)班级姓名(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.(2022独家原创)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线2.(2021江苏镇江中考)如图所示,该几何体从上面看到的图形是( )A.正方形B.长方形C.三角形D.圆3.(2022甘肃白银期末)如图,观察图形,下列结论中不正确的是( )A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>ADD.射线AC和射线AD是同一条射线4.如图所示,小于平角的角有( )A.9个B.8个C.7个D.6个5.(2022山东临沂沂水期末)如图,OA表示北偏东25°方向,OB表示南偏西50°方向,则∠AOB的度数是( )A.165°B.155°C.135°D.115°6.建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是( )A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分7.如图,下列各式中错误的是( )A.∠AOB<∠AODB.∠BOC<∠AOBC.∠COD>∠AODD.∠AOD>∠AOC8.(2022北京怀柔期末)如图是某个几何体的展开图,该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或310.时钟显示为8:20时,时针与分针所夹的角是( )A.130°B.120°C.110°D.100°二、填空题(每小题3分,共30分)11.(2022独家原创)篮球运动员将篮球抛出后在空中形成一道弧线,这说明的数学原理是.12.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.13.(2022山东济南历下期末)计算:30°12'=°.14.如图,从A地到B地有①,②,③三条线路,其中最短的线路是(填“①”“②”或“③”),理由是.15.(2022北京通州期末)如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有条.16.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.17.如图所示,图中有条直线, 条射线, 条线段.18.(2021湖北黄冈期末模拟)如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC= 度.19.如图,C,D是线段AB上两点,若BC=4cm,AD=7cm,且D是BC的中点,则AC的长等于cm.20.(2022安徽合肥蜀山期末)在同一平面内,∠AOC=∠BOD=50°,射线OB在∠AOC的内部,且∠AOB=20°,OE平分∠AOD,则∠COE的度数是.三、解答题(共40分)21.(5分)如图,已知不在同一直线上的四个点A、B、C、D.(1)画直线AD;(2)连接AB;(3)画射线CD;(4)延长线段BA至点E,使BE=2BA;(5)反向延长射线CD至点F,使DC=2CF.22.(2022北京东城期末)(5分)若一个角的补角是它的余角的6倍,求这个角的度数.23.(6分)如图,点O为直线AB上的一点,已知∠1=65°15',∠2=78°30',求∠1+∠2-∠3的大小.24.(2022广西玉林博白期末)(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.25.(8分)如图,已知线段AC=12cm,点B在线段AC上,满足BC=1AB.2(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.26.(8分)点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处,射线OC平分∠MOB.(1)如图(a),若∠AOM=30°,求∠CON的度数;(2)在图(a)中,若∠AOM=α,直接写出∠CON的度数(用含α的式子表示);(3)将图(a)中的直角三角板OMN绕顶点O顺时针旋转至图(b)的位置,一边OM在直线AB上方,另一边ON在直线AB下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.图(a) 图(b)参考答案1.C 由平面图形变成立体图形的过程是面动成体.2.C 从上面看该几何体,所看到的图形是三角形.3.B 题图中有6条线段,故选B.4.C 符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,共有1+2+1+1+2=7个,故选C.5.B 由题意得∠AOB=25°+90°+40°=155°.6.B 用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,依据是两点确定一条直线.7.C 因为OC在∠AOD的内部,所以∠COD<∠AOD,故C错误,符合题意.8.B 从展开图可知,该几何体有五个面,两个三角形的面,三个长方形的面,因此该几何体是三棱柱.9.D 如图1,DE=3;如图2,DE=5.故选D.图1 图210.A 8:20时,时针与分针之间有4+2060=133个大格,故8:20时,时针与分针所夹的角是30°×133=130°,故选A.11.点动成线解析将篮球看成一个点,这种现象说明的数学原理是点动成线.12.3解析因为AC=AB+BC=8+4=12,所以AC=3BC.13.30.2解析因为1°=60',所以12'=0.2°,所以30°12'=30.2°. 14.①;两点之间,线段最短解析从A地到B地最短的线路是①,依据是两点之间,线段最短.15.3解析如图所示:所以满足条件的直线共有3条.16.(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC解析(1)因为O是直线AB上一点,OC是∠AOB的平分线,∠AOB=90°,所以∠AOC=∠BOC=12所以∠AOD+∠DOC=90°,即∠AOD与∠DOC互余.(2)∠AOD+∠BOD=180°,∠AOC+∠BOC=180°,即∠AOD与∠BOD互补,∠AOC与∠BOC互补.17.1;6;6解析题图中有1条直线,为直线AD;6条射线,分别为以A为端点的3条,以B为端点的1条,以D为端点的2条;6条线段,分别是AB、AC、AD、BC、CD、BD.18.180解析∠AOB+∠DOC=∠AOD+∠DOC+∠BOC+∠DOC=∠AOC+∠DOB=90°+90°=180°.19.5解析因为D是线段BC的中点,BC=4cm,BC=2cm,所以CD=12因为AD=7cm,所以AC=7-2=5(cm).20.15°或65°解析①当OD与OC在OA的同侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD+∠AOB=70°,因为OE平分∠AOD,∠AOD=35°,所以∠AOE=12所以∠COE=∠AOC-∠AOE=15°;②当OD与OC在OA的异侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD-∠AOB=30°,因为OE平分∠AOD,所以∠AOE=1∠AOD=15°,2所以∠COE=∠AOC+∠AOE=65°.综上所述,∠COE的度数为15°或65°.21.解析如图所示.22.解析设这个角为x°,根据题意,得180-x=6(90-x),解得x=72.答:这个角是72°.23.解析∠1+∠2-∠3=65°15'+78°30'-(180°-65°15'-78°30')=143°45'-36°15'=107°30'.24.解析(1)北偏东70°.(2)因为∠AOB=40°+15°=55°,∠AOC=∠AOB,所以∠AOC=55°,∠BOC=110°.因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.因为OE 平分∠COD, 所以∠COE=35°. 又因为∠AOC=55°, 所以∠AOE=90°.25.解析 (1)因为BC=12AB,AC=AB+BC=12 cm, 所以AB+12AB=12 cm, 所以AB=8 cm.(2)因为D 是AB 的中点,AB=8 cm, 所以AD=12AB=4 cm,因为E 是AC 的中点,AC=12 cm, 所以AE=12AC=6 cm, 所以DE=AE-AD=6-4=2(cm).26.解析 (1)由已知得∠BOM=180°-∠AOM=150°, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×150°=15°. (2)由已知得∠BOM=180°-∠AOM=180°-α, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×(180°-α)=12α. (3)设∠AOM=β,则∠BOM=180°-β. ①∠AOM=2∠CON,理由如下: 因为OC 平分∠BOM,所以∠MOC=12∠BOM=12(180°-β)=90°-12β, 因为∠MON=90°,所以∠CON=∠MON-∠MOC=90°-(90°−12β)=12β,所以∠AOM=2∠CON.②由①可知∠BON=∠MON-∠BOM=90°-(180°-β)=β-90°,∠AOC=∠AOM+∠MOC=β+90°-12β=90°+12β,因为∠AOC=3∠BON,所以90°+12β=3(β-90°),解得β=144°, 所以∠AOM=144°.。
人教版 七年级数学上册 第四章同步测试题(含答案)

人教版七年级数学上册第四章同步测试题(含答案)4.1 几何图形一、选择题1. 如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则图中的图形不是从正面、左面、上面看这个几何体得到的平面图形的是()2. 如图所示的几何体,从上面看得到的平面图形是()3. 下列四个图形中,是三棱锥的展开图的是()4. 如图,下列各组图形中全部属于柱体的是()5. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是( )6. 下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个7. 圆柱是由长方形绕着它的一边所在的直线旋转一周得到的,那么如图所示的几何体是图中的哪一个图形绕着直线旋转一周得到的()8. 将如图所示的长方体的表面展开,则得到的平面图形不可能是图中的 ()9. 如图,给定的是一个纸盒的外表面,图中的几何体能由它折叠而成的是()10. 如果一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形二、填空题11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示的图形中,是棱柱的有______.(填序号)14. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)15. 如图所示是某几何体的展开图,那么这个几何体是.16. 如图,把下列实物图和与其对应的立体图形连接起来.三、解答题17. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.18. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图19. 如图①是三个直立于水平面上的形状完全相同的几何体(下底面为圆,单位:cm),将它们拼成如图②所示的新几何体,求新几何体的体积(结果保留π).人教版七年级数学上册 4.1 几何图形同步课时训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B10. 【答案】C[解析] 一个棱柱有18条棱,则这个棱柱是六棱柱,六棱柱的底面是六边形.二、填空题11. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.12. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】②⑥14. 【答案】①②⑤⑦⑧④⑥③15. 【答案】圆柱16. 【答案】①-C,②-B,③-D,④-E,⑤-A 连线略三、解答题17. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.18. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).19. 【答案】解:π×22×(4+6)+[π×22×(4+6)]=40π+20π=60π(cm3).答:新几何体的体积为60π cm3.4.2直线、射线、线段同步练习试题(一)一.选择题1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④4.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 5.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC =BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③6.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC﹣DB,②CD=AB,③CD=AD﹣BC,④BD=2AD﹣AB,正确的有()A.1个B.2个C.3个D.4个7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离8.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处9.老爷爷从家到超市有甲、乙、丙三条路可以选择,在不考虑其它因素的情况下,他选择了乙路前往,则其中蕴含着的数学道理是()A.两点确定一条直线B.两点之间线段最短C.连结直线外一点与直线上各点的所有线段中,垂线段最短D.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线10.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D 是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处二.填空题11.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.12.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.13.如图,AE⊥AB于A点,DB⊥AB于B点,点P为线段AB上任意一点,若AE =2,DB=4,AB=8,则PE+PD的最小值是.14.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是.15.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.三.解答题16.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.17.如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.18.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一.选择题1.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.【解答】解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.4.【解答】解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.5.【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.6.【解答】解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC=AC,∴①CD=BC﹣DB=AC﹣DB,正确;②CD=BC=AB,正确;③CD=AD﹣AC=AD﹣BC,正确;④BD=AB﹣AD≠2AD﹣AB,错误.所以正确的有①②③3个.故选:C.7.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.8.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.9.【解答】解:图中三条路线,甲和丙是曲线,乙是线段,由两点间线段最短,∴乙最短,故选:B.10.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.二.填空题11.【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.12.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.13.【解答】解:过点D作DT⊥EA交EA的延长线于T,连接DE.∵AE⊥AB,DB⊥AB,DT⊥ET,∴∠B=∠T=∠BAT=90°,∴四边形ABDT是矩形,∴BD=AT=4,AB=DT=8,∴ET=AE+AT=2+4=6,∴DE===10,∵PE+PD≥DE,∴PE+PD≥10,∴PE+PD的最小值为10.故答案为10.14.【解答】解:其中蕴含的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.三.解答题16.【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.17.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.18.【解答】解:(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,故答案为:6;(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.19.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=34.3角同步练习试题(一)一.选择题1.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离4.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个5.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP6.如图,用量角器度量∠AOB,可以读出∠AOB的度数为()A.30°B.60°C.120°D.150°7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°8.如图,将一副三角板按不同位置摆放,其中α和β互为余角的是()A.B.C.D.9.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是()A.∠1=90°+∠3 B.∠3=90°+∠1 C.∠1=∠3 D.∠1=180°﹣∠310.为防止森林火灾的发生,会在森林中设置多个观测点,如图,若起火点M 在观测台B的南偏东46°的方向上,点A表示另一处观测台,若AM⊥BM,那么起火点M在观测台A的()A.南偏东44°B.南偏西44°C.北偏东46°D.北偏西46°二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.若∠A=59.6°,则它的余角为°′.13.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.14.如图,点C在点B的北偏西60°的方向上,点C在点A的北偏西30°的方向上,则∠C等于度.15.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为°.三.解答题16.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.17.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC互余,并求∠COD的度数.18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终是∠AOC与∠BOC的平分线.则∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).19.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.参考答案与试题解析一.选择题1.【解答】解:射线OA表示的方向是南偏东65°,故选:C.2.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.【解答】解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.4.【解答】解:①直角的补角是直角,故原说法错误;②角是由有公共的端点的两条射线组成的图形,故原说法错误;③如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;④连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有①②④共3个.故选:B.5.【解答】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.6.【解答】解:看内圈的数字可得:∠AOB=120°,故选:C.7.【解答】解:如图:∵小王从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东60°方向行走至点C处,∴∠DAB=40°,∠CBE=60°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+60°=100°.故选:B.8.【解答】解:A、α和β互余,故本选项正确;B、α和β不互余,故本选项错误;C、α和β不互余,故本选项错误;D、α和β不互余,故本选项错误.故选:A.9.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:A.10.【解答】解:如图:因为AM⊥BM,所以∠2+∠3=90°,因为南北方向的直线平行,所以∠2=46°,∠1=∠3,所以∠3=90°﹣∠2=90°﹣46°=44°,所以∠1=44°,所以起火点M在观测台A的南偏西44°,故选:B.二.填空题11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∵∠A=59.6°,∴∠A的余角为90°﹣59.6°=30.4°=30°24',故答案为30;24.13.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.14.【解答】解:如图:根据题意可得:∠1=60°,∠2=30°,∵AE∥DB∥CF,∴∠BCF=∠1=60°,∠ACF=∠2=30°,∴∠ACB=30°.故答案为:30.15.【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故答案为:140.三.解答题16.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.17.【解答】解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.18.【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠BOC=(∠AOC+∠BOC)∠AOB =45°;(3)∠DOE的大小分别为45°和135°,如图3,则∠DOE为45°;如图4,则∠DOE为135°.分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.19.【解答】解:(1)∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°。
人教版数学七年级上册第四章 几何图形初步测试题(含答案)

第四章几何图形初步测试题一、选择题(本大题共10小题,每小题3分,共30分)1.(2021年贵阳)下列几何体中,圆柱体是()A B C D2.(2021年河北)如图1,已知a,b,c,d四条线段中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A. aB. bC. cD. d3. 一个20°的角放在10倍的放大镜下看是()A. 2°B. 20°C. 200°D. 无法判断图14. 如图2所示的工件,从正面看到的平面图形是()A B C D 图25. 下列生活中的实例,可以用“两点之间,线段最短”来解释的是()A. 把一根木条固定到墙上需要两颗钉子B. 植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线C. 小狗看到远处的食物,总是径直奔向食物D. 经过刨平木板上的两个点,能弹出一条笔直的墨线6. 将下列平面图形绕虚线旋转一周,能够得到图3所示的立体图形的是()A B C D 图37. 图4所示的是一副特制的三角尺,用它们可以画出一些特殊角.在下列选项中,不能用这副三角尺画出的角度是()A. 18°B. 108°C. 82°D. 117°8. 如图5所示的正方体纸盒,展开后可以得到()图4A B C D 图5第 1 页共6 页9. 把一副三角尺ABC与BDE按图6所示方式拼在一起,已知∠ABC=60°,∠C=∠DBE=90°,其中A,D,B 三点在同一条直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A. 55°B. 30°C. 45°D. 60°图6 图710. 如图7,点C,D为线段AB上两点,AC+BD=8,且AD+BC=107AB.设CD=t,则方程3x-7(x-1)=2t-2(x+3)的解是()A. x=2B. x=3C. x=4D. x=5二、填空题(本大题共6小题,每小题3分,共18分)11. 如图8所示的图形中,①能折叠成,②能折叠成 .①②图812. 若∠A=6.6°,∠B=6°6′,则∠A________∠B(填“>”“<”或“=”).13. 如图9,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏西60°的方向上,观测到小岛B在它南偏西38°的方向上,则∠AOB的度数是.图9 图10 图1114. 已知点A,B,P在一条直线上且不重合,则下列等式:①AP=BP;②BP=12AB;③AB=2AP;④AP+PB=AB,其中不能判断点P是线段AB中点的有.(填序号)15. 将长方形纸片ABCD按如图10所示的方式折叠,EF,EG为折痕,点A落在A',点B落在B',点A',B',E在同一直线上,则∠FEG=°.16. 把图11-①所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图11-②依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为.三、解答题(本大题共6小题,共52分)17.(6分)图12是由9个小正方体组成的一个几何体,请画出从三个方向看这个几何体得到的平面图形.图1218.(8分)如图13,已知AB=2,延长线段AB至点C,使BC=2AB,点D是线段AC的中点,用刻度尺画出图形,并求线段BD的长度.图1319.(8分)已知∠α=76°,∠β=41°31′,求:(1)∠β的余角;(2)∠α的2倍与∠β的12的差.20.(8分)如图14,C为线段AB的中点,E为线段AB上的点,D为线段AE的中点.(1)若线段AB=a,CE=b,且(a-15)2+∣2b-9∣=0,求a,b的值;(2)在(1)的条件下,求线段CD的长.图1421.(10分)聪聪在学习了“展开与折叠”这部分内容后,明白了很多几何体都能展开成平面图形,于是他在家用剪刀把一个长方体纸盒(如图15-(1))剪开了,可是他一不小心多剪了一条棱,把纸盒剪成了两部分,即图15-(2)中的①和②.根据你所学的知识,回答下列问题:(1)若这个长方体纸盒的长、宽、高分别是8 cm,4 cm,2 cm,则该长方体纸盒的体积是多少?(2)聪聪一共剪开了____________条棱;(3)现在聪聪想将剪掉的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪掉的②粘贴到①中的什么位置?请你帮助他在①上补全一种情况.图1522.(12分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图16-①,当∠BOC=40°时,求∠DOE的度数;(2)如图16-②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终分别是∠AOC与∠BOC的平分线,则∠DOE的大小是否发生变化?说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).①②图16附加题(共20分,不计入总分)1.(6分)图1是从正面、左面、上面看由一些相同的小正方体搭成的几何体得到的平面图形,则搭成这个几何体的小正方体的个数是()A. 4B. 5C. 6D. 7图12.(14分)已知A,B两点在数轴上的位置如图2所示,其中点A表示的有理数为-4,且AB=10.点P从点A 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t(t>0)秒.(1)当t=1时,线段AP的长为,点P表示的有理数为;(2)当PB=2时,求t的值;(3)若M为线段AP的中点,N为线段PB的中点,在点P运动的过程中,线段MN的长度是否发生变化?若发生变化,请说明理由;若不发生变化,求出线段MN的长.图2(吉林刘春霞)第四章几何图形初步测试题参考答案一、1. C 2. A 3. B 4. C 5. C 6. D 7. C 8. A 9. C10. D 提示:因为AD+BC=107AB=AC+CD+BD+CD,AC+BD=8,AB=AC+BD+CD,所以107(8+CD)=2CD+8,解得CD=6,即t=6.所以方程3x-7(x-1)=3-2(x+3)的解为x=5.二、11. 五棱柱圆锥12. >13. 82°14. ②③④15. 90 16. 富三、17. 解:(1)如图1所示.图118. 解:如图2所示.CA B D图2由BC=2AB,AB=2,得BC=4,所以AC=AB+BC=2+4=6.因为点D是线段AC的中点,所以AD=12AC=12×6=3.所以BD=AD-AB=3-2=1.19. 解:(1)90°-∠β=90°-41°31′=48°29′;(2)2∠α-12∠β=2×76°-12×41°31′=152°-20°45′30″=131°14′30″.20. 解:(1)由(a-15)2+∣2b-9∣=0,得a-15=0,2b-9=0.解得a=15,b=4.5.(2)因为C为线段AB的中点,AB=15,CE=4.5,所以AC=7.5,所以AE=AC+CE=7.5+4.5=12.因为D为线段AE的中点,所以DE=12AE=12×12=6,所以CD=DE−CE=6-4.5=1.5.21. 解:(1)该长方体纸盒的体积是:8×4×2=64(cm3);(2)8(3)答案不唯一,有以下三种情况供参考,如图3.图322.解:(1)∠AOC=90°-∠BOC=50°.因为OD,OE分别平分∠AOC和∠BOC,所以∠COD=12∠AOC=25°,∠COE=12∠BOC=20°.所以∠DOE=∠COD+∠COE=45°. (2)∠DOE的大小不变.理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB=45°.(3)∠DOE=45°或135°.提示:分两种情况:如答图①,∠DOE=45°;如答图②,∠DOE=135°.①②附加题1. B 提示:由从正面看和从上面看可知,几何体的底层有3个小正方体;由从正面看和从左面看可知,几何体的第二层有2个小正方体.则搭成这个几何体的小正方体的个数为3+2=5.2. 解:(1)2 -2(2)当点P在点B左侧时,因为AB=10,AP=2t,所以PB=10-2t.由题意,得10-2t=2,解得t=4.当点P在点B右侧时,因为AB=10,AP=2t,所以PB=2t-10.由题意,得2t-10=2,解得t=6.综上,t=4或t=6.(3)如图1,当点P在线段AB上时,MN=MP+PN=12AP+12PB=12(AP+PB)=12AB=12×10=5;如图2,当点P在AB延长线上时,MN=MP-NP=12AP-12PB=12(AP-PB)=12AB=12×10=5.综上,线段MN的长度不发生变化,其值为5.。
最新人教版七年级数学上册第四章测试题及答案

人教版七年级数学上册第四章测试题及答案第4章《图形认识初步》班级___________ 姓名___________ 成绩_______一、选择题(每小题3分,共30分) 1.下列空间图形中是圆柱的为( )2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②3.将如图2所示的直角三角形ABC 绕直角边AC 旋转一周,所得的几何体从正面看是图3中( )4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )B AC D 第2题图A.B.C.D.BAC 图2 ABCD图 35.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程,其中可用事实 “两点之间,线段最短”来解释的现象有( ) A.①② B.①③ C.②④ D.③④ 6.已知∠α=35°19′,则∠α的余角等于( )A .144°41′B .144°81′C . 54°41′D . 54°81′7.线段12AB cm =,点C 在AB 上,且13AC BC =,M 为BC 的中点,则AM 的长为( )A.4.5cmB. 6.5cmC. 7.5cmD. 8cm8.如图,下列说法中错误的是( )A.OA 方向是北偏东30º B.OB 方向是北偏西15º C.OC 方向是南偏西25º D.OD 方向是东南方向二、填空题(每小题2分,共20分)1.长方体由 个面, 条棱, 个顶点.2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.3.如图,在射线CD 上取三点D 、E 、F ,则图中共有射线_________条。
人教版七年级数学上册第四章达标检测卷附答案

人教版七年级数学上册第四章达标检测卷一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆D.扇形、长方形、三棱柱、圆锥2.如图所示的正六棱柱的主视图是()3.下列说法中,正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点4.与30°的角互为余角的角的度数是()A.30°B.60°C.70°D.90°5.如图,点A在点B的()A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30°6.已知线段AB=15 cm,点C是直线AB上一点,BC=5 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10 cm B.5 cm C.10 cm或5 cm D.7.5 cm 7.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,则下列说法中,正确的是() A.∠1=∠2<∠3 B.∠1=∠3>∠2C.∠1<∠2=∠3 D.∠1=∠2>∠38.钟表在8:25时,时针与分针夹角的度数是()A.101.5°B.102.5°C.120°D.125°9.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是()A.大B.伟C.国D.的10.如图,C,D在线段BE上,下列说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC =40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是__________________.12.一个角的余角比这个角的补角的一半小40°,则这个角为________.13.三条直线两两相交,最少有________个交点,最多有________个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了______________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了____________(从点、线、面的角度作答).15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12′的方向上,则∠AOB 的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有________种不同的票价,需准备________种车票.19.小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是________.20.用棱长是1 cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把露在外面的面涂上颜色,那么涂颜色的面的面积之和是________cm2.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.计算:(1)32°45′48″+21°25′14″;(2)11°23′36″×3.22.点A,B,C,D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,连接BD,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.23.如图,已知线段AB=4.8 cm,点M为AB的中点,点P在MB上,N为PB的中点,且NB=0.8 cm,求AP的长.24.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是____________;(2)若射线OE平分∠COD,求∠AOE的度数.25.如图是某工件从正面、左面、上面看到的图形,判断该工件的形状,并求此工件的体积.(结果保留π)26.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.C2.B3.A4.B5.C6.D7.B8.B9.D10.B点拨:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED 共6条,故①正确;图中互补的角就是分别以C,D为顶点的两对角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故②正确;根据图形,由∠BAE=100°,∠CAD=40°,可以求出∠BAC+∠CAE+∠BAE+∠BAD +∠DAE+∠DAC=100°+100°+100°+40°=340°,故③错误;当点F 在线段CD上时,点F到点B,C,D,E的距离之和最小,为FB+FE +FD+FC=2+3+3+3=11,当点F和点E重合时,点F到点B,C,D,E的距离之和最大,为FB+FE+FD+FC=8+0+3+6=17,故④错误.故选B.二、11.两点确定一条直线12.80°13.1;314.点动成线;线动成面15.416.155°17.100°12′18.21;4219.45°20.30三、21.解:(1)32°45′48″+21°25′14″=53°70′62″=54°11′2″.(2)11°23′36″×3=33°69′108″=34°10′48″.22.解:如图.23.解:方法一因为N为PB的中点,所以PB=2NB.又知NB=0.8 cm,所以PB=2×0.8=1.6(cm).所以AP=AB-PB=4.8-1.6=3.2(cm).方法二因为N是PB的中点,所以PB=2NB.而NB=0.8 cm,所以PB=2×0.8=1.6(cm).因为M为AB的中点,所以AM=MB=12AB.而AB=4.8 cm,所以AM=BM=2.4 cm.又因为MP=MB-PB=2.4-1.6=0.8(cm),所以AP=AM+MP=2.4+0.8=3.2(cm).点拨:(1)把一条线段分成两条相等线段的点,叫做这条线段的中点.(2)线段中点的表达形式有三种,若点C是线段AB的中点,则①AC=BC;②AB=2AC=2BC;③AC=BC=12AB.熟悉它的表达形式对以后学习几何的推理论证有帮助.24.解:(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.又因为OE平分∠COD,所以∠COE=35°.又因为∠AOC=55°,所以∠AOE=55°+35°=90°.25.解:由题意得该工件的形状为圆锥,圆锥的底面直径为6 cm,高为4 cm,所以圆锥的体积为13π×(6÷2)2×4=12π(cm3).故此工件的体积为12π cm3.26.解:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=12(α+β)-12β=12α.七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012 B .1.339×1011 C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( ) A .0B .-1C .-2D .210.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是() A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数二、填空题(每题3分,共15分)11.将代数式4a2b+3ab2-2b3+a3按a的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m2,则用科学记数法表示FAST的反射面总面积约为____________m2.(精确到万位)13.若|x+2|+(y-3)4=0,则x y=________.14.如果规定符号“*”的意义是a*b=aba+b,则[2*(-3)]*(-1)的值为________.15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 2
A
3A 4O
(5)
A A 1
B 人教版初一数学上册第四章测验题
(时间100分钟 满分100分)
一、选择题:(每小题3分,共30分) 1.如图1所示的棱柱有( )
A.4个面
B.6个面
C.12条棱
D.15条棱
(1)
C
(2)
A
D
B
C
(3)
A
B γβ(4)
α
2.如图2,从正面看可看到△的是( )
3.如图3,图中有( )
A.3条直线
B.3条射线
C.3条线段
D.以上都不对 4.下列语句正确的是( )
A.如果PA=PB,那么P 是线段AB 的中点;
B.作∠AOB 的平分线CD
C.连接A 、B 两点得直线AB;
D.反向延长射线OP(O 为端点) 5.如图4,比较∠α、∠β、∠γ 的大小得( )
A. ∠γ>∠β>∠α;
B. ∠α=∠β;
C. ∠γ>∠α>∠β;
D. ∠β>∠α>∠γ. 6.5点整时,时钟上时针与分钟之间的夹角是( ) A.210° B.30° C.150° D.60° 7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( ) A.互余 B.互补 C.既不互余也不互补 D.不确定 8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( ) A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对 9.如果∠α=3∠β, ∠α=2∠θ,则必有( ) A. ∠β=12∠θ;B.∠β=1
3
∠θ;C.∠β=23∠θ;D.∠β=34∠θ;
10.如图5所示,已知∠AOB=64°,OA 1平分∠AOB,OA 2平分∠AOA 1,OA 3 平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为
( )
A.8°
B.4°
C.2°
D.1° 二、填空题:(每小题3分,共30分)
11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.
12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为
___________.
13.57.32°=_______°_______′_______″;27°14′24″=_____°. 14.已知∠a=36°42′15″,那么∠a 的余角等于________. 15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.
16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____ 17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.
航线铁路
公路(6)
A
B
O
D
C
(7)
A
B
18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.
19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……, n A 平分1n AA , 则n AA =_______________cm. 20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线. 三、解答题:(21、24、25、26每题6分,22、23题每题8分) 21.根据下列语句画图:
(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC; (3)反向延长OC 得射线OD;
(4)分别在射线OA 、OB 、OD 上画线段OE=OF=OG=2cm; (5)连接EF 、EG 、FG;
(6)你能发现EF 、EG 、FG 有什么关系?∠EFG 、∠EGF 、∠GEF 有什么关系?
22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长. 23.如图,直线AB 、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线. (1)求∠2和∠3的度数.
(2)OF 平分∠AOD 吗?为什么?
32 1
O F C
A
D E
B
24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.
25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南
(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).
北D C
A B
26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.
答案:
一、选择题
1.D
2.C
3.C
4.D
5.C
6.C
7.B
8.B
9.C 10.B
二、填空题
11.12cm 12.两点之间,线段最短 13.57、19、12;27.24
14. 53°17′45″ 15.同角的补角相等
16.140° 17.90 18.180°;19°38′29″. 19.
1
2
n
⎛⎫
⎪
⎝⎭
a 20.1或4或6
三、解答题
21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°
22.AM=7cm或3cm
23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD
24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.。