高一数学教案§2 角的概念的推广.doc

合集下载

角的概念推广--参考教案

角的概念推广--参考教案

第五单元5.1《角的概念推广》教案创设情境在东京奥运会女子单人10米台跳水决赛中,来自中国的跳水选手全红婵以优异成绩获得金牌!在跳水比赛中,有“向前翻腾一周半”和“向后翻腾两周半”的动作,你知道这两个动作分别表示的旋转的角度是多少吗? 生活中随处可见超出0°〜360°范围的角,请你尝试着举一些例子。

一、探索新知 我们规定,一条射线绕其端点按逆时 针方向旋转形成的角叫作正角,如图1所示.按顺时针方向旋转形成的角叫作负角,如图2所示.如果一条射线没有做任何旋转,就称它形成了一个零角,如图3所示.通过以上的定义,我们就把角的概念推广到了任意角,包括正角、负角和零角. 为了简便起见,我们把“角α”或“α∠”简记为 “α”.今后我们可以用小写希腊字母α,β,γ,…来表示角. 在前面关于跳水的问题中,若“向前翻腾一周半”记为540α=︒,那么“向后翻腾两周半”则记为900α=-︒.理解记忆相关正角、负角、零角、任意角的概念和性质了解和区分相关角度的特征让学生在理解的基础上加深概念的记忆,为后面能够正确运用知识点解题做铺垫图1图2 O AB 图3为了便于研究,我们将角的顶点与原点重合,角的始边与x轴的非负半轴重合. 这样,角的终边在第几象限,就说这个角是第几象限角.例如,从图4中可以看出,690︒为第四象限角.从图5中可以看出,210-︒为第二象限角.如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限(也称界限角),例如,0︒,90︒,180︒,270︒,360︒等一些角.二、例题讲解例1 在平面直角坐标系中,分别画出下列各角,并指出它们是第几象限角.(1)225︒;(2)300-︒.解(1)以x轴的非负半轴为始边,逆时认真观察角度数值与图像的联系加深对知识的理解图5图4针方向旋转225︒即形成225︒角,如图6.因为225︒角的终边在第三象限内,所以225︒角是第三象限角.⑵以x轴的非负半轴为始边,顺时针方向旋转300︒即形成300-︒角,如图7所示. 因为300-︒角的终边在第一象限内,所以300-︒角是第一象限角.三、巩固练习1.判断下列说法是否正确:(1) 锐角是第一象限的角,钝角是第二象限的角;(2) 小于90°的角一定是锐角;(3) 直角是第一象限或第二象限的角;(4) 第一象限的角不可能是负角,并且一定是锐角.2.如图所示,已知锐角45AOB∠=︒,写出认真读题,积极思考,掌握解题的基本思路及时有效巩固所学内容,加深对定义的理解展示问题解决的基本方法,培养学生分析解决问题的能力培养与提升学生独立思考、探究问题的能力图6图7下图中箭头所示角的度数.(1):(2):3.在平面直角坐标系中,分别画出下列各角,并指出它们各是第几象限角.(1)210︒(2)330︒(3)310-︒(4)420-︒第2课时教学过程教学活动学生活动设计思路创设情境 同学们分小组分别绘制在平面直角坐标系中,分别画出了330-︒,30︒,390︒角,如图8所示,观察其终边有何联系?并分析330-︒,390︒与30︒在数值上有什么关系?二、探索新知一般地,所有与角α终边相同的角,连同角α在内,可以组成一个集合{}|+360,S k k ββα==⋅︒∈Z任意的与α终边相同的角都可以表示成α与整数个周角(360°的整数倍)的和. 二、例题讲解例1. 与100︒角终边相同的角组成的集合. 解 {}|100+360,S k k ββ==︒⋅︒∈Z .例2. 在0︒~360︒之间,找出与下列各角终边相同的角,并分别判断它们各是第几象限的角.(1)600︒; (2)230-︒.解 (1)因为600240360︒=︒+︒,所以结合老师给出的问题,积极主动的思考,得出初步结论.在理解的基础上熟记相关概念和结论认真读题,积极思考,掌握解题的基本思路激发学生好奇心,增强学习热情,更主动参与到课堂学习过程中.直观展示新知和结论,突出本节教学重点展示问题解决的基本方法,培养学生分析解决问图8S2|β=︒+90三、巩固练习角终边相同的角的集合为:。

角的概念推广教案

角的概念推广教案

角的概念推广教案主题:角的概念推广教学目标:1.理解角的概念,并能用正确的术语描述角;2.掌握角的度量方法,并能正确地度量角;3.能够应用角的概念和性质解决相关问题。

教学准备:投影仪、白板、书本、尺子、量角器、练习题、实物角模型等。

教学过程:Step 1:导入(10分钟)1.利用投影仪展示一张平面图,图中有两线段的交叉点,并标出交叉点。

引导学生观察图中的图形,并提问:你们看到了什么图形?2.学生回答后,引导学生发现交叉点所形成的形状,并解释这个形状叫做角。

3.引导学生描述角的特点,例如由两条线段组成、起点和终点等,并总结出角的定义:“两条有公共端点的线段所夹的部分称为角。

”Step 2:发现角的度量方法(15分钟)1.展示一把量角器,并解释量角器的结构和使用方法。

2.找出几个不同的角,让学生使用量角器度量这些角,并记录下度数。

3.引导学生发现度数是用来衡量角的大小的,也就是说,我们可以根据度数来比较角的大小。

Step 3:探究角的度量方法(20分钟)1.给学生提供几个已知角度的角模型,并要求学生用尺子度量这些角,再使用量角器进行度量。

2.让学生比较用尺子和量角器度量角的结果,并发现量角器比尺子更准确。

3.引导学生思考为什么量角器的度量结果更准确,并引导他们发现量角器的刻度更精细,可以更准确地测量角。

Step 4:角度的分类(10分钟)1.提供几个不同的角度,让学生观察这些角,并总结角度的分类规则。

2.引导学生发现锐角、直角、钝角和平角的特点,并解释每种角的定义。

3.让学生分类并标记不同类型的角度。

Step 5:应用角的概念(20分钟)1.提供一些与角相关的问题,并引导学生运用所学知识解决问题,例如:两个不同角度的角哪个更大?如何利用量角器判断一个角是锐角还是钝角?2.让学生尝试解决不同种类的问题,并让他们在小组中交流解决方法和思路。

Step 6:小结和巩固(15分钟)1.教师对所学内容进行小结,并强调角的概念、度量方法和分类规则。

角的概念推广教案

角的概念推广教案

角的概念推广优秀教案第一章:角的引入1.1 教学目标让学生了解角的定义和基本性质。

能够识别和比较不同类型的角。

能够用角度来描述角的大小。

1.2 教学内容角的定义:从一点引出两条射线所组成的图形。

角的性质:角的内部是两条射线的公共部分,外部是不共线的两条射线的夹角。

角的分类:锐角、直角、钝角、平角、周角。

1.3 教学方法通过实物演示和图形展示,引导学生直观地理解角的概念。

利用几何模型和练习题,让学生亲手操作,加深对角的认识。

1.4 教学资源角的概念引入PPT演示文稿。

实物模型和图片,如剪刀、三角板等。

1.5 教学步骤1.5.1 导入:利用实物或图片,引导学生观察和描述角的存在。

1.5.2 新课引入:讲解角的定义和性质,通过PPT演示文稿和实物模型进行辅助说明。

1.5.3 实例分析:展示不同类型的角,让学生区分和比较它们的大小。

1.5.4 练习巩固:提供一些练习题,让学生运用角的概念进行解答。

1.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的概念的理解程度。

第二章:角的大小比较2.1 教学目标让学生能够比较不同角的大小。

学会使用量角器测量角的大小。

2.2 教学内容角的大小比较:通过观察角的内部或外部,比较角的大小。

量角器的使用:量角器的结构和如何测量角的大小。

2.3 教学方法通过实际操作量角器,让学生学会正确测量角的大小。

提供练习题,让学生运用比较角大小的方法。

2.4 教学资源量角器演示文稿和实物量角器。

练习题和答案。

2.5 教学步骤2.5.1 导入:复习上一章的内容,引导学生回顾角的概念。

2.5.2 新课引入:讲解如何比较角的大小,通过PPT演示文稿和实物量角器进行辅助说明。

2.5.3 实例分析:提供一些角的大小比较实例,让学生实践和理解比较方法。

2.5.4 练习巩固:提供一些练习题,让学生运用角的大小比较方法进行解答。

2.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的大小比较的理解程度。

角的概念的推广教案

角的概念的推广教案

角的概念的推广教案教案名称:角的概念的推广教学目标:1. 了解角的定义和各种特性;2. 掌握角的度量方法;3. 能够应用角的概念解决实际问题。

教学重点:1. 角的定义;2. 角的度量方法;3. 角的特性。

教学难点:1. 度量角的方法;2. 应用角的概念解决实际问题。

教学步骤:Step 1:导入新知1. 引导学生回顾前一节课所学的角的定义。

2. 提问学生:你能否举出一些你所了解的角的例子?Step 2:引入新知1. 让学生观察图像,引导学生观察图像中的各种角。

2. 让学生尝试用自己的话解释什么是角。

3. 调整学生的回答,引导学生正确理解角的定义。

Step 3:探究1. 针对学生在引入环节中的回答,给出一个准确的角的定义。

2. 让学生观察不同的角,找出它们之间的共同点和不同点。

3. 引导学生总结角的特性,如角的顶点、边、大小等。

Step 4:实践应用1. 引导学生观察实际生活中的角,如门把手上的角、书桌上的角等。

2. 让学生思考这些角的度量方法,并给出自己的解答。

3. 引导学生探究度量角的方法,如用角度的单位度来量角。

Step 5:作业布置1. 让学生在实际生活中寻找各种角,并计算其度数。

2. 布置作业任务,要求学生画出30°、60°和90°的角,并标注度数。

Step 6:课堂小结1. 回顾角的定义和度量方法。

2. 引导学生总结角的特性。

3. 检查学生对角的理解程度,并答疑解惑。

Step 7:拓展延伸1. 让学生阅读相关角的知识,如锐角、钝角等,并总结其特性。

2. 引导学生用创新的思维探索角的应用领域,如建筑设计、工程施工中的角度计算等。

教学手段:1. 多媒体教学:使用图片、视频等多媒体资源引导学生观察和理解角的定义和特性。

2. 集体讨论:鼓励学生在小组中相互讨论,探索角的度量方法和特性。

3. 实践操作:让学生通过实际操作,将角的概念应用于解决实际问题。

教学资源:1. 角的图片、视频资料;2. 画板、白板和笔;3. 角的练习题和作业。

角的概念的推广教案

角的概念的推广教案

角的概念的推广教案概要一、教学目标通过观察实例,使学生认识角的概念推广的可能性和必要性,树立运动变化的观点,并由此深刻理解任意角的概念。

理解正角、负角、零角、终边相同的角、象限角等概念,掌握角的加减运算和表示方法。

通过教学,使学生进一步体会数形结合的思想,培养抽象、推理、创新的能力。

二、教学重点和难点重点:任意角(正角、负角、零角)、终边相同的角、象限角的概念,角的加减运算和表示方法。

难点:终边相同的角的概念,其符号表示、集合表示。

三、教学方法和学法教学方法:讲解法、示范法、讨论法、探究法、评价法。

学法:观察法、练习法、合作探究法、反思法。

四、教学过程准备部分:学生按照指定的队列队形站好,教师检查人数、服装、器材,宣布本课的目标和内容,进行安全教育和准备活动。

基本部分:分为四个环节,分别是:环节一:复习初中学习过的角的定义和分类,提出新问题:运动员掷链球时,旋转方向可以是逆时针也可以是顺时针,旋转量也不止一个平角,那如何来度量角的大小呢?引导学生用运动变化的观点来扩充角的概念,即解决旋转中心、旋转方向和旋转量对角的概念有什么影响。

环节二:讲解任意角的概念,即用旋转的方式定义角,区分正角、负角、零角的概念和表示方法,示范正确的画图方法,学生模仿练习,教师个别指导和纠正错误。

环节三:讲解终边相同的角的概念,即当角与角的始边重合时,它们的终边也重合,区分终边相同的角的符号表示、集合表示和判定方法,示范标准的计算过程,学生分组练习,教师观察和评价,学生互相检查和反馈。

环节四:讲解象限角的概念,即在平面直角坐标系中,角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角,区分象限角的表示方法和判定方法,示范典型的应用问题,学生参与解决,教师监督和评分,学生总结和分享。

结束部分:学生按照指定的队列队形站好,教师进行本课的小结和评价,表扬优秀的学生和小组,提出改进的建议,进行放松活动,下课。

角的概念的推广教案

角的概念的推广教案

角的概念的推广教案教案标题:角的概念的推广教案教学目标:1. 理解角的概念及其特征。

2. 能够识别不同类型的角。

3. 能够应用角的知识解决实际问题。

教学重点:1. 角的定义和特征。

2. 不同类型角的识别和分类。

教学准备:1. 教师准备:投影仪、电脑、白板、黑板笔、角的模型(如角尺)。

2. 学生准备:尺子、铅笔、橡皮擦。

教学过程:引入(5分钟):1. 利用投影仪或黑板,展示一些日常生活中的角的图片,如门的角、书桌的角等。

2. 引导学生观察这些角,思考角的特征和共同点。

探究(15分钟):1. 引导学生回顾线段的概念,提问:两条线段之间是否可以形成一个角?请举例说明。

2. 让学生在纸上画出不同的线段,并尝试用这些线段之间的交叉点形成角。

3. 引导学生观察和描述所形成的角的特征,如角的大小、两条边等。

讲解(15分钟):1. 利用黑板或投影仪,展示角的定义和特征,包括顶点、两条边等。

2. 引导学生观察和讨论不同类型的角,如锐角、直角、钝角等。

练习(20分钟):1. 给学生分发练习册或工作纸,让他们识别和标记不同类型的角。

2. 在黑板上出示一些角的图片,要求学生用适当的术语描述这些角。

巩固(10分钟):1. 让学生自主分组,每组选择一个日常生活场景,找出其中的角,并描述其特征和类型。

2. 鼓励学生分享他们的发现和观察。

拓展(5分钟):1. 引导学生思考角的应用,如在建筑设计、地图绘制等方面的应用。

2. 鼓励学生提出其他与角相关的问题,并引导他们进一步探索。

总结(5分钟):1. 回顾本节课所学的内容,强调角的概念和特征。

2. 鼓励学生在日常生活中继续观察和应用角的知识。

教学反思:本节课通过引导学生观察和实际操作,帮助他们理解角的概念和特征。

通过练习和应用,学生能够识别不同类型的角,并能够应用角的知识解决实际问题。

在教学过程中,教师应注重学生的参与和互动,激发学生的学习兴趣和思维能力。

同时,教师还应根据学生的实际情况和理解程度,进行巩固和拓展教学内容,确保学生的学习效果。

高中数学 第1章 三角函数 1 周期现象 2 角的概念的推广(教师用书)教案 北师大版必修4-北师大

高中数学 第1章 三角函数 1 周期现象 2 角的概念的推广(教师用书)教案 北师大版必修4-北师大

§1周期现象§2角的概念的推广学习目标核心素养1.了解现实生活中的周期现象.2.了解任意角的概念,理解象限角的概念.(重点)3.掌握终边相同角的含义及其表示.(难点) 4.会用集合表示象限角.(易错点)1.通过学习周期现象、任意角的概念,象限角的概念,培养数学抽象素养.2.通过终边相同的角的表示及象限角的表示,培养数学运算素养.1.周期现象(1)以相同间隔重复出现的现象叫作周期现象.(2)要判断一种现象是否为周期现象,关键是看每隔一段时间,这种现象是否会重复出现,假设出现,那么为周期现象;否那么,不是周期现象.思考1:“钟表上的时针每经过12小时运行一周,分针每经过1小时运行一周,秒针每经过1分钟运行一周.〞这样的现象,具有怎样的特征?[提示]周而复始,重复出现.2.角的概念(1)角的有关概念(2)角的概念的推广类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角一条射线从起始位置OA没有作任何旋转,终止位置OB与零角起始位置OA重合,我们称这样的角为零度角,又称零角思考2:如果一个角的始边与终边重合,那么这个角一定是零角吗?[提示]不一定,假设角的终边未作旋转,那么这个角是零角.假设角的终边作了旋转,那么这个角就不是零角.3.象限角的概念(1)前提条件①角的顶点与原点重合.②角的始边与x轴的非负半轴重合.(2)结论角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.(3)终边相同的角及其表示所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k×360°,k ∈Z}.如下图:注意以下几点:①k是整数,这个条件不能漏掉.②α是任意角.③k·360°与α之间用“+〞号连接,如k·360°-30°应看成k·360°+(-30°)(k∈Z).④终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.思考3:假设60°的终边是OB,那么-660°,420°的终边与60°的终边有什么关系,它们与60°分别相差多少?[提示]它们的终边相同.-660°=60°-2×360°,420°=60°+360°,故它们与60°分别相隔了2个周角的和及1个周角.1.以下变化是周期现象的是()A.地球自转引起的昼夜交替变化B.随机数表中数的排列C.某交通路口每小时通过的车辆数D.某同学每天打的时间A[由周期现象的概念知A为周期现象.]2.以下说法正确的选项是()A.三角形的内角一定是第一、二象限角B.钝角不一定是第二象限角C.相差180°整数倍的角为终边相同的角D.钟表的时针旋转而成的角是负角D[A错,如90°既不是第一象限角,也不是第二象限角;B错,钝角在90°到180°之间,是第二象限角;C错,终边相同的角之间相差360°的整数倍;D正确,钟表的时针是顺时针旋转,故是负角.]3.-378°是第________象限角.()A.一B.二C.三D.四D[-378°=-360°-18°,因为-18°是第四象限角,所以-378°是第四象限角.]4.把-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为________.144°+(-3)×360°[-936°=-3×360°+144°,故-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为144°+(-3)×360°.]周期现象的判断[例1](1)以下变化中不是周期现象的是()A.“春去春又回〞B.钟表的分针每小时转一圈C.天干地支表示年、月、日的时间顺序D.某交通路口每次绿灯通过的车辆数(2)水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升.(1)D[由周期现象的概念易知,某交通路口每次绿灯通过的车辆数不是周期现象.应选D.](2)解:因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升),所以水车1小时内最多盛水160×12=1 920(升).1.应用周期现象中“周而复始〞的规律性可以达到“化繁为简〞“化无限为有限〞的目的.2.只要确定好周期现象中重复出现的“基本单位〞,就可以把问题转化到一个周期内来解决.1.如下图是某人的心电图,根据这个心电图,请你判断其心脏跳动是否正常.[解]观察图像可知,此人的心电图是周期性变化的,因此心脏跳动正常.角的概念[例2]以下结论:①锐角都是第一象限角;②第二象限角是钝角;③小于180 °的角是钝角、直角或锐角.其中,正确结论的序号为______.①[①锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以①正确;②480°角是第二象限角,但它不是钝角,所以②不正确;③0°角小于180°,但它既不是钝角,也不是直角或锐角,所以③不正确.]判断角的概念问题的关键与技巧(1)关键:正确理解象限角与锐角,直角,钝角,平角,周角等概念.(2)技巧:判断命题为真需要证明,而判断命题为假只要举出反例即可.2.以下说法正确的选项是()A.终边相同的角一定相等B.钝角一定是第二象限角C.第一象限角一定不是负角D.小于90°的角都是锐角B[终边相同的角不一定相等,故A不正确;钝角一定是第二象限角,故B正确;因-330°是第一象限角,所以C不正确;-45°<90°,但它不是锐角,所以D不正确.]象限角的表示[探究问题]1.任意角都是象限角吗?为什么?[提示]不是.一些特殊角终边可能落在坐标轴上.如果角的终边在坐标轴上,这个角就不是象限角.2.象限角的表示.[例3]α为第二象限角,问2α,α2分别为第几象限的角?[思路探究]由角α为第二象限角,可以写出α的X 围:90°+k ·360°<α<180°+k ·360°(k ∈Z ),在此基础上可以判断2α,α2的X 围,进而可以判断出它们所在的象限.[解]∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ). ∴180°+2k ·360°<2α<360°+2k ·360°(k ∈Z ).∴2α是第三或第四象限角,以及终边落在y 轴的负半轴上的角. 同理,45°+k 2·360°<α2<90°+k 2·360°(k ∈Z ).①当k 为偶数时,令k =2n (n ∈Z ). 那么45°+n ·360°<α2<90°+n ·360°(k ∈Z ),此时α2为第一象限角;②当k 为奇数时,令k =2n +1(n ∈Z ). 那么225°+n ·360°<α2<270°+n ·360°(n ∈Z ).此时α2为第三象限角.综上可知,α2为第一或第三象限角.1.(变结论)在本例条件下,求角2α的终边的位置. [解]∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ). ∴k ·720°+180°<2α<k ·720°+360°(k ∈Z ).∴角2α的终边在第三或第四象限或在y 轴的非正半轴上. 2.(变条件)假设角α变为第三象限角,那么角α2是第几象限角?[解]如下图,先将各象限分成2等份,再从x 轴正半轴的上方起,按逆时针方向,依次将各区域标上一、二、三、四,那么标有“三〞的区域即为角α2的终边所在的区域,故角α2为第二或第四象限角.倍角、分角所在象限的判定思路(1)角α终边所在的象限,确定nα终边所在的象限,可依据角α的X 围求出nα的X 围,再直接转化为终边相同的角即可.注意不要漏掉nα的终边在坐标轴上的情况.(2)角α终边所在的象限,确定αn 终边所在的象限,分类讨论法要对k 的取值分以下几种情况进行讨论:k 被n 整除;k 被n 除余1;k 被n 除余2,…,k 被n 除余n -1.然后方可下结论.几何法依据数形结合思想,简单直观.终边相同的角[探究问题]3.在同一坐标系中作出390°,-330°,30°的角并观察这三个角终边之间的位置关系,角的大小关系.[提示]如下图,三个角终边相同,相差360°的整数倍.4.对于任意一个角α,与它终边相同的角的集合应如何表示?[提示]所有与角α终边相同的角连同α在内,可以构成一个集合,S={β|β=α+k·360°,k ∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角整数倍的和.[例4]α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.[思路探究]利用终边相同的角的关系α=β+k·360°,k∈Z.求解.[解](1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限的角.(2)令θ=250°+k·360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.3.(变条件)假设将例题改为如下图的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?[解]在0°~360°X围内、阴影部分(包括边界)表示的X围是:150°≤α≤225°,那么满足条件的角α为{α|k·360°+150°≤α≤k·360°+225°,k∈Z}.4.(变条件)假设将例题改为如下图的图形,那么终边落在阴影部分(包括边界)的角的集合如何表示?[解]由题干图可知满足题意的角的集合为{β|k·360°+60°≤β≤k·360°+105°,k∈Z}∪{k·360°+240°≤β≤k·360°+285°,k∈Z}={β|2k·180°+60°≤β≤2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β≤(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β≤n·180°+105°,n∈Z}.即所求的集合为{β|n·180°+60°≤β≤n·180°+105°,n∈Z}.1.终边落在直线上的角的集合的步骤(1)写出在0°~360°X围内相应的角;(2)由终边相同的角的表示方法写出角的集合;(3)根据条件能合并一定合并,使结果简捷.2.终边相同角常用的三个结论(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.对角的理解,初中阶段是以“静止〞的眼光看,高中阶段应用“运动〞的观点下定义,理解这一概念时,要注意“旋转方向〞决定角的“正负〞,“旋转量〞决定角的“绝对值大小〞.3.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.1.判断(正确的打“√〞,错误的打“×〞)(1)某同学每天上学的时间是周期现象.()(2)第三象限角一定比钝角大.()(3)始边相同,终边不同的角一定不相等.()(4)始边相同,终边也相同的角一定相等.()[答案](1)×(2)×(3)√(4)×2.以下现象不是周期现象的是()A.钟摆摆心偏离铅垂线角度的变化B.游乐场中摩天轮的运行C.抛一枚骰子,向上的数字是奇数D.太阳的东升西落C[A,B,D所述都是周期现象,而C中“向上的数字是奇数〞不是周期现象.]3.下面各组角中,终边相同的是()A.390°,690°B.-330°,750°C.480°,-420°D.3 000°,-840°B[因为-330°=-360°+30°,750°=720°+30°,所以-330°与750°终边相同.]4.从13:00到14:00,时针转过的角度为________,分针转过的角度为________.-30°-360°[经过1小时,时针顺时针转过了30°,分针顺时针转过了360°.]word5.在0°~360°X围内,找出与以下各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°.[解](1)因为-150°=-360°+210°,所以在0°~360°X围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°X围内,与650°角终边相同的角是290°角,它是第四象限角.- 11 - / 11。

角的概念的推广教案

角的概念的推广教案

5.1角的概念的推广一、内容分析这节课主要内容角的概念的推广,是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.本节内容是在学了集合和函数之后的又一重要章节,是对初中锐角三角函数的一个延伸和推广,主要是推广到任意角三角函数。

也是对集合与函数的知识的又一渗透。

所以本节课《角的概念的推广》就起到了一个铺垫和承上启下的作用。

为今后学习任意角的三角函数提供了有力的依据。

二、学习者特征分析学习对象为中职一年级学生,虽然有一定的观察能力,但带着对初中数学的恐惧和厌烦的他们,数学基础普遍较差。

但凡“数学”二字出现,就已经泄气,而不管所涉及内容的难易度和是否可接受,这种排斥心理很大程度上阻碍了数学教学的有效进行,这种抵触情绪也极大地打断了学习的可持续性。

学生课堂上更喜欢看而不喜欢写和说,遇到问题羞于提问。

学生思想有些偏激与极端,看待问题易存在片面性和表面性。

对待学科任由情感支配,喜欢数学学科的任课老师就对课程感兴趣,愿意付出努力和耐心;不喜欢任课老师,则表现为对其课程彻头彻底的厌学。

三、教学目标1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.教学重点:理解任意角、象限角、终边相同的角等概念。

教学难点:把终边相同的角用集合和符号语言正确地表示出来。

理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.四、教学策略选择与设计针对技校数学特点,更多的学习活动设计将以观察、识别、分析、判断为主线,以掌握方法、步骤为目标,让学生更能体会到数学的实用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2 角的概念的推广洋浦实验中学吴永和一、教学目标:1、知识与技能(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与α角终边相同的角(包括α角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。

2、过程与方法类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。

二、教学重、难点重点: 理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。

难点: 把终边相同的角用集合和符号语言正确地表示出来。

三、学法与教学用具在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。

教学用具:多媒体、三角板、圆规四、教学思路【创设情境,揭示课题】同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。

但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。

这里面到底是怎么回事?这就是我们这节课所要学习的内容。

初中我们已给角下了定义,先请一个同学回忆一下当时是怎么定义的?我们把“有公共端点的两条射线组成的图形叫做角”,这是从静止的观点阐述的。

【探究新知】如果我们从运动的观点来看,角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

(先后用教具圆规和多媒体给学生演示:逆时针转动形成角,顺时针转动而成角,转几圈也形成角,为推广角的概念做好准备)1.正角、负角、零角的概念(打开课件第一版,演示正角、负角、零角的形成过程).我们规定:(板书)按逆时针方向旋转形成的角叫做正角,如图(见课件)。

一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α.旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点.按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°。

钟表的时针和分针在旋转时所形成的角总是负角.为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以记成“α”。

过去我们研究了0°~360°范围的角.如图(见课件)中的角α就是一个0°~360°范围内的角(α=30°).如果我们将角α的终边OB继续按逆时针方向旋转一周、两周……而形成的角是多少度?是不是仍为30°的角?(用多媒体演示这一旋转过程,让学生思考;为终边相同角概念做准备).将终边OB旋转一周、两周……,分别得到390°,750°……的角.如果将OB继续旋转下去,便可得到任意大小的正角。

同样地,如果将OB按顺时针方向旋转,也可得到任意大小的负角(通过课件,动态演示这一无限旋转过程).这就是说,角度并不局限于0°~360°的范围,它可以为任意大小的角(与数轴进行比较).(打开课件第三版).如图(1)中的角为正角,它等于750°;(2)中,正角α=210°,负角β=—150°,γ=-660°.在生活中,我们也经常会遇到不在0°~360°范围的角,如在体操中,有“转体720°”(即“转体2周”),“转体1080°”(即“转体3周”)这样的动作名称;紧固螺丝时,扳手旋转而形成的角.角的概念经过这样的推广以后,就包括正角、负角和零角.2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,(板书)我们使角的顶点与原点重合,角的始边与x轴的非负半轴(包括原点)重合,那么角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.(打开课件第四版)例如图(1)中的30°、390°、-330°角都是第一象限角,图(2)中的300°、-60°角都是第四象限角;585°角是第三象限角.(板书)如果角的终边在坐标轴上,就认为这个角不属于任一象限.3.终边相同的表示方法.(返回课件第二版,在图(1)1(2)中分别以O为原点,直线0A为x轴建立直角坐标系,重新演示前面的旋转过程)在图(1)中,如果将终边OB按逆时针方向旋转一圈、两圈……,分别得到390°,750°……的角,这些角的终边与30°角的终边相同,只是转过的圈数不同,它们可以用30°角来表示,如390°=30°十360°,750°=30°十2×360°,……在图(2)中,如果将终边OB按顺时针方向旋转一圈、两圈……分别得到-330°,-690°……的角,这些角的终边与30°角终边也相同,也只是转过的圈数不同,它们也都可以用30°的角来表示,如-330°=30°-360°,-690°=30°—2×360°,……由此可以发现,上面旋转所得到的所有的角(记为β),都可以表示成一个0°到360°的角与k(k∈Z)个周角的和,即:β=30°十k·360°(k∈Z).如果我们把β的集合记为S,那么S={β|β=30°十k·360°, k∈Z}.容易看出:所有与30°角终边相同的角,连同30°角(k=0)在内,都是集合S的元素;反过来,集合S的任一元素显然与30°角终边相同。

【巩固深化,发展思维】1.例题讲评例1.判断下列各角是第几象限角.(1)—60°; (2)585°; (3)—950°12’.解:(1)∵—60°角终边在第四象限,∴它是第四象限角;(2)∵585°=360°十225°,∴585°与225°终边相同,又∵225°终边在第三象限,∴585°是第三象限角;(3)∵—950°12’=-230°12’—2×360°,又∵-230°12’终边在第二象限,∴—950°12’是第二象限角.例2.在直角坐标系中,写出终边在y轴上的角的集合(α用0°~360°的角表示).解:在0°~360°范围内,终边在y轴上的角有两个,即90°与270°角,因此,所有与90°角终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z};所有与270°角终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z};所以,终边在y轴上的角的集合S=S1∪S2={β|β=90°+k·360°,k∈Z}∪{β|β=270°+k·360°,k∈Z}.例3.写出与60°角终边相同的角的集合S,并把S中适合不等式-360°≤β<270°的元素β写出来.解:S={β|β=60°+k·360°,k∈Z},S中适合-360°≤β<270°的元素是:60°-1×360°=-300°,60°+0×360°=60°,60°+1×360°=420°.2.学生课堂练习参考练习 (通过多媒体给题)。

(1) (口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.(2)与—496°终边相同的角是,它是第象限的角,它们中最小正角是,最大负角是。

(3)时针经过3小时20分,则时针转过的角度为,分针转过的角度为。

(4)若α、β的终边关于x轴对称,则α与β的关系是;若α与β的终边关于y 轴对称,则α与β的关系是;若α、β的终边关于原点对称,则α与β的关系是;若角α是第二象限角,则180°—α是第象限角。

[答案](1)是,不一定.(2)—496°十k·360°(k∈Z),三,240°,—136°.(3)—100°,—1200°.(4)α十β=k·360°(k∈Z);α十β=180°十k·360。

(k∈Z);α一β=180°十k·360°(k∈Z);一.五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?你知道角是如何推广的吗?(2)象限角是如何定义的呢? 你熟练掌握具有相同终边角的表示了吗?(3)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(4)你在这节课中的表现怎样?你的体会是什么?六、布置作业: 习题1.2第2,3题.七、课后反思。

相关文档
最新文档