初一数学上册试卷及答案
数学试卷---五套七年级数学上册期末试卷(附答案)

数学期末考试卷一、选择题(每小题3分,共36分) 1、下列说,其中正确的个数为( )①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。
A .1个B .2个C .3个D .4个 2、下列计算中正确的是( )A .532a a a =+B .22a a -=-C .33)(a a =-D .22)(a a -- 3、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( )A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a -4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( ) A .13107.4⨯元 B .12107.4⨯ C .131071.4⨯元 D .131072.4⨯元5、下列结论中,正确的是( )A .单项式732xy 的系数是3,次数是2 。
a b 图3B .单项式m 的次数是1,没有系数C .单项式z xy 2-的系数是1-,次数是4 。
D .多项式322++xy x 是三次三项式 6、在解方程133221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x x C .13413=+--x x D .6)32(2)1(3=+--x x7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元B .1700元C .1710元D .1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
2024年最新人教版初一数学(上册)期末试卷及答案(各版本)

2024年最新人教版初一数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列哪一个数是有理数()A. √2B. √3C. √5D. √94. 下列哪一个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 平行四边形5. 下列哪一个数是无理数()A. 0.333B. 0.666C. 0.121212D. 0.1010010001二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个无理数的积都是无理数。
()3. 任何两个实数的和都是实数。
()4. 任何两个实数的积都是实数。
()5. 任何两个实数的差都是实数。
()三、填空题5道(每题1分,共5分)1. 两个数的和为10,其中一个数为x,另一个数为______。
2. 两个数的积为15,其中一个数为x,另一个数为______。
3. 两个数的差为8,其中一个数为x,另一个数为______。
4. 两个数的商为3,其中一个数为x,另一个数为______。
5. 两个数的和为6,其中一个数为x,另一个数为______。
四、简答题5道(每题2分,共10分)1. 请简要解释有理数的概念。
2. 请简要解释无理数的概念。
3. 请简要解释实数的概念。
4. 请简要解释平行四边形的性质。
5. 请简要解释矩形的性质。
五、应用题:5道(每题2分,共10分)1. 已知一个数为x,它的相反数为3,求x的值。
2. 已知一个数为x,它的倒数为2,求x的值。
3. 已知一个数为x,它的平方为9,求x的值。
4. 已知一个数为x,它的立方为27,求x的值。
5. 已知一个数为x,它的平方根为3,求x的值。
六、分析题:2道(每题5分,共10分)1. 请分析有理数和无理数的区别。
数学试卷七年级上册含答案

一、选择题(每题3分,共30分)1. 下列各数中,正整数是()A. -1.2B. 0.5C. -2D. 3答案:D2. 下列各数中,负分数是()A. -1/2B. 1/2C. 1D. -1答案:A3. 下列各数中,无理数是()A. √4B. √9C. √16D. √25答案:D4. 下列各数中,有理数是()A. √2B. √3C. √5D. √7答案:A5. 下列各数中,有理数是()A. πB. 2πC. π/2D. π/4答案:D6. 下列各数中,实数是()A. -1/2B. √2C. πD. 2答案:D7. 下列各数中,整数是()A. 0.5B. -1/2C. √2D. π答案:A8. 下列各数中,有理数是()A. 0.5B. -1/2C. √2D. π答案:B9. 下列各数中,无理数是()A. 0.5B. -1/2C. √2D. π答案:C10. 下列各数中,实数是()A. 0.5B. -1/2C. √2D. π答案:D二、填空题(每题5分,共25分)11. (-3)+(-2)=_________ (-3)×(-2)=_________ (-3)÷(-2)=_________答案:-5 6 1.512. 2/3 + 3/4 =_________ 2/3 - 3/4 =_________ 2/3 × 3/4 =_________答案:17/12 -1/12 1/213. 2√2 - 3√2 =_________ 2√2 + 3√2 =_________ 2√2 × 3√2=_________答案:-√2 5√2 1214. (√3)^2 =_________ (√2)^3 =_________ (√5)^4 =_________答案:3 2√2 2515. 2√2 ÷ √2 =_________ 3√3 ÷ √3 =_________ 4√5 ÷ √5=_________答案:2 3 4三、解答题(每题10分,共40分)16. (1)求下列各数的相反数:-3 1/2 √2答案:3 -1/2 -√2(2)求下列各数的倒数:-3 1/2 √2答案:-1/3 2 √2/217. (1)计算下列各式的值:3/4 + 2/3 2/5 - 1/2 4/7 × 3/8答案:17/12 1/10 3/14(2)计算下列各式的值:√3 - √2 √5 + √3 √7 - √5答案:√3 - √2 √5 + √3 √7 - √5 18. (1)化简下列各式:2√3+ 3√3 4√2 - 2√2 5√5 - 3√5答案:5√3 2√2 2√5(2)化简下列各式:√3 × √2 √5 × √3 √7 × √2答案:√6 √15 √1419. (1)解下列一元一次方程:2x - 3 = 7答案:x = 5(2)解下列一元一次方程:3x + 2 = 11答案:x = 3(3)解下列一元一次方程:4x - 5 = 9答案:x = 3.5注意:本试卷仅供参考,具体分数设置和难度可根据实际情况进行调整。
初一上册数学月考试卷及答案解析

初一上册数学月考试卷及答案解析【篇一】一、选择题(每小题3分,共30分)1.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作() A.﹣500元B.﹣237元C.237元D.500元考点:正数和负数.分析:根据题意237元应记作﹣237元.解答:解:根据题意,支出237元应记作﹣237元.故选B.点评:此题考查用正负数表示两个具有相反意义的量,属基础题.2.3的相反数是()A.﹣3B.+3C.0.3D.|﹣3|考点:相反数.分析:根据相反数的定义求解即可.解答:解:3的相反数为﹣3.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.2012年国庆长假无锡共接待游客约6420000万,数据“6420000”用科学记数法表示正确的是()A.642×103B.64.2×103C.6.42×106D.0.642×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6420000=6.42×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个考点:有理数.分析:根据分母为一的数是整数,可得整数集合.解答:解:+1,﹣14,0,﹣5是整数,故选:C.点评:本题考查了有理数,分母为一的数是整数.5.下列说法正确的是()A.一个负数的绝对值一定是正数B.倒数是它本身的数是0和1C.绝对值是它本身的数是正数D.平方是它本身的数是0、±1考点:绝对值;倒数;有理数的乘方.分析:根据绝对值的性质,倒数的定义有理数的乘方对各选项分析判断利用排除法求解.解答:解:A、一个负数的绝对值一定是正数,正确,故本选项正确;B、倒数是它本身的数是﹣1和1,故本选项错误;C、绝对值是它本身的数是正数和零,故本选项错误;D、平方是它本身的数是0、1,故本选项错误.故选A.点评:本题考查了绝对值的性质,倒数的定义,有理数的乘方,熟记性质和相关概念是解题的关键.6.下列各组数中,相等的是()A.﹣1与(﹣4)+(﹣3)B.|﹣3|与﹣(﹣3)C.与D.(﹣4)2与﹣16考点:有理数的乘方;相反数;绝对值;有理数的加法.分析:分别利用有理数的加减运算法则以及绝对值的性质和幂的乘方计算得出答案即可.解答:解:A.(﹣4)+(﹣3)=﹣7,则﹣1与(﹣4)+(﹣3)不相等,故此选项错误;B.|﹣3|=3,﹣(﹣3)=3,则|﹣3|与﹣(﹣3)相等,故此选项正确;C.=,则与不相等,故此选项错误;D.(﹣4)2=16,故(﹣4)2与﹣16不相等,故此选项错误;故选:B.点评:此题主要考查了有理数的运算绝对值等知识,熟练化简各式是解题关键.7.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kgB.0.6kgC.0.5kgD.0.4kg考点:正数和负数.分析:根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的数.解答:解:根据题意从中找出两袋质量波动的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.8.如图所示,根据有理数a、b在数轴上的位置,下列关系正确的是()A.|a|>|b|B.a>﹣bC.b<﹣aD.a+b>0考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置即可得出结论.解答:解:∵由图可知,|b|>a,b<0<a,∴|a|<|b|,a<﹣b,a+b<0,b<﹣a,故A、B、D错误,C正确.故选C.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.9.下列一组数:﹣8,2.7,,,0.66666…,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数的有()A.0个B.1个C.2个D.3个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,0.080080008…(相邻两个8之间依次增加一个0).共2个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.观察以下数组:(2),(4、6),(8、10、12),(14、16、18、20),…,问2016在第几组()A.44B.45C.46D.无法确定考点:规律型:数字的变化类.分析:根据数据的个数可知前n组共有数1+2+3+…+n个,利用规律得到n(n+1)≥2016(m为自然数),进一步试值即可求解.解答:解:设2016在第n组,则n(n+1)≥2016,当n=44时,44×(44+1)=1980<2016,当n=45时,45×(45+1)=2070>2016,所以2016在第45组.故选:B.点评:此题考查数字的变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.二、填空题(每小题3分,共24分)11.﹣4.5是4.5的相反数.考点:相反数.分析:直接利用相反数的定义得出答案.解答:解:∵﹣4.5+4.5=0,∴﹣4.5是4.5的相反数.故答案为:﹣4.5.点评:此题主要考查了相反数,正确把握相反数的定义是解题关键.12.用“>”、“<”、“=”号填空:>.考点:有理数大小比较.专题:计算题.分析:先计算得到|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.解答:解:∵|﹣|==,|﹣|==,∴﹣>﹣.故答案为>.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.﹣|﹣|=﹣.考点:相反数;绝对值.分析:利用相反数及绝对值的定义求解即可.解答:解:﹣|﹣|=﹣.故答案为:﹣.点评:本题主要考查了相反数及绝对值,解题的关键是熟记定义.14.计算(﹣1)2012﹣(﹣1)2011的值是2.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)2012﹣(﹣1)2011,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.15.﹣3705.123用科学记数法表示是﹣3.705123×103.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将﹣3705.123用科学记数法表示为﹣3.705123×103.故答案为:﹣3.705123×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.现定义某种运算“*”,对任意两个有理数a、b,有a*b=ab,则(﹣3)*3=﹣27.考点:有理数的乘方.专题:新定义.分析:将新定义的运算按定义的规律转化为有理数的乘方运算,即可得出答案.解答:解:∵a*b=ab,∴(﹣3)*3=(﹣3)3=﹣27;故答案为:=﹣27.点评:此题考查了有理数的乘方,掌握新定义的运算,严格按定义的规律来计算是本题的关键.17.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为﹣10.考点:代数式求值.专题:图表型.分析:根据图表列出算式,然后把x=﹣5代入算式进行计算即可得解.解答:解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣5时,y=[﹣5+4﹣(﹣3)]×(﹣5)=(﹣5+4+3)×(﹣5)=2×(﹣5)=﹣10.故答案为:﹣10.点评:本题考查了代数式求值,根据图表正确列出算式是解题的关键.18.已知有理数a,b,c满足a+b+c=0,abc≠0.则的所有可能的值为±1.考点:有理数的除法;绝对值;有理数的加法.分析:根据有理数的加法和有理数的乘法运算法则判断出a、b、c三个数中只有一个负数,然后根据绝对值的性质解答即可.解答:解:∵a+b+c=0,abc≠0,∴a、b、c三个数中既有正数也有负数,∴a、b、c三个数中有一个负数或两个负数,∴=﹣1+1+1=1或=﹣1﹣1+1=﹣1;∴的所有可能的值为±1.故答案为:±1.点评:本题考查了有理数的除法和绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.解答题19.(40分)计算:(1)(﹣)+(﹣)+(﹣)+;(2)﹣7.2﹣0.8﹣5.6+11.6;(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)3×(﹣4)+28÷(﹣7)(5)(﹣)×0.125×(﹣2)×(﹣8)(6)(7)(8)(﹣24)×(﹣﹣);(9)18×(﹣)+13×﹣4×.(10).考点:有理数的混合运算.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式利用乘法法则计算即可得到结果;(6)原式利用乘法分配律计算即可得到结果;(7)原式变形后,利用乘法分配律计算即可得到结果;(8)原式利用乘法分配律计算即可得到结果;(9)原式逆用乘法分配律计算即可得到结果;(10)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=(﹣﹣)+(﹣+)=﹣1;(2)原式=﹣8+6=﹣2;(3)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(4)原式=﹣12﹣4=﹣16;(5)原式=﹣×××8=﹣1;(6)原式=12﹣18+8=2;(7)原式=(﹣60+)×(﹣16)=960﹣1=959;(8)原式=﹣8+3+4=﹣1;(9)原式=×(﹣18+13﹣4)=×(﹣9)=﹣6;(10)原式=﹣1××+0.2=﹣+=.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.考点:实数.专题:计算题.分析:利用分数,非负整数,以及无理数的定义判断即可.解答:解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9};无理数:{π,2.5353353335…}点评:此题考查了实数,熟练掌握各自的定义是解本题的关键.21.数轴上的点M对应的数是﹣4,一只蚂蚁从M点出发沿数轴以每秒2个单位长度的速度爬行,当它到达数轴上的N点后,立即返回到原点,共用11秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?考点:数轴.分析:(1)根据公式:路程=速度×时间,直接得出答案;(2)先设点N表示的数为a,分两种情况:点M在点N左侧或右侧,求出从M点到N点单位长度的个数,再由M点表示的数是﹣4,从点N返回到原点即可得出N点表示的数.(3)根据点N表示的数即可得出点M和点N之间的距离.解答:解:(1)2×11=22(个单位长度).故蚂蚁爬行的路程是22个单位长度.(2)①当点M在点N左侧时:a+4+a=22,a=9;②当点M在点N右侧时:﹣a﹣4﹣a=22,a=﹣13;(3)点M和点N之间的距离是13或9.点评:本题考查了数轴,两点之间距离的求法:右边的数减去左边的数.22.在数轴上把下列各数表示出来,并用“<”连接各数.2,﹣|﹣1|,1,0,﹣(﹣3.5)考点:有理数大小比较;数轴.分析:在数轴上表示出各数,从左到右用“<”连接起来即可.解答:解:如图所示,,由图可知,﹣|﹣1|<0<1<2<﹣(﹣3.5).点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.23.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=7.(2)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.考点:绝对值;数轴.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x﹣2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.解答:解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.点评:此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.【篇二】一.选择题(共10小题,每题2分,共20分,请把正确答案写在答案卷上.)1.(2分)下列各数中,是负数的是()A.﹣(﹣3)B.2013C.0D.﹣24【分析】利用负数定义判断即可.【解答】解:﹣24=﹣16,是负数,故选D【点评】此题考查了有理数的乘方,正数与负数,以及相反数,熟练掌握各自的性质是解本题的关键.2.(2分)﹣3+5的相反数是()A.2B.﹣2C.﹣8D.8【分析】先计算﹣3+5的值,再求它的相反数.【解答】解:﹣3+5=2,2的相反数是﹣2.故选B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(2分)将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣2【分析】利用去括号的法则求解即可.【解答】解:6﹣(+3)﹣(﹣7)+(﹣2)=6﹣3+7﹣2,故选:C.【点评】本题主要考查了有理数加减混合运算,解题的关键是注意符号.4.(2分)实数a、b在数轴上的位置如图所示,则a与﹣b的大小关系是()A.a>﹣bB.a=﹣bC.a<﹣bD.不能判断【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,且|a|>|b|,所以,﹣b<0,所以,a<﹣b.故选C.【点评】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.5.(2分)下列各组数中,最后运算结果相等的是()A.102和54B.﹣44和(﹣4)4C.﹣55和(﹣5)5D.()3和【分析】各项两式计算得到结果,比较即可.【解答】解:A、102=100,54=625,不符合题意;B、﹣44=﹣256,(﹣4)4=256,不符合题意;C、﹣55=(﹣5)5=﹣3125,符合题意;D、()3=,=,不符合题意,故选C【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.6.(2分)有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为()A.1个B.3个C.1个或3个D.2个【分析】根据三个数相乘积为负,得到三个数中有1个或3个负数,再由和为正数,确定出三个数中负数只有一个.【解答】解:有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为1个.故选A【点评】此题考查了有理数的乘法,以及有理数的加法,熟练掌握运算法则是解本题的关键.7.(2分)地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2B.36.1×107km2C.0.361×109km2D.3.61×108km2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:361000000=3.61×108,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2分)如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2013的值是()A.﹣1B.2013C.﹣2013D.1【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+2|+(b﹣1)2=0,∴a+2=0,b﹣1=0,即a=﹣2,b=1,则原式=(﹣2+1)2013=(﹣1)2013=﹣1.故选A【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握非负数的性质是解本题的关键.9.(2分)下列说法:①1是最小的正数②的负整数是﹣1③任何有理数的绝对值都是正数④若|a|=﹣a,则a是负数⑤互为相反数的两个数,绝对值相等⑥若﹣a=a,那么a=0其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据有理数的含义和分类,相反数的含义和求法,以及绝对值的含义和求法,判断出正确的说法有多少个即可.【解答】解:∵1不是最小的正数,∴选项①不正确;∵的负整数是﹣1,∴选项②正确;∵0的绝对值不是正数,∴选项③不正确;∵若|a|=﹣a,则a是负数或0,∴选项④不正确.∵互为相反数的两个数,绝对值相等,∴选项⑤正确;∵若﹣a=a,∴a=0,∴选项⑥正确.综上,可得正确的个数有3个:②、⑤、⑥.故选:C.【点评】此题主要考查了有理数的含义和分类,相反数的含义和求法,以及绝对值的含义和求法,要熟练掌握.10.(2分)已知m≥2,n≥2,且m、n均为正整数,如果将mn进行如图所示的“分解”,那么下列四个叙述中正确的有()①在25的“分解”中,的数是11.②在43的“分解”中,最小的数是13.③若m3的“分解”中最小的数是23,则m=5.④若3n的“分解”中最小的数是79,则n=5.A.1个B.2个C.3个D.4个【分析】通过观察可知:底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂,由此规律进一步分析探讨得出正确的答案.【解答】解:①在25的“分解”中,的数是25﹣1+1=17,所以此叙述不正确;②在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43,所以此叙述正确;③若m等于5,由53“分解”的最小数是2,1,则其余四个数为23,25,27,29,31,所以此叙述错误;④若3n的“分解”中最小的数是3n﹣1﹣2=79,则n=5,所以此叙述正确.故正确的有②④.故选:B.【点评】考查学生观察分析问题的能力,由观察可知底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂.由此可以依次判断.二.填空题(共10小题,每题2分,共20分,请把结果直接填在答题卷上.)11.(2分)﹣3的倒数是﹣;相反数是3.【分析】根据相反数,倒数的概念可求解.【解答】解:﹣3的倒数是﹣;相反数是3.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.(2分)如果温度上升6℃记作+6℃,那么下降3℃记作﹣3℃.【分析】用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升6℃记作+6℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.13.(2分)如果﹣x=7,那么x=﹣7;如果|﹣x|=5,则x=±5.【分析】﹣x=7两边同时除以﹣1即可得到x的值;根据绝对值等于一个正数的数有两个可得|﹣x|=5时x=±5.【解答】解:∵﹣x=7,∴x=﹣7;∵|﹣x|=5,∴﹣x=±5,∴x=±5,故答案为:﹣7;±5.【点评】此题主要考查了绝对值和相反数,关键是掌握绝对值的性质:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.14.(2分)若|x|=3,|y|=2,且x>y,则x﹣y的值为1或5.【分析】首先根据绝对值的定义确定出x、y的值,再找出x>y的情况,然后计算x ﹣y即可.【解答】解:∵|x|=3,|y|=2,∴x=±3,y=±2,∵x>y,∴①x=3,y=2,x﹣y=1;②x=3,y=﹣2,x﹣y=3﹣(﹣2)=3+2=5;故答案为:1或5.【点评】此题主要考查了绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x、y的值.15.(2分)满足条件大于﹣2而小于π的整数共有5个.【分析】在数轴上标出﹣2与π,根据数轴的特点直接解答即可.【解答】解:如图所示:大于﹣2而小于π的整数有:﹣1,0,1,2,3,共5个.故答案为:5.【点评】本题考查的是数轴的特点,根据数轴的特点利用数形结合求解是解答此题的关键.16.(2分)(1)|﹣18|+|﹣6|=24(2)﹣π<﹣3.14.【分析】(1)先求绝对值,再计算加减;(2)两个负数,绝对值大的其值反而小.【解答】解:(1)|﹣18|+|﹣6|=18+6=24;(2)﹣π<﹣3.14.故答案为:24;<.【点评】此题考查有理数的加法,绝对值,有理数大小比较,正确、灵活掌握各运算法则,以及注意运算顺序,是解题的关键.17.(2分)某次数学和测验,以90分为标准,老师公布成绩:小明+10分,小刚0分,小敏﹣2分,则小刚的实际得分是90,小敏的实际得分是88.【分析】根据正负数的意义即可求出答案.【解答】解:根据题意可知:小刚的得分为:90+0=90小敏的得分为:90﹣2=88故答案为:90,88【点评】本题考查正负数的意义,解题的关键是正确理解正负数的意义,本题属于基础题型.18.(2分)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2013,且AO=2BO,则a+b的值为﹣671.【分析】根据已知条件可以得到a<0<b.然后通过取绝对值,根据两点间的距离定义知b﹣a=2013,a=﹣2b,则易求b=671.所以a+b=﹣2b+b=﹣b=﹣671.【解答】解:如图,a<0<b.∵|a﹣b|=2013,且AO=2BO,∴b﹣a=2013,①a=﹣2b,②由①②,解得b=671,∴a+b=﹣2b+b=﹣b=﹣671.故答案是:﹣671.【点评】本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.19.(2分)初次见面通常以握手示礼,适当的握手时间与力度会让人有一种舒服亲切的感受.某次联谊会有41人参加,若41位与会人员彼此握手一次,那么全体与会人员共握手820次.如果有n个人参加,那么全体与会人员共握手n(n﹣1)次.【分析】设握手x次,根据图表中给出的类比规律,可知当有n个人时,握手次数为n(n﹣1),根据此规律可求出握手次数.【解答】解:由题意得:设握手n次,则x=n(n﹣1),当n=41时,x=n(n﹣1)=×41×(41﹣1)=820.故答案为:820,n(n﹣1).【点评】本题考查理解题意的能力,关键根据图表给的信心找出握手总次数和人数的关系式,从而可列出方程求解.20.(2分)下边横排有12个方格,每个方格都有一个数字,若任何相邻三个数字的和都是20,则x=5.5ABCDEFxGHI10【分析】根据任何相邻三个数字的和都是20列出关系式,依次即可求出x的值.【解答】解:根据题意得:5+A+B=20,A+B+C=20,C+D+E=20,D+E+F=20,E+F+x=20,∴A+B=15,C=5,B+D=15,D+E=15,F=5,F+x=10,则x=5.故答案为:5【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.三.解答题(共8小题,共60分.解答需写出必要的文字说明或演算步骤.)21.(4分)把数2、﹣|﹣1|、1、0、﹣(﹣3.5)在数轴上表示出来,再用“<”把它们连接起来.【分析】首先在数轴上表示各数,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把各数连接起来即可.【解答】解:如图所示:,﹣|﹣1|<0<1<2<﹣(﹣3.5).【点评】此题主要考查了有理数的比较大小,以及数轴,关键是掌握在数轴上表示的两个有理数,右边的数总比左边的数大.22.(5分)把下列各数填在相应的集合内:100,﹣0.82,﹣30,3.14,﹣2,0,﹣2011,﹣3.1,,﹣,2.010010001…,正分数集合:{3.14,,…}整数集合:{100,﹣2,0,﹣2011,…}负有理数集合:{﹣0.82,﹣30,﹣2,﹣2011,﹣3.1,…}非正整数集合;{﹣2,0,﹣2011,…}无理数集合:{﹣,2.010010001…,…}.【分析】根据分数,有理数,整数以及无理数的概念进行判断即可.【解答】解:正分数集合:{3.14,,…}整数集合:{100,﹣2,0,﹣2011,…}负有理数集合:{﹣0.82,﹣30,﹣2,﹣2011,﹣3.1,…}非正整数集合;{﹣2,0,﹣2011,…}无理数集合:{﹣,2.010010001…,…}.故答案为:3.14,;100,﹣2,0,﹣2011;﹣0.82,﹣30,﹣2,﹣2011,﹣3.1;﹣2,0,﹣2011;﹣,2.010010001….【点评】本题主要考查了实数的分类,解题时注意:有理数和无理数统称实数.23.(20分)计算:①8+(﹣10)﹣(﹣5)+(﹣2);②7﹣(﹣3)+(﹣4)﹣|﹣8|③(﹣+)×(﹣36)④﹣81÷×(﹣)÷3⑤49×(﹣5)(简便方法计算)【分析】按照先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,有时利用乘法结合律、加法结合律进行简便运算.【解答】解:①8+(﹣10)﹣(﹣5)+(﹣2)=8﹣10+5﹣2=13﹣12=1.②7﹣(﹣3)+(﹣4)﹣|﹣8|=7+3﹣4﹣8=10﹣12=﹣2.③(﹣+)×(﹣36)=﹣18+20﹣21=﹣19.④﹣81÷×(﹣)÷3=81×××=12.⑤49×(﹣5)=(50﹣)×(﹣5)=﹣250+=﹣249.【点评】本题考查有理数混合运算,注意:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,有时利用乘法结合律、加法结合律进行简便运算.24.(4分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,求m2﹣cd+的值.【分析】利用相反数,绝对值,以及倒数的定义求出a+b,cd以及m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,∴m2=4原式=4﹣1+0=3;【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(6分)出租车司机小王某天下午营运全是在东西走向的太湖大道上进行的.如果向东记作“+”,向西记作“﹣”.他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣5,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午共收到多少钱?【分析】(1)把小王下午的行车记录相加,然后根据正负数的意*答;(2)根据行车记录和收费方法列出算式,计算即可得解.【解答】解:(1)﹣2+5﹣1+10﹣3﹣2﹣5+6=﹣13+21=8千米,所以小王在下午出车的出发地的东面,距离出发地8千米;(2)10×8+2×(5﹣3)+2×(10﹣3)+2×(5﹣3)+2×(6﹣3)=80+4+14+4+6=108元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(6分)寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.【分析】(1)根据所给的式子可得S与n之间的关系为:S=n(n+1);(2)首先确定有几个加数,由(1)得出的规律,列出算式,进行计算即可.【解答】解:(1))∵1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+ (400)=(2+4+6+…+400)﹣(2+4+6+…+160),=200×201﹣80×81,=40200﹣6480,=33720.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.27.(6分)阅读下列材料,并回答问题计算机利用的是二进制数,它共有两个数码:0,1;将一个十进制的数转化为二进制数,只需把该数写成若干个的数的和,依次写出1或0即可.例如十进制数19可以按下述方法转化为二进制数:19=16+2+1=1×24+0×23+0×22+1×21+1×20=10011.二进制数110110可以转换成十进制数为:110110=1×25+1×24+0×23+1×22+1×21+0×20=54.(1)将86化成二进制;(2)将1011101化成十进制.【分析】(1)十进制化成二进制用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.(2)将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.【解答】解:(1)86÷2=43,43÷2=21…1,21÷2=10…1,10÷2=5…0,5÷2=2…1,2÷2=1…0,1÷2=0…1,故86(10)=1010110(2).(2)(1011101)2=1×26+0×25+1×24+1×23+1×22+0×21+1×20=64+0+16+8+4+0+1=93;(1011101)2=(93)10.【点评】本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.28.(9分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;。
七年级上册数学试卷题【含答案】

七年级上册数学试卷题【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少?A. 22厘米B. 34厘米C. 44厘米D. 24厘米二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 所有的等边三角形都是等腰三角形。
()3. 一个数的因数一定比这个数小。
()4. 一个数的倍数一定比这个数大。
()5. 所有的偶数都是2的倍数。
()三、填空题(每题1分,共5分)1. 5的倍数有:______、______、______、______、______。
2. 2的因数有:______、______。
3. 一个长方体的长是8厘米,宽是6厘米,高是4厘米,它的体积是______立方厘米。
4. 如果一个等腰三角形的周长是20厘米,腰长是8厘米,那么底边长是______厘米。
5. 0.25化成分数是______。
四、简答题(每题2分,共10分)1. 请列举出5个合数。
2. 请解释什么是等腰三角形。
3. 请说明什么是因数和倍数。
4. 请解释什么是质数。
5. 请说明什么是长方体的表面积。
五、应用题(每题2分,共10分)1. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求它的体积。
2. 一个等腰三角形的底边长是12厘米,腰长是15厘米,求这个三角形的周长。
3. 请找出25以内的所有质数。
初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文

精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
七年级试卷数学上册【含答案】

七年级试卷数学上册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 一个等腰三角形的底边长是10cm,腰长是12cm,那么这个三角形的周长是?A. 22cmB. 32cmC. 44cmD. 52cm3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是?A. 24cm³B. 26cm³C. 28cm³D. 30cm³5. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 两个质数相乘,得到的数一定是合数。
()2. 一个三角形的两边之和一定大于第三边。
()3. 0是最小的自然数。
()4. 两个负数相乘,得到的结果是正数。
()5. 任何一个正整数都可以分解成几个质数的乘积。
()三、填空题(每题1分,共5分)1. 5的立方是______。
2. 一个等边三角形的周长是______cm,它的边长是______cm。
3. 2.5的立方是______。
4. 两个质数相乘,得到的数一定是______。
5. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是______cm³。
四、简答题(每题2分,共10分)1. 请写出1到10的所有质数。
2. 请解释等边三角形的特点。
3. 请解释最简分数的概念。
4. 请解释长方体的体积公式。
5. 请解释质因数分解的概念。
五、应用题(每题2分,共10分)1. 一个长方体的长是4cm,宽是3cm,高是2cm,求它的体积。
2. 一个等腰三角形的底边长是10cm,腰长是12cm,求这个三角形的周长。
3. 请将24分解成质因数的乘积。
4. 请将分数2/4化简成最简分数。
5. 请计算3的立方。
六、分析题(每题5分,共10分)1. 请分析两个质数相乘得到的数的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上册试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1七年级数学期中调考试卷一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.12-的绝对值是( ). (A) 12 (B)12- (C)2 (D) -22.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m 3.如果收入15元记作+15元,那么支出20元记作( )元. (A)+5 (B)+20 (C)-5 (D)-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1的个数是( ).(A)3个 (B)4个 (C)5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ). (A).1p q = (B)1qp= (C) 0p q += (D) 0p q -= 6.方程5-3x=8的解是( ).(A )x=1 (B )x=-1 (C )x=133(D )x=-1337.下列变形中, 不正确的是( ).(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d(C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a>0(B) a -b>0(C) ab >0(D) a +b>09.按括号内的要求,用四舍五入法,对1022.0099取近似值是( ).(A)1022.01(精确到0.01) (B)1.0×103(保留2个有效数字) (C)1020(精确到十位) (D)1022.010(精确到千分位) 10.“一个数比它的相反数大-4”,若设这数是x ,则可列出关于x 的方程为( ).(A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x )=411. 下列等式变形:①若a b =,则a b xx=;②若a b xx=,则a b =;③若47a b =,则74a b=;④若74a b=,则47a b =.其中一定正确的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个12.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4的2次方,则式子1()2cd a b x x ---的值为( ).(A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)13.写出一个比12-小的整数: .14.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m .15.十一国庆节期间,吴家山某眼镜店开展优 惠学生配镜的活动,某款式眼镜的广告如图,请你 为广告牌补上原价.16.小方利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 (1)2345… 输出…1225310417526…那么,当输入数据为8时,输出的数据为 . 三、 解一解, 试试谁更棒(本大题共9小题,共72分)17.(本题10分)计算(1)13(1)(48)64-+⨯- (2)4)2(2)1(310÷-+⨯- 18.(本题10分)解方程(1)37322x x +=- (2) 111326x x -=-19.(本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期 一 二 三 四 五 六 日 增减/辆-1+3-2+4+7-5-10(1) 生产量最多的一天比生产量最少的一天多生产多少辆(3分) (2)本周总的生产量是多少辆(3分)20.(本题7分)统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?21. (本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2分) (2)如果一列数1234,,,a a a a 是等比数列,且公比为q .那么有:21a a q =,23211()a a q a q q a q ===,234311()a a q a q q a q ===则:5a = .(用1a 与q 的式子表示)(2分)(3)一个等比数列的第2项是10,第4项是40,求它的公比. (5分)22.(本题8分)两种移动电话记费方式表(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(5分) (2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?(3分)23.(本题10分)关于x 的方程234x m x -=-+与2m x -=的解互为相反数.(1)求m 的值;(6分) (2)求这两个方程的解.(4分)24.(本题12分)如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B 的速度是点A 的速度的4倍(速度单位:单位长度/秒).(1)求出点A 、点B 运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(4分)(2)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A 、点B 的正中间(4分)全球通 神州行月租费 50元/分 0 本地通话费 0.40元/分 0.60元/分(3)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C 同时从B 点位置出发向A 点运动,当遇到A 点后,立即返回向B 点运动,遇到B 点后又立即返回向A 点运动,如此往返,直到B 点追上A 点时,C 点立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C 从开始运动到停止运动,行驶的路程是多少个单位长度(4分)2006-2007学年度上学期七年级数学期中考试参考答案与评分标准一、选一选,比比谁细心1.A2.C3.D4.B5.C6.B7.C8.A9.A 10.B 11.B 12.D二、填一填,看看谁仔细13.-1等 14. 350 15.200 16. 865三、解一解,试试谁更棒 17.(1)解: 13(1)(48)64-+⨯- = -48+8-36 ………………………………3分 =-76 ………………………………5分 (2)解: 4)2(2)1(310÷-+⨯-=1×2 +(-8)÷4 ………………………………2分 =2-2=0 ………………………………5分 18.(1)解:37322x x +=-3x+2x=32-7 ………………………………2分5x=25 ………………………………4分 x=5 ………………………………5分(2) 解:111326x x -=-113126x x -+=- ………………………………2分 13x -=2 ………………………………4分x=-6 ………………………………5分19. 解: (1)7-(-10)=17 ………………………………3分(2) (-1+3-2+4+7-5-10 )+100×7=696 ………………………………6分20.解:设严重缺水城市有x 座,依题意有: ………………………………1分3522664x x x +++= ………………………………4分解得x=102 ………………………………6分答:严重缺水城市有102座. ………………………………7分 21.(1)81……2分 (2) 41a q …………………4分(3)依题意有:242a a q = ………………………………6分∴40=10×2q ∴2q =4 ………………………………7分 ∴2q =± ……………………………9分22.(1)设一个月内本地通话t 分钟时,两种通讯方式的费用相同.依题意有:50+0.4t=0.6t ………………………………3分 解得t=250 ………………………………4分 (2)若某人预计一个月内使用本地通话费180元,则使用全球通有:50+0.4t=180 ∴1t =325 ………………………………6分 若某人预计一个月内使用本地通话费180元,则使用神州行有: 0.6t=180 ∴2t =300∴使用全球通的通讯方式较合算. ………………………………8分 23.解:(1) 由234x m x -=-+得:x=112m + …………………………2分 依题意有:112m ++2-m=0解得:m=6 ………………………6分(2)由m=6,解得方程234x m x -=-+的解为x=4 ……………8分解得方程2m x -=的解为x=-4 ………………………10分24. (1)设点A 的速度为每秒t 个单位长度,则点B 的速度为每秒4t 个单位长度.依题意有:3t+3×4t=15,解得t=1 …………………………2分∴点A 的速度为每秒1个单位长度, 点B 的速度为每秒4个单位长度. …3分画图 ……………4分 (2)设x 秒时,原点恰好处在点A 、点B 的正中间. ………………5分 根据题意,得3+x=12-4x ………………7分 解之得 x=1.8即运动1.8秒时,原点恰好处在A、B两点的正中间………………8分(3)设运动y秒时,点B追上点A根据题意,得4y-y=15,解之得 y=5………………10分即点B追上点A共用去5秒,而这个时间恰好是点C从开始运动到停止运动所花的时间,因此点C行驶的路程为:20×5=100(单位长度) ………………12分。