2013年中考数学试卷分类汇编-规律探索题
2013年全国中考数学试题分类解析汇编专题57探索规律型问题(图形类)

专题57探索规律型问题(图形类)一、选择题1. (2012重庆市4分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50 B.64 C.68 D.72【答案】D。
【考点】分类归纳(图形的变化类)。
【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。
故选D。
2. (2012广东深圳3分)如图,已知:∠MON=30o,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7的边长为【】A.6 B.12 C.32 D.64【答案】C。
【考点】分类归纳(图形的变化类),等边三角形的性质,三角形内角和定理,平行的判定和性质,含30度角的直角三角形的性质。
【分析】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°。
∴∠2=120°。
∵∠MON=30°,∴∠1=180°-120°-30°=30°。
又∵∠3=60°,∴∠5=180°-60°-30°=90°。
∵∠MON=∠1=30°,∴OA1=A1B1=1。
∴A2B1=1。
∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°。
∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3。
2013年全国各地中考数学试卷分类汇编:平面直角坐标系与点的坐标

平面直角坐标系与点的坐标一、选择题1.(2013贵州安顺,3,3分)将点A(-2,-3)向右平移3个单位长度得到点B,则点B 所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】:D.【解析】A(-2,-3)向右平移3个单位长度得到点B,则点B为(1,-3), (1,-3)在第四象限.【方法指导】本题考查了图形的平移变换及各象限内点的坐标特点.先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.【易错警示】注意平移中点的变化规律.2.(2013山东德州,12,3分)如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P 的坐标为A、(1,4)B、(5,0)C、(6,4)D、(8,3)【答案】D【解析】如下图,动点P(0,3)沿所示的方向运动,满足反弹时反射角等于入射角,到①时,点P(3,0);到②时,点P(7,4);到③时,点P(8,3);到④时,点P(5,0);到⑤时,点P(1,4);到⑥时,点P(3,0),此时回到出发点,继续.......,出现每5次一循环碰到矩形的边.因为2013=402×5+3(2013÷5=402 … 3).所以点P第2013次碰到矩形的边时,点P 的坐标为(8,3).故选D.【方法指导】本题考查了图形变换(轴对称)与平面直角坐标系规律探索.以平面直角坐标系为背景,融合轴对称应用的点坐标规律的规律探索题,解题关键从操作中前面几个点的坐标位置变化,猜想、归纳出一般变化规律. 3.(2013山东日照,6,3分)如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()【答案】 C【解析】由点P(2x+6,x-4)在平面直角坐标系的第四象限内,所以43-,04,062<<⎩⎨⎧<->+x x x 解得,在数轴上表示为C 。
2013届中考数学押轴题备考复习 猜想、规律与探索2

猜想、规律与探索一 选择题1.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) A .(4,O)B.(5,0)C .(0,5)D .(5,5)【解题思路】方法一、在演草纸上按规律去画。
方法二、根据题意,结合图形我们可以发现第n (n+2)秒时跳蚤所在位置的坐标是⎩⎨⎧→→为偶数时为奇数时,n n),0(n )0n (,35= 5(5+2)所以要求坐标为(5,0)。
【答案】B【点评】本题主要考查规律探索,做此类问题关键在细心观察、认真分析,如果次数较少可按规律一次去画。
难度中等。
2.在平面直角坐标系中,正方形ABCD 的顶点坐标分别为A (1,1),B (1,-1),C (-1,-1),D (-1,1),y 轴上有一点P (0,2).作点P 关于点A 的对称点P 1,作点P 1关于点B 的对称点P 2,作点P 2关于点C 的对称点P 3,作点P 3关于点D 的对称点P 4,作点P 4关于点A 的对称点P 5,作点P 5关于点B 的对称点P 6,…,按此规律下去,则点P 2011的坐标为( ) A .(0,2) B .(2,0) C .(0,-2) D .(-2,0)【解题思路】P 1(2,0),P 2(0,-2),P 3(-2,0),P 4与P 重合.题中所述点列P 1→P 2→P 3→P 4→P 5→…是循环的,循环节是.P 1→P 2→P 3→P .∵2011=502×4+3,∴P 2011是循环点列中第503节的第三个点,即是P 3. 【答案】D【点评】此题考查探索、归纳和猜想的能力.探索应从简单到复杂、从特殊到一般、从具体到抽象进行,难度较大.对点(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(y x +,y x -);且规定)),((),(11y x P P y x P n n -=(n 为大于1的整数).如P 1(1,2 )=(3,1-),P 2(1,2 )= P 1(P 1(1,2 ))= P 1(3,1-)=(2,4),P 3(1,2 )= P 1(P 2(1,2 ))= P 1(2,4)=(6,2-).则P 2011(1,1-)=( ) A .(0,21005) B .(0,-21005) C .(0,-21006) D .(0,21006)【解题思路】:P 1(1,1-)=(0,2);P 2(1,1-)=P 1(0,2)=(2,2-);P 3(1,1-)=P 1(P 2(1,1-)=P 1(2,2-)=(0,4);……由此可知当n 为奇数数时,横坐标为0,纵坐标为21(1)2n +,所以P 2011(1,1-)=(0,21006)【答案】D .【点评】:本题是规律探究性问题,解题时先从较简单的特例入手,从中探究出规律,再用得到的规律解答问题即可.本题难度较大,考查了学生分析问题的能力.也可以看作是新定义型问题.已知世运会、亚运会、奥运会分别于公元2009年、2010年、2012年举办。
2013年中考数学试题分87个专题整理汇编

2013年中考数学试题分87个专题整理汇编2013中考全国100份试卷分类汇编一次函数1、(2013陕西)如果一个正比例函数的图象经过不同象限的两点A (2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n0D.m考点:一般考查的是一次函数或者反比例函数的图象性质及待定系数法求函数的解析式。
解析:因为A,B是不同象限的点,而正比例函数的图象要不在一、三象限或在二、四象限,由点A与点B的横纵坐标可以知:点A与点B 在一、三象限时:横纵坐标的符号应一致,显然此题不可能,点A与点B在二、四象限:点A在四象限得m2、(2013陕西)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x-201y3p0A.1B.-1C.3D.-3考点:待定系数法求一次函数的解析式及由自变量的值确定对应的函数值。
解析:设y=kx+b,将表格中的对应的x,y的值代入得二元一次方程组,解方程组得k,b的值,回代x=0时,对应的y的值即可。
设y=kx+b,解得:k=-1,b=1,所以所以y=-x+1,当x=0时,得y=1,故选A.3、(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.4、(2013泰安)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<4考点:一次函数图象与几何变换.分析:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.解答:解:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.故选C.点评:本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.5、(2013菏泽)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.解答:解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选D.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.6、(2013•徐州)下列函数中,y随x的增大而减少的函数是()A.y=2x+8B.y=﹣2+4xC.y=﹣2x+8D.y=4x考点:一次函数的性质.分析:根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.解答:解:A、B、D选项中的函数解析式k值都是整数,y随x的增大而增大,C选项y=﹣2x+8中,k=﹣2<0,y随x的增大而减少.故选C.点评:本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7、(2013•娄底)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2考点:一次函数的图象.分析:根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.解答:解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选C.点评:此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解.8、(2013•湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为()A.B.-2C.D.2考点:一次函数图象上点的坐标特征.分析:把点(1,2)代入已知函数解析式,借助于方程可以求得k的值.解答:解:∵正比例函数y=kx的图象经过点(1,2),∴2=k,解得,k=2.故选D.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.9、(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x 的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;一次函数的性质.分析:由已知条件知x﹣2>0,通过解不等式可以求得x>2.然后把不等式的解集表示在数轴上即可.解答:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.点评:本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。
2013年各地中考题类型规律探究题、开放探究题

规律探究题,开放探究题一、选择题1.(2013湖北十堰,8,3分)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()2.(2013湖北武汉,8,3分)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,二、填空题3.(2013湖南娄底,18,4分)如图,是用火柴棒拼成的图形,则第n个图形需2n+1根火柴棒.4.(2013绥化,8,3分)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O 后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.5.(2013湖北恩施州,16,3分)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.6.(2013牡丹江,26,8分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD=2,CB=+1.BE=CBBE=CBBD=AB=BE=CBAB=DH=BH=BD=×=1CH=,CB=CH+BH=上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.(1)证明:△PCE是等腰三角形;(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.CM=CPCM=CP=,tanC=k=tanA=,tanA=EM+FN=﹣x(×难点.。
2013年全国中考数学试题分类解析汇编专题56探索规律型问题(数字类)-推荐下载

a2 | a1 1| = 1 ,
D. 2012
郑州郭氏数学内部资料;更多学习资料及学习方法、考试技巧请郭氏数学公益教学博 客。…,
∴当
∴
a2012
n
是奇数时,
=
2012 2
=
an
=
1006
n
1 2
。故选
,
n
3. (2012 四川自贡 3 分)一质点 P 从距原点 1 个单位的 M 点处向原点方向跳动,第一次
22 1
同理第二次从 M3 点跳动到 M2 处,即在离原点的( )2 处,
2 1
同理跳动 n 次后,即跳到了离原点的 处。故选 D。
2n
4. (2012 山东滨州 3 分)求 1+2+22+23+…+22012 的值,可令 S=1+2+22+23+…+22012,则
2S=2+22+23+24+…+22013,因此 2S﹣S=22013﹣1.仿照以上推理,计算出 1+5+52+53+…+52012
C. ( 1 )n1 2
an
=
4
n 2
。
1
D.
2n
郑州郭氏数学内部 B.126 C.135 D.144
【答案】D。
【考点】分类归纳(数字的变化类),一元二次方程的应用。
【分析】由日历表可知,圈出的 9 个数中,最大数与最小 | a3 3 | ,…,依次类推,则 a2012 的值为【 】
A. 1005
【答案】B。 【考点】分类归纳(数字的变化类)
(全国120套)2013年中考数学试卷分类汇编(打包53套)-19.doc

操作与探究1、(13年北京5分22)阅读下面材料:小明遇到这样一个问题:如图1,在边长为)2(>a a 的正方形ABCD 各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积。
小明发现:分别延长QE ,MF ,NG ,PH ,交FA ,GB ,HC ,ED 的延长线于点R ,S ,T ,W ,可得△RQF ,△SMG ,△TNH ,△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________;(2)求正方形MNPQ 的面积。
参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF ,再分别过点D ,E ,F 作BC ,AC ,AB 的垂线,得到等边△RPQ ,若33=∆RPQ S ,则AD 的长为__________。
解析:考点:操作与探究(旋转、从正方形到等边三角形的变式、全等三角形)2、(2013成都市)如图,A B C ,,,为⊙O 上相邻的三个n 等分点,弧AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时,p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:62sin15cos 75-==o o ,cos15sin 75==o o答案:c b ±2; c b 21322-+或c b --226解析:3、(2013山西,21,8分)(本题8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。
13年中考数学探究规律

n 1/16……如此继续下去,到第n次这样作出的三角形的面积为 (1/4)
。
四 归纳总结
如何从探索型问题中探索规律?
首先,观察此类题的排列规律或顺序规律,或 用几何定理将条件转化为有用的数据 然后用代数式,方程,函数,不等式等数学模型 表示 最后总结出变化规律.
五 中考预测
规律探索型问题
一 复习导入
• 什么叫规律探索型问题? 给出一组具有某种特定关系的数,式,图形, 或是给出与图形有关的操作变化过程,观察 分析推理,探究其中蕴涵的规律,进而归纳或 猜想出一般性的结论的问题. • 规律探索型问题常见的类型有哪些?
数、式间的规律 图形中的规律
二 合作探究
观察一列数3,8,13,18,23,28……依此规律,在此数列 中第N个数是
5n-2
。
谁能帮 我将左 边的问 题分类
观察等式:2×4=32-1; 3×5=42-1 4×6=52-1;…;
n(n+2)=(n+1)2-1 (n≥2的正整数).
10×12=112-1;…第N个式子
按如下规律摆放三角形:
14 则第(4)堆三角形的个数为_____________;
第(n)堆三角形的个数为_____________ 3n+2
三 达标演练
1、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的 50 规律确定第8个数为 . 2、试观察下列各式的规律,然后填空:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律探索题1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77) B.(45,39) C.(32,46) D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33……分别计作a1,a2,a3,a4,a5……a n, a n表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……a n = a n-1+2+4×(n-2)将上面各等式左右分别相加得:a n=1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46, A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32<n<33, 2013在第32组,但不是第32组的第一个数,a32=1923, (2013-1923)÷2+1=46.(注意区别a n和A n)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A. cm2B. cm2C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点 B.18个交点 C.15个交点 D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A.B.C.D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解答:解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.8、(2013•呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.159考点:规律型:图形的变化类.3718684分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8B.9C.16 D.17考点:规律型:图形的变化类.3718684分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171 .考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51 .考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解答:解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC 上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200 .考点:规律型:数字的变化类.3718684分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。