最新《角的概念的推广》——教学设计方案-复习课程

合集下载

角的概念的推广教案

角的概念的推广教案

4.1 角的概念的推广教学目标1.理解并掌握正角、负角、零角的定义;理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;2.能在0°和360°范围内,找出与此范围外每一个已知角终边相同的角,并判断其为第几象限角;能写出与任一已知角终边相同的角的集合;3.能树立运动变化的观点,深刻理解推广后的角的概念;4.从“射线绕着其端点旋转而形成角”的过程,培养学生用运动变化的观点审视事物,用对立统一规律提示生活中的空间形式和数量关系.教学建议1.关于角的概念的推广的知识结构本小节内容从角不大于周角的非负角开始扩充到任意角,使角有正角、负角、零角之分。

在平面直角坐标系内建立适当的直角坐标系后,根据角的终边在哪一象限,把角划分为四个象限和特殊角等若干类,于是引入了第几象限角和终边相同的角的集合这样两个概念。

再由特殊到一般进行归纳总结.2.关于角的概念的推广的重点、难点分析本节的重点是任意角的概念和象限角的概念;难点是把终边相同的角用集合和符号语言正确地表示出来.可以通过实例帮助建立任意角的概念,如用扳手拧螺母;车轮转动辐条形成的角,特别是钟表的指针转动,因为正角、负角是依据逆时针和顺时针来定义的.建立直角平面坐标系的前提是:角的顶点和坐标原点重合,角的始边与轴的正半轴重合.在这个前提下角的终边落在第几象限就称为第几象限的角,若终边落在坐标轴上,称为坐标轴上的角.为了加深对任意角概念的理解,应正确区分锐角、的角、小于的角.凡与角终边相同的角均可以写作.这一条件不可少,它表明了与终边相同的角都相差的整数倍,或者在形成角的过程中,每当射线绕原点转一圈时,就会出现一个与终边相同的角,经常使在之间,求终边相同的角,可用此角去除以,使余数在之间.3.关于角的概念的推广的教法建议(1)建议通过实例帮助建立任意角的概念,如用扳手拧螺母;车轮转动辐条形成的角,特别是钟表的指针转动,因为正角、负角是依据逆时针和顺时针来定义的.也就是用运动的观点来讲述角的概念的推广实际意义.(2)正角与负角的规定是出于习惯,就和正数、负数规定一样。

角的概念推广--参考教案

角的概念推广--参考教案

第五单元5.1《角的概念推广》教案创设情境在东京奥运会女子单人10米台跳水决赛中,来自中国的跳水选手全红婵以优异成绩获得金牌!在跳水比赛中,有“向前翻腾一周半”和“向后翻腾两周半”的动作,你知道这两个动作分别表示的旋转的角度是多少吗? 生活中随处可见超出0°〜360°范围的角,请你尝试着举一些例子。

一、探索新知 我们规定,一条射线绕其端点按逆时 针方向旋转形成的角叫作正角,如图1所示.按顺时针方向旋转形成的角叫作负角,如图2所示.如果一条射线没有做任何旋转,就称它形成了一个零角,如图3所示.通过以上的定义,我们就把角的概念推广到了任意角,包括正角、负角和零角. 为了简便起见,我们把“角α”或“α∠”简记为 “α”.今后我们可以用小写希腊字母α,β,γ,…来表示角. 在前面关于跳水的问题中,若“向前翻腾一周半”记为540α=︒,那么“向后翻腾两周半”则记为900α=-︒.理解记忆相关正角、负角、零角、任意角的概念和性质了解和区分相关角度的特征让学生在理解的基础上加深概念的记忆,为后面能够正确运用知识点解题做铺垫图1图2 O AB 图3为了便于研究,我们将角的顶点与原点重合,角的始边与x轴的非负半轴重合. 这样,角的终边在第几象限,就说这个角是第几象限角.例如,从图4中可以看出,690︒为第四象限角.从图5中可以看出,210-︒为第二象限角.如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限(也称界限角),例如,0︒,90︒,180︒,270︒,360︒等一些角.二、例题讲解例1 在平面直角坐标系中,分别画出下列各角,并指出它们是第几象限角.(1)225︒;(2)300-︒.解(1)以x轴的非负半轴为始边,逆时认真观察角度数值与图像的联系加深对知识的理解图5图4针方向旋转225︒即形成225︒角,如图6.因为225︒角的终边在第三象限内,所以225︒角是第三象限角.⑵以x轴的非负半轴为始边,顺时针方向旋转300︒即形成300-︒角,如图7所示. 因为300-︒角的终边在第一象限内,所以300-︒角是第一象限角.三、巩固练习1.判断下列说法是否正确:(1) 锐角是第一象限的角,钝角是第二象限的角;(2) 小于90°的角一定是锐角;(3) 直角是第一象限或第二象限的角;(4) 第一象限的角不可能是负角,并且一定是锐角.2.如图所示,已知锐角45AOB∠=︒,写出认真读题,积极思考,掌握解题的基本思路及时有效巩固所学内容,加深对定义的理解展示问题解决的基本方法,培养学生分析解决问题的能力培养与提升学生独立思考、探究问题的能力图6图7下图中箭头所示角的度数.(1):(2):3.在平面直角坐标系中,分别画出下列各角,并指出它们各是第几象限角.(1)210︒(2)330︒(3)310-︒(4)420-︒第2课时教学过程教学活动学生活动设计思路创设情境 同学们分小组分别绘制在平面直角坐标系中,分别画出了330-︒,30︒,390︒角,如图8所示,观察其终边有何联系?并分析330-︒,390︒与30︒在数值上有什么关系?二、探索新知一般地,所有与角α终边相同的角,连同角α在内,可以组成一个集合{}|+360,S k k ββα==⋅︒∈Z任意的与α终边相同的角都可以表示成α与整数个周角(360°的整数倍)的和. 二、例题讲解例1. 与100︒角终边相同的角组成的集合. 解 {}|100+360,S k k ββ==︒⋅︒∈Z .例2. 在0︒~360︒之间,找出与下列各角终边相同的角,并分别判断它们各是第几象限的角.(1)600︒; (2)230-︒.解 (1)因为600240360︒=︒+︒,所以结合老师给出的问题,积极主动的思考,得出初步结论.在理解的基础上熟记相关概念和结论认真读题,积极思考,掌握解题的基本思路激发学生好奇心,增强学习热情,更主动参与到课堂学习过程中.直观展示新知和结论,突出本节教学重点展示问题解决的基本方法,培养学生分析解决问图8S2|β=︒+90三、巩固练习角终边相同的角的集合为:。

《角的概念的推广》教学设计

《角的概念的推广》教学设计

角的概念的推广教学设计一教学目标1、知识目标:(1)要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;(2)理解“正角”“零角”“负角”“象限角”“终边相同的角”的含义;(3)掌握所有与的终边相同的角的表示方法。

2、能力目标:(1)了解角的概念的推广是解决实际生活和生产中实际问题的需要,学会用数学的观点分析解决问题;(2)通过对终边相同的角的表示方法中的“起步角”“步长”“步数”的理解,提高学生的形象思维的能力。

3、情感目标:通过播放奥运会中国跳水运动员夺取金牌的视频,树立学生敢于争先的意识以及培养学生爱国主义精神。

二教学重点、难点重点:理解并掌握任意角、象限角、终边相同角的概念。

难点:把终边相同的角用集合和符号语言正确的表达出来。

三教学方法、教学手段以教师为主导,提出问题,学生自主探究的教学方法;采用多媒体辅助的教学手段。

四教学设计(一)问题情境[演示]1. 观览车的运动.2. 体操运动员、跳台跳板运动员的前、后转体动作.3. 钟表秒针的转动.4. 自行车轮子的滚动.[问题]1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?2. 在运动员"转体一周半动作"中,运动员是按什么方向旋转的,转了多大角?3. 钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角?4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.(二)建立模型1. 正角、负角、零角的概念在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.2. 象限角当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.3. 终边相同的角在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即390°=30°+360°,(k=1);-330°=30°-360°,(k=-1).设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.(三)解释应用[例题]1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°. (2)650°. (3)-950°5′.2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.(1)60°. (2)-21°. (3)363°14′.3. 写出终边在y轴上的角的集合.解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为S2={β|β=270°+k·360°,k∈Z}={β|β=90°+(2k+1)·180°,k∈Z}.于是,终边在y轴上的角的集合为S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.注:会正确使用集合的表示方法和符号语言.[练习]1. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(1)45°. (2)-30°. (3)420°. (4)-225°.2. 辨析概念.(分别用集合表示出来)(1)第一象限角. (2)锐角. (3)小于90°的角. (4)0°~90°的角.3. 一角为30°,其终边按逆时针方向旋转三周后的角度数为.4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为. (四)拓展延伸1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.2. 如果α在第二象限时,那么2α,是第几象限角?注:(1)不能忽略2α的终边可能在坐标轴上的情况.(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)。

【教学设计】《角的概念的推广 》(北师大)

【教学设计】《角的概念的推广 》(北师大)

1《角的概念的推广》教科书首先通过实际问题(拧螺丝)引出角的概念的推广问题,引发学生的认知冲突,然后用具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同角的集合。

这样可以使学生在自己已有经验的基础上,更好的认识任意角、象限角、终边相同的角。

【知识与能力目标】理解任意角的概念(包括正角、负角、零角) 与区间角的概念。

【过程与方法目标】会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

【情感态度价值观目标】1、提高学生的推理能力;2、培养学生应用意识;3、让学生学会用运动变化的观点认识事物。

【教学重点】任意角概念的理解;区间角的集合的书写。

【教学难点】终边相同角的集合的表示;区间角的集合的书写。

电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。

一、导入部分1、回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

二、研探新知,建构概念1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°;⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

三、例题讲解例1、如图⑴⑵中的角分别属于第几象限角?正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角 顶点 AO例2、在直角坐标系中,作出下列各角,并指出它们是第几象限的角。

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 答:分别为1、2、3、4、1、2象限角。

角的概念推广教案

角的概念推广教案

角的概念推广优秀教案第一章:角的引入1.1 教学目标让学生了解角的定义和基本性质。

能够识别和比较不同类型的角。

能够用角度来描述角的大小。

1.2 教学内容角的定义:从一点引出两条射线所组成的图形。

角的性质:角的内部是两条射线的公共部分,外部是不共线的两条射线的夹角。

角的分类:锐角、直角、钝角、平角、周角。

1.3 教学方法通过实物演示和图形展示,引导学生直观地理解角的概念。

利用几何模型和练习题,让学生亲手操作,加深对角的认识。

1.4 教学资源角的概念引入PPT演示文稿。

实物模型和图片,如剪刀、三角板等。

1.5 教学步骤1.5.1 导入:利用实物或图片,引导学生观察和描述角的存在。

1.5.2 新课引入:讲解角的定义和性质,通过PPT演示文稿和实物模型进行辅助说明。

1.5.3 实例分析:展示不同类型的角,让学生区分和比较它们的大小。

1.5.4 练习巩固:提供一些练习题,让学生运用角的概念进行解答。

1.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的概念的理解程度。

第二章:角的大小比较2.1 教学目标让学生能够比较不同角的大小。

学会使用量角器测量角的大小。

2.2 教学内容角的大小比较:通过观察角的内部或外部,比较角的大小。

量角器的使用:量角器的结构和如何测量角的大小。

2.3 教学方法通过实际操作量角器,让学生学会正确测量角的大小。

提供练习题,让学生运用比较角大小的方法。

2.4 教学资源量角器演示文稿和实物量角器。

练习题和答案。

2.5 教学步骤2.5.1 导入:复习上一章的内容,引导学生回顾角的概念。

2.5.2 新课引入:讲解如何比较角的大小,通过PPT演示文稿和实物量角器进行辅助说明。

2.5.3 实例分析:提供一些角的大小比较实例,让学生实践和理解比较方法。

2.5.4 练习巩固:提供一些练习题,让学生运用角的大小比较方法进行解答。

2.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的大小比较的理解程度。

《角的概念推广》 教学设计

《角的概念推广》 教学设计

《角的概念推广》教学设计一、教学目标1、知识与技能目标(1)理解角的概念推广的必要性,掌握正角、负角和零角的概念。

(2)掌握终边相同角的表示方法,并能用于解决简单的角的计算问题。

2、过程与方法目标(1)通过观察实例和动画演示,经历角的概念推广的过程,培养学生的观察能力和抽象概括能力。

(2)通过解决与终边相同角有关的问题,培养学生的运算能力和逻辑推理能力。

3、情感态度与价值观目标(1)让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。

(2)通过合作学习,培养学生的团队合作精神和交流能力。

二、教学重难点1、教学重点(1)正角、负角和零角的概念。

(2)终边相同角的表示方法。

2、教学难点终边相同角的表示方法的应用。

三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、导入新课通过展示生活中常见的与角有关的实例,如钟表指针的转动、摩天轮的旋转等,引导学生思考这些角与之前所学的角有什么不同,从而引出角的概念推广的必要性。

2、讲授新课(1)角的概念推广①用动画演示一条射线绕着端点旋转的过程,让学生观察旋转方向和旋转量。

②介绍正角、负角和零角的概念:按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角,如果一条射线没有作任何旋转,就称它形成了一个零角。

③强调角的大小是由旋转量决定的,而与旋转方向无关。

(2)象限角①介绍象限角的概念:在平面直角坐标系中,使角的顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。

②让学生通过练习判断一些角是第几象限角或是否为象限角。

(3)终边相同角①观察几组终边相同的角,如 30°,390°,-330°等,引导学生发现它们之间的关系。

②总结终边相同角的表示方法:与角α终边相同的角(包括角α在内)可表示为 k·360°+α(k∈Z)。

人教版(2024版)七上数学 6.3.1 角的概念 教案

人教版(2024版)七上数学 6.3.1 角的概念 教案

分课时教学设计教师活动2:问题:与线段一样,角也是一种基本的几何图形,你能从下面的图片中找到角的形象吗?预设:引问:你能总结出角的定义吗?活动意图说明:教师活动3:指出:角:有公共端点的两条射线组成的图形叫做角.即:角的静态定义讲解1:公共端点叫角的顶点,两条射线叫角的边。

讲解2:角的表示方法(角用符号“∠”来表示.)用三个大写字母表示:∠AOB 或∠BOA或∠O用一个小写希腊字母加弧线表示: ∠a用一个数字加弧线表示:∠1想一想:如图,能把∠a记作∠O 吗?为什么?∠a还可以怎样表示呢?预设:不能;理由:唯有在顶点处只有一个角的情况,才可只用顶点的一个字母来表示这个角;否则分不清这个字母究竟表示哪个角.∠AOB师出示动画指出:角:也可以看作由一条射线绕着它的端点旋转而形成的图形.即:角的动态定义思考:如图,射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,形成什么角?继续旋转,OB和OA重合时,又形成什么角?归纳:平角:当射线OA绕O点旋转,当终止位置OB与起始位置OA在一条直线上时,形成平角;周角:当射线OA绕O点旋转,当终止位置OB与起始位置OA重合时,形成周角.注意:1.平角和周角都是“角”,而不是“线”.因此,不能说“一条直线就是平角”,也不能说“一条射线就是周角” .2.平角的一半是直角,1直角=90°,通常在直角的顶点处加上“”或“”标志.讲解:我们常用量角器量角. 度、分、秒是常用的角的度量单位.把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1′′1周角=360°1平角=180°1直角=90°1° =60 ′1 ′ =60 ′′角的度、分、秒是60进制的,这和计量时间的时、分、秒是一样的.想一想:借助三角尺,我们能直接画出哪些度数的特殊角?预设:90º,60º,45º,30º想一想:如何借助量角器来度量角的度数呢?预设:用量角器度量角的方法:1.对中——角的顶点对准量角器的中心;2.重合——角的一边与量角器的零线重合;3.读数——读出角的另一边所对的度数.指出:借助量角器,可以画出任何给定度数的角.讲解:角度制:以度、分、秒为单位的角的度量制,叫做角度制.如:∠α 的度数是48度56分37秒,记作:∠α=48°56′37 ′′此外,还有其他度量角的单位制.例如,以后将要学到的以弧度为基本度量单位的弧度制,在军事上经常使用的角的密位制,等等。

中职教育数学《角的概念推广》教案

中职教育数学《角的概念推广》教案

中职教育数学《角的概念推广》教案一、引言在初中阶段,学生已经学习了角的基本概念,并能够准确地度量和描述角的大小。

本节课旨在通过一系列的实例和练习,让学生进一步探索角的概念,并学会将其应用于实际问题中。

二、教学目标1. 了解角的概念和基本术语。

2. 掌握角的度量方法和计算技巧。

3. 能够分析和解决与角相关的实际问题。

三、教学内容与步骤步骤一:复习角的基本概念(15分钟)1. 复习角的定义:由两条射线共同端点所组成的图形。

2. 复习角的基本术语:顶点、边、内角、外角等。

3. 指导学生用自己的话解释角的概念,并举例说明。

步骤二:角的度量与计算(30分钟)1. 角的度量单位:度和弧度。

介绍度和弧度的概念及相互转换的方法。

2. 指导学生通过测量器具准确地度量角的大小,并用度数表示。

3. 引导学生通过一些简单的计算题和练习,巩固度量角的方法和计算技巧。

步骤三:角的分类与特性(30分钟)1. 介绍角的分类:锐角、钝角、直角、平角等。

2. 指导学生根据角的度数范围进行分类,并解释每种角的特点。

3. 引导学生观察图片和实例,鉴别角的分类并描述其特征。

步骤四:角的应用(30分钟)1. 引导学生思考角的应用场景,如建筑设计、工程测量、地理导航等。

2. 指导学生分析和解决与角相关的实际问题,如计算建筑物倾斜角度、估算太阳升起的时间等。

3. 给学生一些角应用的练习题,培养他们的角度思维和解决问题的能力。

四、课堂小结与作业布置1. 复习本堂课所学的角的概念、度量和分类。

2. 布置作业:要求学生设计一个与角度相关的实际问题,并用所学知识解答。

3. 强调学生合作学习的重要性,并鼓励他们积极参与课堂讨论。

五、教学反思通过本节课的教学,学生进一步巩固了角的基本概念和术语,并学会了角的度量方法和计算技巧。

通过实例和练习的引导,学生掌握了角的分类与特性,并能将角的概念应用于实际问题中。

教学过程中,我注重培养学生的思维能力和解决问题的能力,鼓励他们积极参与讨论和合作学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角的概念的推广教学设计
扶风县第二高中冯海平
一、教学内容解析:
1.本节课的主要内容是角的概念的推广,主要是运用运动观点来定义和理解角,即用角的始边和终边及旋转方向来定义任意角,从而达到对角的概念的推广。

2.地位和作用:本节内容是高中数学北师大版必修四第一章三角函数的第二节,是对初中锐角三角函数的一个延伸和推广,主要是推广到任意角三角函数。

本节课《角的概念的推广》就起到了一个铺垫的作用。

它是学习任意角的三
角函数必备的知识。

二、教学目标设置
1.知识与技能
(1)理解为什么要推广角的概念,怎样来推广,理解并掌握正角、负角、零角的定义
(2)理解任意角、象限角的概念;掌握所有与α角终边相同的角(包括α角)的表示方法;会判断是哪个象限角还是终边在坐标轴上的角
(3)类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广
2.过程与方法
(1)借助图片、视频、实物演示、动手绘制角等手段,让学生充分体会到多媒体等手段对数学教学的作用。

(2)在老师的引导、及时评价下,同学之间的互相评价下,学生积极探究知识的形成过程。

3.情感、态度与价值观
(1)通过本节的学习,让学生意识到数学来源于生活,服务于生活,激发学习数学的兴趣。

(2)体会数形结合思想,学会运用运动变化的观点认识事物.
(3)通过课堂上的学生自评、互评,教师评价,培养学生竞争意识和团队合作意识,锻炼学生的语言表达能力,提高分析问题和解决问题的能力。

重、难点突破措施:
采用看图片,视频,列举生活中的实例等多种形式来理解为什么要推广角的概念?怎样来推广?这两个问题。

借助电子白板和几何画板让同学做角,来感受现在的角是动态的。

再用几何画板展示终边相同的角的产生过程,从而理解终边相同的角不是一个而是无数个,这些角可以组成一个集合。

这样会形象直观理解这些抽象的概念,并且产生了深刻的印象。

三、学情分析
高一学生因为在初中学习时,学习态度,学习方法,学习能力的不同,知识掌握程度参差不齐,两级分化已经形成,但普遍储备了一定感性具体的数学问题情境,在初中,学生学习了角的定义,角的范围很窄。

现实中存在大量的角,但无法用初中角的知识来解决,例如:五边形内角和540°,他们是知道的但无法做的。

因此我们本节课的教学要充分关注整个知识的产生过程,充分调动了学生的参与性,再借助多媒体形象直观展示。

四、教学策略分析。

1.教学面临的问题。

掌握所有与α角终边相同的角(包括α角)的表示方法是本节课的难点,它很抽象,不能深刻理解它的产生过程,就不能熟练掌握并达到灵活应用。

2. 教学方法的选择
本节课主要采用了学生自主学习、合作探究与教师引导相结合的方法,包括教师的启发讲授、提问、演示,以及学生的探究,合作交流、展示、讨论等
过程.
3. 教学情境的设计
为了让课堂更丰富,同时加强知识之间的联系,从图形入手,借助电子白板和几何画板等工具由浅入深地实现问题的引入、探究、推广和提升.
4.现代教学手段
本节课采用多媒体课件、几何画板等辅助手段以加大课堂容量,通过数形结合,图、表并用,使抽象的知识直观化,形象化,深刻体会理解知识的产生,发展并达到应用。

五、教学过程设计:
六、说板书设计:
板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于记忆,有利于提高教学效果。

七、教学反思
角的概念的推广是三角函数的起始内容。

对本节内容的知识要点及相应的数学思想方法的具体处理如下:
第一个知识点——正角、负角、零角易于学生理解和掌握,因此在进行教学设计时,引导学生自学即可。

但,对于正角、负角的含义是应该作进一步研究的,也即是通过设计的问题串“你认为角30°+360°表示什么含义呢?30°-360°又是什么意思呢?30°+k×360°(k∈Z)呢?”来渗透“+”表示逆时针旋转,“-”
顺时针旋转。

同时,通过这些问题串的引领,可以很自然地渗透数形结合的思想、运动与静止的数学观,为本节课的学习目标的达成,也为整个高中阶段数学学习目标的达成作好必要的铺垫。

第二个知识点——终边相同的角,这是本节知识的难点且抽象,采用几何画板形象直观展示以突破难点。

也是后续学习的关键点。

这一方面是因为终边相同的角作为象限角判断最为重要的一个环节——将一个任意角利用终边相同的角的知识将其
转化到0°~360°(-180°~180°)范围内来加以判断。

第三个知识点——象限角,对这一知识点,主要需从以下几个方面来把握:一是要注意渗透研究三角函数的主要方法——借助图形、图象来进行研究,对数与形的结合在此进行必要的体现;二是要注意让学生了解在数学上有一些必要的规定,并能意识到这些规定的作用和原因,进而全面地体会、理解数学;三是要注意体现化归转化的数学思想,对于一个不易直接作出判断的角,我们可以通过终边相同的角的含义,将其转化到0°~360°(-180°~180°)范围内来进行判断;
第四是要注意帮助学生建立科学谨慎的学习态度,象限角并没有包括完所有的角,因为终边在坐标轴上的角就不属于任何一个象限的角;。

相关文档
最新文档