初中数学竞赛专题:几何不等式与极值问题
初中数学竞赛:平面几何中的最值问题

初中数学竞赛:平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.例1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB ∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R 的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,所以所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.-x2+2Rx+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.例2 如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.例3 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则∠P′C′B=∠P′BC=∠PCB=45°,所以A,B,C′,C四点共圆,所以∠CC′A=∠CBA=90°,所以在△ACC′中,AC>AC′,即PA+PB>P′A+P′B.例4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD⊥BC于D,所以∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以∠1=∠2=45°,∠3=∠4,所以△ADN∽△BDM,又因为∠MDN=90°=∠ADB,所以△MDN∽△BDA,所以∠BAD=∠MND.由于∠BAD=∠LCD,所以∠MND=∠LCD,所以D,C,L,N四点共圆,所以∠ALK=∠NDC=45°.同理,∠AKL=∠1=45°,所以AK=AL.因为△AKM≌△ADM,所以AK=AD=AL.而而从而所以 S△ABC≥S△AKL.例5 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则P1C≤BC=AB.对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.例6 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l 的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.例7 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为练习十八1.设M为圆O外一定点,P为圆O上一动点.试求MP的最大值和最小值.2.设AB是圆O的动切线,直线OA,OB保持互相垂直.如果圆O的半径为r,试求OA+OB的最小值.3.一直角三角形的周长为10厘米(cm),则其面积的最大值是多少厘米?4.已知l1∥l2,A,B是直线l1上的两个定点,且AB=10,l1,l2的距离为8,P为直线l2上的一个动点,试求△ABP周长的最小值.5.如果矩形ABCD的周长为40厘米,那么这个矩形面积的最大值是多少平方厘米?。
七年级数学尖子生培优竞赛专题辅导第十九讲几何不等式(含答案)

第十九讲几何不等式趣提引路】已知:如图19一1,三个居民区分别记作A、B、C,邮电局记作0,它是的三条角平分线的交点, 0、A、B、C每两地之间有宜线道路相连,一邮递员从邮电局出发,走遍各居民区再回到O点,若AC> BOAB.问:哪条路线走的距离最短?并说明理由.解析若不考虑顺序,所走路线有三条:OABCO(或OCR40)、OBACO(或OCABO), OBCAOC或OACBO), 其中OABCO最短.在AC上截取AB' =AB,连结OB',设三条路线OABCO, OBACO, OBCAO的距离分别为〃「厶、厶,易证△ AOB^AAO B, A50=B0,d厂心=(OB+BC+CA+AO)—(OA+AB+BC+CO) =0B+ (AC -AB)一CO=OB'+ (AC-AB )一CO=OB'+B'(7 — CO〉。
, A d3>d t,同理d2>d x.・•.路线OABCO最短.知识拓展】1.三角形的不等关系是研究许多几何不等问题的基础,这种不等关系分为两类:一类是在同一三角形中进行比较;一类是在两个三角形中比较•这里主要方法是把要比较的边或角如何转化到同一个三角形或适当安排在两个三角形之中.2.在同一个三角形中有关边或角不等关系的证明,常有以下泄理:(1)三角形任何两边之和大于第三边(2)三角形任何两边之差小于第三边(3)三角形的一个外角大于任何一个与它不相邻的内角.(4)同一三角形中大边对大角.(5)同一三角形中大角对大边例1如图19-2,在等腰梯形ABCD中,AD//BC, AB=CD, E、F分别在AB、CD上且AE=CF.求证:EF2 丄(AD+BC).i /c G图19・2证明如图所示,延长AD至2,使DD严BC,延长36?至(7「使CC「=AD,连结G D「则ABC;®是平行四边形,ABCD和CDD、C、是两个全等的梯形,在上取一点G 使D、G=AE,连结FG和EGFh AE=CF,则£F=FG,又EG=A D. =AD+BC.•••2EF=EF+FG2EG=AD+BC.即EF=- (AD+BC)・2点评当且仅当点F落在EG上时,即E为AB的中点时,结论中的等号成立•证明这类不等式的一个常用方法是能过添加辅助线,把要比较大小的线段或角集中到一个三角形中,或者适当地安排在两个三角形中, 以便应用上述基本不等关系.例 2 如图19-3, △ABC 中,AB>AC. BE、CF 是中线,求证:BE>CF.解析BE、CF不在同一个三角形中.无法比较它们的大小,将BE平移到FG,在AGCF中比较FC与FG的大小即可.证明将BE、CE分別平移到FG、FD,则四边形EFDC为口作FH丄BC于H.VAB>AC9且F、E分别为AB、AC 的中点,:.FB>CE.:.FB>FD.由勾股泄理得:HB>HD,即FB>FD又•••GH=GB+BH=EF+BH=DC+BH>CD+DH=CH,即GH>CH, :.GF>CF.即BE>CF・例3 如图19-4,在等腰AABC中,AB=AC, D为形内一点,ZADOZADB.求证:DB>DC.解析由于厶DC、/ADB与BD、DC不在同一三角形之中,所以考虑将某一图形绕着某点旋转一是角度,使图中的对应元素不变,使它们能集中在同一个三角形之中.证明把AABD绕点A按逆时针方向旋转至AACD',连接DD',则AD^AD'.:.ZADD^ = ZAZT D,而ZADC> ZADB,:.ZADOZAD C・••• ZADD f + ZD' DC> ZAD f D+ ZCD D••• ZD DC> ZDD C・:.CD r>DC,即DB>DC.点评几何图形在平移、对称、旋转变换中,只是图形位置发生变化,而线段的长度、角的大小不变. 例4 如图19-5,在ZVIBC中,心b、c分别为ZA. ZB、ZC的对边,且求证:2ZB<ZA4-ZC.证明延长BA到D 使AD=BC=u,延长BC到& 使CE=AB=c,连结DE,这就把图形补成一个等腰三角形,即有BD=BE=a+c・:.ZBDE=ZBED・DF//AC. CF//AD,相交于F,连结EF,则ADFC是平行四边形.ffl!9-5•••CF=AD=BC・又ZFCE=ZCBA,•••△FCE仝△CBA (SAS)・:.EF=AC=b.于是DEWDF+ EF=2bJ+c=BD=BE.这样,在ABDE中,便有ZB<ZBDE=ZBED・2ZB< ZBDE+ ZBED= 180°一ZB=ZA+ZC,即2ZB<ZA+ZC.例5过三角形的重心任作一宜线,把这个三角形分成两部分,求证:这两部分面积之差不大于整个三角形面积的丄9证明如图19-6,设AABC重心为G,过点G分别作各边的平行线与各边交点依次为B「C「C?、A?・连结 A 九、B| 、C] C21•.•三角形重心到一个顶点的距离等于它到对边中点距离的二倍,:• A| A = A[ B、= B\B,B B? = B、Cj = C] C,CC2 = G = A,A.■ ■ ■ ■V A l A2//BC. B\B」AC、C\CJ AB・••图中的9个小三角形全等.即AA C x C.所以上述9个小三角形的而积均等于AABC而积的1・9若过点G作的直线恰好与直线AG、BG、B2 A2,重合,则AABC被分成的两部分的而积之差等于一个小三角形的而积,即等于而积的1.9若过点G作的直线不与直线AG、BG、场儿重合,不失一般性,设此直线交AC于F,交AB于E, 交G C?于D •:GB严GJ ZEB\G=ZD:C,Zfi, GE=ZC2 GD.GD.:・EF分皿眈成两部分的而积之差等于|S,5-S他伽心|,而这个差的绝对值不会超过5AC|C.C的而积.从而EF分AABC成两部分的而积之差不大于AABC而积的丄・9综上所述:过三角形重心的任一直线分三角形成两部分的而积之差不大于整个三角形而积的丄.9好题妙解】佳题新题品味例1如图19-7,求VPHT + J(4_x)‘ +4的最小值.R图19・7解析本题周旋于根式,那就不易求岀最小值,但从式子的特征联想到勾股定理,由数想形,构成直角三角形可使问题迅速解决.解构造如图19-7 所示的RtAPAC. RtAPBD> 使AC=1, BD=2, PC=x, CD=4,且PC、PD 在直线 /上,则所求最小值转化为“在直线/上求一点P,使PA+PB的值最小”.取点A关于/的对称点A',显然有M+PB=% +PB2A' B= j3’+¥ =5.・•. A/P+T + J(4二x),+4 的最小值是5.例2 如图19-8,已知AD是AABC的角平分线,且AB>AC,求证:BD>DC.解析由于AB>AC,所以可在AB h截取AE=AC.连接DE,易证△ ADE^/\ADC.于是DE=DC,这样把DC. BD放入ABDE中进行比较即可.证明:TAD为角平分线,•••作△/!£>(?关于AD为对称轴的△△£>£・:・DC=DE、ZADE= A ADC ・••• ZBED> ZADE= ZADC> ZABD.:.ZBED>ZEBD•:・BD>ED即BD>CD.中考真题欣赏例1 (陕四中考题)如图19-9,已知人》为厶ABC的中线,求证:AD<- (AB+AC)・2解析考虑如何将A AC. AD转移到同一个三角形中去,采取中线加倍法.证明延长AD 至E,使得DE=AD,连结CE,则厶ABD^AECD, :.EC=AB,在AACE 中,AE<AC+EC 即2AD<AB+AC, AD<- (AB+AC).2例2 (连云港市中考题)在△ABC中,AC=5,中线AD=4.则边AB的取值范帀是()A. 1VABV9B.3<AB<\3C.5<AB<\3D.9<AB<\3解析参见图19-9.延长AD至E, DE=AD,连结CE,由三角形三边的关系可知3VCEV13,又CE =AB.故3VABV13,选B.竞赛样题展示例1 (1996年“希望杯”初二竞赛题)如图19-10,在厶ABC中,ZB=2ZC,则AC与2AB之间的大小关系是()A・AC>2AB B・ AC=2AB C. ACW2AB D. AC<2AB解析关键在于构造等腰三角形,延长CB至D 使得BD=AB,则ZD=ZD/\B=ZC, AD=AC,在厶ABD中,AB+BD^2AB>AD.即2AB>AC.选D例2 (2000年“希望杯”初二竞赛题)如图19-11, AABC中:AB>AC. AD. AE分别是BC边上的中线和ZA的平分线,比较AD和AE的大小关系.解析延长AD 至F,使DF=AD,连结BF•则AADC^AFDB, :.AC=FB. ZDAC=ZF. \9AB>AC.•••AB>FB, :.ZF>ZBAF. :. ZDAC> ZBAF,•••点D 在点 E 的左边,A ZBAF< ZEAC. V ZADE= Z BAF+ A ABC. kAED=ZC+/EAC, ZABCVZC, Z. ZADE< ZAED,故AD>AE.RI19-91^19-10例3如图19-12,在ZVIBC中,P、Q、/?将英周长三等分,且P、Q在AB上,求证:迪竺>2.S/u 肚9解析易想到作AABC和△PQR的髙,将三角形的而积比化成线段的乘积比,并利用平行线截线段成比例泄理,把其中两条高的比转换成三角形边上线段的比.证明如图32作V丄帖厶,R5于H,则进=册=册不妨设IWBC的周长为1,则PQ丄 AB<丄,3 2•陀、2■ ■ , ” — *AB 3':AP^AP+BQ=AB-PQ< 1-1例4 (2000年江苏省初三竞赛题)如图19-13,四边形ABCD中,AB=BC, ZABC=60a , P为四边形ABCD 内一点,且ZAPD=120°・证明:用+PD+PCMBD・解析在四边形ABCD外侧作等边三角形AB D,由ZAPD= 120°可证明B'P=AP+PD.易知B CMPB' +PC,得B'CWAP +PD+PC.下iiEBD=£C・VAAB D是等边三角形,:.AB r=AD, ZBAD=60° ,又易知ZVIBC是等边三角形,故AC=AB, ZB AC =60°,于是△ AB C竺AADB,:・B'C=DB・例5设h「叽、虬是锐角心菟三边上的髙,求证:訂罟弊“解析如图19-14>在RtAADC中,由于AC>AD,故同理可证c> h b, a> h c,Sg3又A迢,从而等h a + % + 九 <"+b+c.设AABC 的垂心为H 点, 由于 HA+HB>AB, HB+HOBC,HC+HA>AC, 则 HA+HB+HC>1 (a+b+c)・ 2从而h a + h b + h e >HA + HB + HC>-(a+h+c),2即5+hJ ②a+b+c 2由①、②得丄v34_vi2 a+b+c例6如图19-15,在Z\ABC 中,®AC ,过点A 作EF//BC,D 为EF 上异于A 点的任一点,求证,AB+AC 〈BD+DC ・解析将AACD 以直线EF 为对称轴对折到厶AC' D 中, ••• ZC'AD 二ZDAC 二 ZACB 二 ZABC ・・・・ ZC ,AD+ZDAC+ZBAC=ZABC+ZACB+ZBAC=180° . ・・.B 、A 、C'三点共线..v BC Z <C D+DB,又•••AC'二AC, CD 二 DC',・•・ AC' +AB<BD-DC.即 AB+ACCBD+DC ・过关检测】A 级1. _______________________________________________________ 在Z\ABC 中,AD 为中线,AB=7, AC 二5,则AD 的取值范围为 ____________________________________ .2. (1994年安徽省数学竞赛题)已知在AABC 中,ZAWZBMZC,且2ZB 二5ZA,则ZB 的取值范围 是 _______ .3. (1997年太原市初中数学竞赛试题)用长度相等的100根火柴棍,摆放成一个三角形,使最大边的 长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴棍的根数 ___________ •4. (1998年全国高中理科试验班招生数学试题)面积为1的三角形中,三边长分别为a 、b 、c,且满 足a£bWc,则a+b 的最小值是 ___________ .5. (2000年江苏数学竞赛培训题)在任意AABC 中,总存在一个最小角(「则这个角的取值范围为c r^19-15B级AABC 中,E、F 分别为AC、AB 上任一点,BE、CF 交于P,求证:PE+PF<AE+AF.1.如图19-16,2.如图19-17, 等线段AB、CD 交于0,且ZA0C=60°,求证:AC+BD2AB.3.如图19-18, 矩形ABCD中,E、F分别是AB、CD上的点,求证:EF<AC.4.已知a. b、、y 均小于0, x2 + y2 =1.求证:y]a2x2 +h2y2 + y]a2y2 +b2x2 >a+b.5.如图19-19. 在AABC 中,ZB=2ZC,求证:AC<2AB.A6•平而上有n个点,其中任意三点构成一个直角三角形,求n的最大值7•如图19-20.已知ZkABC中AB>AC, P是角平分线AD上任一点,求证:AB-AOPB-PC.第十九讲几何不等式A级1. 1 <AD<62.75°W 乙BW100。
初中数学竞赛第十二讲几何不等式(含解答)

第十二讲几何不等式一、选择题1.已知线段a,b,c的长度满足a < b < c,那么以a,b,c为边组成三角形的条件是()A.c – a < b ; B.2b < a + c ; C.c – b > a; D.2b< ac2.在△ABC中,若∠A=58°,AB>BC,则∠B的取值范围是()A.0°< ∠B < 64°; B.58°< ∠B < 64°C.58°< ∠B < 122°; D.64°< ∠B < 122°3.在锐角三角形ABC中,a = 1, b = 3,那么第三边c的变化范围是()A.2 < c < 4; B.2 < c < 3; C.2 < c < 10; D.22< c < 104.一个等腰三角形ABC,顶角为∠A,作∠A的三等分线AD、AE,即∠1 = ∠2 = ∠3(如图),若BD=x, DE=y, CE=z,则有()A.x > y > z ; B.x = z > yC.x = z < y; D.x < y = z5.已知三角形三边长a,b,c都是整数,并且a≤b<c,若b =7,那么这样的三角形共有()个。
A.21; B.28; C.49; D.14二、解答题1.如图,已知△ABC中,AB > AC,AD是中线,AE是角平分线。
求证:(1)2AD < AB + AC;(2)∠BAD > ∠DAC;(3)AE < AD。
2.如图,已知△ABC ,AB=AC,AD是中线,E为∠ABD内任一点。
求证:∠AEB > ∠AEC。
3.如图,已知△ABC 中,AB=AC ,E 、F 分别在AB 、AC 上且AE=CF 。
初中数学竞赛辅导2021届人教版初中数学第17章《几何不等式与极值

初中数学竞赛辅导2021届人教版初中数学第17章《几何不等式与极值2021年初中数学竞赛辅导专题讲义第17章几何不等式与极值问题17.1.1★一个凸行边形的内角中,恰好有4个钝角,求n的最大值.解析考虑这个凸行边缘的n个外角,n?四角≥ 90?, 为什么?N4.90?? 360? (严格)小于是由于4个钝角的外角和大于0?),因此n?8,n的最大值是7.易构造这样的例子。
如果恰好有k个钝角,则n的最大值是k?3.17.1.2 ★ 在里面△ ABC,AB?AC,P是BC侧的高ad点。
验证:ab?交流电?PB个人计算机apcbd分析易知ab?ac?pb?pc,又是AB2?ac2?bd2?cd2?pb2?pc2故有ab?ac?pb?pc.评论的读者可能希望考虑AD是角平分线和中线的情况。
17.1.3已知四边形abcd,ac、bd交于o,△ado和△bco的面积分别为3、12,求四边形abcd面积的最小值.adobc解析易懂s△abobos△bco??,故s△abo?s△cdo?s△ado?s△bco?36.s△adodos△dco从而s△abo?s△cdo≥2s△abo?s△cdo?12,什么时候△ 阿布?当s时,等号成立△ CDO(此时,四边形ABCD为梯形),因此四边形ABCD面积达到最小值2717.1.4★已知:直角三角形abc中,斜边bc上的高h?6.(1)求证:bc?h?ab?ac;(2)求?bc?h?-?ab?ac?.解析22? 卑诗省?H2.ab?交流电?2?bc2?h2?2bc?h?ab2?ac2?2ab?ac,一2021年初中数学竞赛辅导专题讲义从情况来看,知道2BC吗?H4s△abc?2ab?AC和AB2?ac2?BC2,那么?卑诗省?Hab?交流电??h2?36注意:这同时解决了(1)和(2).17.1.5 ★ 设置矩形ABCD,BC=10,CD?7.移动点F和E分别位于BC和CD上,BF?预计起飞时间?4.找出△ AFE区域ade22bfc分析设置BF?十、de?y??4?x?,则11秒△abf?s△艾德?s△ecf??7x?10岁??10? 十、7.Y70? xy??22 by XY≤ 12? 十、Y4.因此△ AEF≥ 70 ℃ 70? 4.332当bf?ed?2时达到最小值.17.1.6 ★ 将P设置为固定角度?在a中的某一点,通过P的驱动直线与M和n中的两侧相交△ amn最小,P是Mn的中点mpαaβn解析如图所示,连接AP并设置?地图打盹从…起s△amp?s△anp?s△man,得是美联社?罪一美联社?罪是安辛又左式≥2ap?am?an≥sin??sin?,故s△amn当达到最小值时,s△ 放大器?s△ 所以p是Mn的中点n、ca、ab上,bm?cn?ap?1,17.1.7★正三角形abc的边长为1,p分别在bc、m、二12ap2sin?sin?。
数学初中几何最值问题

数学初中几何最值问题
在初中数学中,几何最值问题是一个很重要的知识点。
这类问题通常涉及到找出某个几何图形的最大值或最小值,需要运用一些基本的几何知识和数学方法来解决。
在解决几何最值问题时,我们需要注意以下几点:
1. 确定问题中所涉及的几何图形及其特点;
2. 利用几何图形的特点来列出问题的数学模型;
3. 运用数学方法,如求导、解方程等,求解问题的最值;
4. 根据实际意义对结果进行解释和判断。
最值问题在初中数学中占有很重要的地位,掌握了这种问题的解决方法,可以帮助我们更好地理解和应用几何知识,并且也有助于我们在日常生活中更好地处理一些实际问题。
- 1 -。
初中几何最值问题类型

初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
初中几何最值问题解题技巧

初中几何最值问题解题技巧初中几何最值问题是一个比较常见的问题,通常涉及到线段、角度、面积等几何元素的最小值或最大值的求解。
下面将详细讲解一些常见的解题技巧:1.利用轴对称性转化:对于一些具有轴对称性的几何图形,可以利用轴对称性将问题转化为更简单的问题。
例如,对于一个关于直线对称的图形,可以找到对称轴,然后将问题转化为求解对称轴上的点到原图形的最短距离或最大距离。
2.利用三角形不等式:三角形不等式是解决几何最值问题的重要工具。
例如,对于一个三角形,任意两边之和大于第三边,任意两边之差小于第三边。
利用这些不等式,可以推导出一些关于几何元素的最值关系。
3.利用特殊位置和极端位置:在解决几何最值问题时,可以考虑特殊位置或极端位置的情况。
例如,对于一个矩形,当它的一条对角线与矩形的一条边垂直时,该对角线的长度达到最小值。
对于一个三角形,当它的一条边与另一条边的延长线垂直时,该三角形的面积达到最小值。
4.利用几何定理:几何定理是解决几何最值问题的有力工具。
例如,对于一个三角形,当它的一条边与另一条边的中线重合时,该三角形的周长达到最小值。
对于一个四边形,当它的一条对角线与另一条对角线的中线重合时,该四边形的面积达到最小值。
5.利用数形结合:数形结合是解决几何最值问题的常用方法。
通过将几何问题转化为代数问题,可以更容易地找到问题的解。
例如,对于一个圆上的点到圆心的距离的最大值和最小值,可以通过将问题转化为求解圆的半径的平方的最大值和最小值来解决。
以上是一些常见的初中几何最值问题的解题技巧,希望能够帮助你更好地解决这类问题。
极值问题与不等式

极值问题与不等式在数学中,极值问题与不等式是两个重要的概念和主题。
极值问题与不等式的研究旨在确定一组数的最大值或最小值,并且在应用中有着广泛的应用价值。
本文将探讨极值问题与不等式的基本概念、解法以及其在实际中的应用。
一、极值问题的基本概念极值问题是数学中研究函数最大值和最小值的问题。
在一元函数的情况下,我们通常关心一个函数在给定区间上的最大值和最小值。
这些最大值和最小值称为极大值和极小值。
对于一个函数f(x),我们称x=a是其定义域上的一个极小值点,如果在a的某个邻域内,f(x)的值都不大于f(a)。
同样地,我们称x=a是其定义域上的一个极大值点,如果在a的某个邻域内,f(x)的值都不小于f(a)。
二、极值问题的解法为了解决极值问题,我们需要使用微积分的工具和方法。
一般来说,我们通过以下步骤来找到一个函数的极值点:1. 找到函数f(x)的一阶导数f'(x);2. 解方程f'(x)=0,找到导数为0的点,也就是函数的驻点;3. 利用二阶导数f''(x)的符号来判断驻点的性质:a. 若f''(x)>0,则x是极小值点;b. 若f''(x)<0,则x是极大值点;c. 若f''(x)=0,则二阶导数的判定方法失效,需要使用其他方法来进一步判断。
三、不等式问题的基本概念在数学中,不等式是比较两个数之间大小关系的数学表达式。
通常用符号">"、"<"、">="、"<="等来表示不等关系。
对于一元函数的不等式,我们可以通过解方程或者使用数学推导的方法来确定其解集。
而对于多元函数的不等式,则需要应用多元函数的性质来进行推导和求解。
四、不等式问题的解法解决不等式问题的方法有很多种,主要包括以下几种常见的方法:1. 代数法:通过代数运算和方程转化的方法,将不等式变形为更简单的形式,从而得到解集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专题:几何不等式与极值问题17.1.1★ 一个凸行边形的内角中,恰好有4个钝角,求n 的最大值.解析考虑这个凸行边形的n 个外角,有4n -个角90︒≥,故有()490360n -⨯︒<︒(严格小于是由于4个钝角的外角和大于0︒),因此8n <,n 的最大值是7.易构造这样的例子。
如果恰好有k 个钝角,则n 的最大值是3k +. 17.1.2★在ABC △中,AB AC >,P 为BC 边的高AD 上的一点,求证:AB AC PB PC -<-.PCDB A解析 易知AB AC PB PC +>+,又2222AB AC BD CD -=-22PB PC =-,故有AB AC PB PC -<-. 评注读者不妨考虑AD 是角平分线与中线的情况.17.1.3 已知四边形ABCD ,AC 、BD 交于O ,ADO △和BCO △的面积分别为3、12,求四边形ABCD 面积的最小值.CB ODA解析 易知ABO BCOADO DCOS S BO S DO S ==△△△△,故36ABO CDO ADO BCO S S S S ⋅=⋅=△△△△.从而12ABO CDO S S +△△≥,且当ABO CDO S S =△△(此时四边形ABCD 为一梯形)时等号成立,所以此时四边形ABCD 面积达到最小值27. 17.1.4★已知:直角三角形ABC 中,斜边BC 上的高6h =.(1)求证:BC h AB AC +>+;(2)求()()22BC h AB AC ++-. 解析()()22BC h AB AC +-+222222BC h BC h AB AC AB AC =++⋅---⋅,由条件,知242ABC BC h S AB AC ⋅==⋅△,且222AB AC BC +=, 于是()()22236BC h AB AC h +-+==. 注意:这同时解决了(1)和(2). 17.1.5★设矩形ABCD ,10BC =,7CD =,动点F 、E 分别在BC 、CD 上,且4BF ED +=,求AFE △面积的最小值.B FCED A解析设 BF x =,()4DE y x ==-,则()()()117101077022ABF ADE ECF S S S x y x y xy ++=++--=+⎡⎤⎣⎦△△△。
由()2144xy x y +=≤。
故()170704332AEF S -⨯+=△≥.当2BF ED ==时达到最小值. 17.1.6★设P 是定角A ∠内一定点,过P 作动直线交两边于M 、N ,求证:AMN △面积最小时,P为MN 的中点.解析 如图,连结AP ,设MAP α∠=,NAP β∠=,θαβ=+,由AMP ANP MAN S S S +=△△△,得sin sin sin AM AP AN AP AM AN αβθ⋅⋅+⋅⋅=⋅。
又 左式2AP ≥,故 212sin sin sin 2sin AMN AP S AM AN αβθθ=⋅⋅△≥。
达到最小值时,须AMP ANP S S =△△,故P 为MN 之中点. 17.1.7★正三角形ABC 的边长为1,M 、N 、P 分别在BC 、CA 、AB 上,1BM CN AP ++=,求MNP △的最大面积。
ABCMPNxyz解析 如图,设BM x =,CN y =,AP z =,则0x ≤,y ,1z ≤,1x y z ++=。
()()()1111sin602APN BPM MNC S S S x z y x z y ++=-+-+-︒⎡⎤⎣⎦△△△, 于是问题变为求()()()111x z y x z y -+-+-的最小值,展开后约去()1x y z ++=,即求xz yx zy ++的最大值. 由不等式()21133xy yz zx x y z ++++=≤知,当13x y z ===时,29APN BPM MNC ABC S S S S ===△△△△,此时MNP S △的面积达到最大值。
()max 13MNP ABC S S =△△17.1.8★设ABC △是边长为l 的正三角形,过顶点A 引直线l ,顶点B 、C 到l 的距离记为1d 、2d ,求12d d +的最大值.lCPBlAQ解析如图,若l 穿过BC ,则由“直角边小于斜边”知121d d BC +=≤,取到等号时仅当l BC ⊥.若l 不经过BC ,取BC 中点P ,作PQ l ⊥,Q 在l 上,则1222d d PQ AP +==≤取到等号仅当l BC ∥.综上所述,12d d +17.1.9 在数1、12、13、14、15、16、17、18、19、110中,若任找三个数能组成三角形的三边,则称这三个数是“好搭档”,则总共有多少组“好搭档”? 解析此题可分类讨论。
显然1不可能为边. 由于1115910<+,故15⎧⎨⎩,16,17,18,19,110⎫⎬⎭中任三数可构成三角形的三边,一共有6!203!3!=组。
当最大边为12时,次大边只能为13,最小边为14或15,有2组。
当最大边为13时,次大边为14或15.次大边为14时,最小边1113412>-=,故可取11~510;次大边为15时,最小边1123515>-=,可取16与17共有8组. 当最大边为14时,次大边为15、16、17.次大边 为15时,最小边1114520>-=,可取11~610;次 大边为16时,最小边1114612>-=,可取11~710; 次大边为17时,最小边1134728>-=,可取18和19。
共有11组。
综上所述,总共有41组. 17.1.10★设60XOY ∠=︒,A 、B 是OX 上的两个定点,P 是OY 上的一个动点,问当P 在什么位置时,22PA PB +最小?60°YPOA B X解析 如图,设OA a =,OB b =,OP x =,不妨设a b <。
则222PA a x ax =+-,222PB b x bx =+-,故 ()222222PA PB x a b x a b +=-+++()2222248a b a b x a b ++⎛⎫=-++- ⎪⎝⎭。
显然当4a bx +=时,22PA PB +最小。
评注容易验证,此时P 为AB 的中点在OY 上的射影。
17.1.11★设直角ABC △中,90C ∠=︒,求证:24ABC AB S △≤. 解析 如图,作A 关于BC 的对称点A ',连结'A B 、'A C ,则ACA'B'12ABC BAA S S =△△1'sin '4AB A B ABA =⋅⋅∠ 2211sin 244AB B AB =≤. 取等号仅当ABC △为等腰直角三角形。
17.1.12★X 是ABC △的边AB 上一点,P 为ACX △的内心,Q 是BCX △的内心,M 是PQ 的中点,求证:MC MX >. 解析如图,连结XP 、XQ 、CP 、CQ ,则90QXP ∠=︒,12MX PQ =,又1902PCQ BCA ∠=∠<︒,故12CM PQ >,于是结论成立。
CBQMP X A评注 三角形某边上的中线分别大于、等于、小于该边的充要条件是该边所对内角为锐角、直角或钝角,这是一个常见的结论.17.1.13★★ 已知凸六边形ABCDEF 中,AF CD ∥,AB ED ∥,BC EF ∥, 求证:ACE BDF ABCDEF S S S +△△≥.QP REDC BF A解析 如图,作ABCD □、QCDE □、EFAR □,于是出现三组全等三角形。
这样便有()2ACE PQR PQR ABCDEF S S S S -+=△△△六边形,即 ()1+2ACE PQR ABCDEFS SS =△△六边形 12ABCDEF S 六边形≥. 同理有 12BDF ABCDEF S S △六边形≥. 评注不破除对称性,此题就比较复杂(当然不是所有的题目都能带给你好运).另外,用这种方法还能证明ACE BDF S S =△△.17.1.14★★ 已知矩形ABCD ,3AB =,5BC =,P 是AD 上一点,CP 、BA 延长后交于M ,直线CQ 垂直于BP ,交BM 于Q ,若Q 为MB 中点,求AP .又条件同上,若BC 的长度不固定,求BC 的最小值.QCBDPA M解析 如图,设AP x =,由MBC △∽CDP △,得MB CD BC PD =,代入得155MB x=-。
又APB △∽BQC △,得BQ AP BC AB =,53BQ x =。
由2MB BQ =,得3253x x =-,或221090x x -+=,解得x 。
若BC 长度不固定,设其为y ,3y MB y x =-,3xyBQ =,故由2MB BQ =得323x y x =-,或22290x yx -+=,由0∆≥得y ≥BC可取的最小值是此时P 为AD 中点。
17.1.15★★ 设I 为ABC △的内心,P 是ABC △内部的一点,满足PBA PCA PBC PCB ∠+∠=∠+∠. 求证:AP AI ≥,并说明等号成立的充分必要条件是P I =.IPCB A解析 易知()12PBC PCB B C IBC ICB ∠+∠=∠+∠=∠+∠, 因此 BPC BIC ∠=∠.故B 、C 、I 、P 四点共圆,即点P 在BCI △的外接圆ω上。
记ABC △的外接圆为Ω,则ω的中心M 为Ω的BC 的中点,即为A ∠的平分线AI 与Ω的交点。
在APM △中,有AP PM AM AI IM AI PM +=+=+≥,故 AP AI ≥.等号成立的充分必要条件是点P 位于线段AI 上,即P I =.17.1.16★★ 延长一凸四边形形的四边和对角线,得六条直线,任两条直线有一个不大于90︒的夹角(这些线无两条平行),求这些夹角中最小的一个的最大值.654321FEC B A解析 如图,标好各角,则12345612180ACB ABC ∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒,故总有一角30︒≤,当ABC △为正三角形,DB AB ⊥、DC AC ⊥时最小角达到最大值30︒17.1.17★★ 凸四边形ABCD 中,点M 、P 分别是BC 、CD 的中点,若AM AP a +=,求证:21<2ABCD S a 四边形。
B M CPDA解析 如图,连结AC 、MP ,易知1142AMP BDC AMCP ABCD S S S S +==△△四边形四边形.又BDC ABCD S S <△四边形,1sin 2AMP S AM AP MAP =⋅∠△ 221()1288AM AP AM AP a +⋅=≤≤, 因此 2111248ABCD ABCD S S a <+四边形四边形, 即212ABCD S a <四边形.17.1.18★★★ 在三角形ABC 中,4AC =,6BC =,2BAC ABC ∠=∠.P 是平面上任意一点,求32PA PB PC ++的最小值.64CB AD解析 因为32U PA PB PC =++2()()PA PB PA PC =+++224AB AC AB +=+≥.下面来求AB .延长BA 至D ,使得DA AC =,连结CD ,则12D DCA BAC ABC ∠=∠=∠=∠,所以DCA △∽DBC △,故DC DABD DC=,所以2DC DA DB =⋅,即364(4)AB =+,故5AB =. 所以,所求的最小值为14.17.1.19★★ 在锐角三角形ABC 中,求证:cos cos 2sin2A B C +≤. 解析 当B C ∠=∠时,显然有cos cos 2sin 2A B C +=.下面不妨设AB AC >.BED CG H F A在AB 上取点F ,使AF AC =.作角平分线AE 、高AD ,则AE 垂直平分CF .又作FH AD ⊥于H ,AD 与CF 交于G ,则2sincos cos 2A CF FG CG FH CDB C AC FA AC FA AC==+>+=+. 17.1.20★★ ABC △中,点D 为BC 之中点,点E 、F 分别在AC 、AB 上,求证:2DEF ABC AEF S S S <-△△△.解析 如图,连结BE 、CF ,则由BD CD =,得2DEF BEF CEF S S S =+△△△.CD B EFA而BEF BCF S S <△△,故BEF CEF BCF CEF ABC AEF S S S S S S +<+=-△△△△△△.于是结论成立. 17.1.21★★ 设a 、b 、c 为三角形三边长,则对任意实数x 、y 、z ,有22()()()()a x y x z b y z y x --+--2()()0c z x z y +--≥.解析 设x y p -=,y z q -=,则x z p q -=+, 原式222()()a p p q b qp c p q q =+-++2222222()()a p a b c pq c q f p =+-++=.它的判别式 22222222()4a b c q a c q ∆=-+-22222[()][()]a c b a c b q =+---0≤.于是 ()0f p ≥.17.1.22★ 已知图中窗框总材料一定,问何时窗的面积最大?(图中6个矩形全等)BAC解析 设AB x =,AC y =,则总材料为109πl x y x =++(l 为常数),面积为2π62S xy x =+.于是(10π)9l xy -+=,代入,得2220π336l S x x ⎛⎫=-+ ⎪⎝⎭. 这个二次函数在240πlx =+时取到极大值,此时x 、y 均有实际意义.取得窗的最大面积为221203πl +.17.1.23★★ ABCD 和EFGH 都是边长为1的正方形,且AB EF ∥.两个正方形重叠部分的面积为116,求两个正方形中心距离的最小值. 解析 如图,设ABCD 的中心为I ,EFGH 的中心为J ,过I 、J 分别作IK AB ∥,JK BC ∥,IK 、JK 交于K .又设两正方形重叠部分为矩形BMHN ,HM x =,HN y =,则116xy =,11122IK x x ⎛⎫=+-=- ⎪⎝⎭,同理1JK y =-,所以 222(1)(1)IJ x y =-+- 222()2x y x y =+-++21()2()2216x y x y =+-++-⋅ 277(1)88x y =+-+≥.所以,IJ .当x ,234y时等号成立.故所求的最小值为. 17.1.24★★ 在锐角ABC △的边BC 、CA 、AB 上各有一动点D 、E 、F ,求证:DEF △的周长达到最小当且仅当AD 、BE 、CF 为ABC △的三条高.解析 如图,设D 关于AB 、AC 的对称点分别为G 、H ,GD 与AB 交于M ,DH 与AC 交于N ,则DEF △的周长22sin GF FE EH GH MN AD BAC =++==∠≥≥42sin ABCS AD BAC BC'∠=⋅△ 2sin ABCS BAC R∠=△. HN CD BM GE FA这里AD '为ABC △的高,R 为ABC △的外接圆半径.又由对称性,除了AD BC ⊥外,BE 、CF 也分别必须垂直于AC 、AB 时方能达到.17.1.25★★ 直角三角形内切圆半径为1,求其面积的最小值.解析 设该直角三角形直角边长为a 、b ,则易知其内切圆半径为1(12a b +=,整理,得222(2)a b a b +-=+,或2222ab a b =+-≥,此即22)2≥.由于每条直角边均大于内切圆直径2,故2>,于是2+,直角三角形最小面积为3+此时该三角形为等腰直角三角形.17.1.26★★ 梯形ABCD 高为d ,上底AD a =,对角线交于P ,求用a 、d 表示APD △与BCP △面积之和的最小值.解析 如图,作EPF 与AD 、BC 垂直,垂足分别是E 、F .设BC x =,则PE PF d +=,PE AD aPF BC x==,解得ad PE a x =+,xdPF a x=+,于是2222111222APD BCP a d x d a x S S d a x a x a x ++=⋅+⋅=⋅+++△△. CF B P DEA设22a x y a x +=+,则220x yx a ay -+-=有解,故0∆≥,即224()y a ay -≥,即2y a +≥,y的最小值为1)a ,故最小面积为1)ad.此时1)x a =.17.1.27★★ 设D 是ABC △的边BC 的中点,E 、F 分别在边AB 、AC 上,DE DF ⊥,试比较BE CF +与EF 的大小关系.解析 如图,延长FD 至P 使DP DF =,由BD CD =,知BDP △≌(SAS)CDF △,故CF BP =.PCDB FEA又ED 垂直平分PF ,故EF PE =,易见EP BE BP <+,所以EF BE CF <+.17.1.28★★ 一凸六边形ABCDEF 每条边长均为1,求证:AD 、BE 、CF 中至少有一个2≤. 解析 如图,由于720A B C D E F ∠+∠+∠+∠+∠+∠=︒,不妨设240A F ∠+∠︒≤,作菱形ABGF ,则60GFE ∠︒≤,1FG FE ==,则GE 是FGE △最小边,1GE ≤,又1BG =,故2BE BG GE +≤≤.DCEGBFA17.1.29★★ 在正ABC △内,P 是一动点,求以P 在三边上的射影为顶点的三角形面积的最大值. 解析 如图,ABC △内一点P 在BC 、CA 、AB 的射影分别为D 、E 、F ,则CD B PEFADEF EPF FPD DPE S S S S =++△△△△1()sin1202PD PE PE PF PF PD =⋅+⋅+⋅︒)PD PE PE PF PF PD =⋅+⋅+⋅. 由熟知的不等式21()3ab bc ca a b c ++++≤,及PD PE PF ++为常数(ABC △的高h ),得2)DEF S PD PE PF ++△21144ABC S ==△. 等式成立,仅当PD PE PF ==,此时P 为ABC △的中心.17.1.30★★ 证明:四边形四边的平方和不小于对角线的平方和,等号成立仅当该四边形为平行四边形时.解析 如图,设BD 中点为E ,由中线长公式知CBEDA222224AB AD BD AE +=-, 222224BC CD BD CE +=-. 又由基本不等式,有22222()()AE CE AE CE AC ++≥≥,故用中线长公式代入,即得四边形四边平方和的不等式.等号成立时A 、E 、C 共线,且E 为AC 中点,即AC 、BD 互相平分,于是四边形ABCD 为一平行四边形.评注 又由托勒密不等式AD BC AB CD AC BD ⋅+⋅⋅≥,知有222()()()AD BC AB CD AC BD ++++≥,等号成立仅当四边形ABCD 为矩形.17.1.31★★ 设面积为1的锐角ABC △三条边分别是a 、b 、c ,动点P 在AC 上,P 在BC 上的射影是Q ,求BPQ △面积的最大值(用a 、b 、c 表示).解析 如图,作AR BC ⊥于R .因为cot BQ PQ C BC +=(常数),于是4cot BQ PQ C ⋅⋅=22()BC BQ CQ --.CQ R BPA当BR RC ≤,即AB AC ≤或c b ≤时,Q 可为BC 中点,此时BQ CQ =,从而BPQ S △可得最大值为2211sin tan 288cos a C BQ PQ BC C C ⋅⋅=⋅=22224cos 2()ABC a S a b C a b c ⋅==+-△. 当BR RC >,即c b >时,BQ CQ >.当Q 落在R 上,BQ CQ -达到最小,BQ PQ ⋅达到最大.此时BPQ S △的最大值为22222sin cos cos 22ABRc c a c b S B B B a a +-===△. 17.1.32★★ 设D 为定线段AB 上一定点,P 为动点,PD 的长度固定,求PA PB +之最大值. 解析 由斯图沃特定理222PA BD PB AD AD BD AB PD AB ⋅+⋅=⋅⋅+⋅,注意等式右端为定值.BD A P又由柯西不等式(或展开后移项配方)有22211()()PA BD PB AD PA PB BD AD ⎛⎫+⋅+⋅+ ⎪⎝⎭≥, 故2()PA PB +2()ABAD BD AB PD AB BD AD⋅⋅+⋅⋅≤222PD AB AB BD AD⋅=+⋅, 于是PA PB +的最大值是此时PA ADPB BD=,PD 为APB ∠的平分线. 17.1.33★★ 直角三角形ABC 的直角顶点C 在直角三角形DEF 的斜边DF 上,而E 在ABC △的斜边AB 上,如AC 、BC 、DE 、EF 分别等于10、15、12、12,求凸四边形ABFD 之面积的最大值. 解析 如图,由四边形面积公式,知1115022ABFD AECD EBFC S S S AC DE EF BC =+⋅+⋅=四边形四边形四边形≤.F BCEDA取等号须AC DE ⊥,EF BC ⊥.此时若将点C 位于DF 中点,则由DE 、EF 的值易知E 在ACB ∠平分线上,BC 垂直平分EF ,AC 垂直平分DE ,进而由AC 、BC 之值可知E 在AB 上,满足要求.所以ABFD S 四边形的最大值为150.17.1.34★★ 凸四边形一内点到四个顶点的距离分别是1、2、3、4,求这样的四边形的最大面积. 解析 设凸四边形ABCD 内有一点P ,{PA ,PB ,PC ,}{1PD =,2,3,4},则ABP BCP CDP DAP ABCD S S S S S =+++△△△△四边形11112222PA PB PB PC PC PD PD PA ⋅+⋅+⋅+⋅≤ 1()()2PA PC PB PD =++ 2125()82PA PC PB PD +++=≤. 等号成立,必须PA PC PB PD +=+,比如1PA =,4PC =,2PB =,3PD =,且A 、P 、C 共线,B 、P 、D 共线,AC BD ⊥,此时,5AC BD ==,ABCD S 四边形取最大值252.17.1.35★★ 面积为1的三角形ABC 中,三条边长a 、b 、c 满足a b c ≤≤,求a b +的最小值. 解析 如图,过C 作直线l AB ∥,又作BE l ⊥于E ,延长一倍至D ,连结CD .则a b AC CD AD +=+≥h BE =.ABlECD显然有22448c h ch +==≥,于是a b +≥仅当A 、C 、D 共线,即a b ==,且22c h ==时取等号,此时ABC △为等腰直角三角形. 17.1.36★★ 三角形两边长分别等于10和15,证明:这两个边的夹角的角平分线小于12. 解析 如图,不妨设15AB =,10AC =,AD 为角平分线.今在AB 上取一点E ,使ED AC ∥,则易知153255ED BD AB AC BC AB AC ====+, CDB EA故31065ED =⨯=,又由EAD DAC EDA ∠=∠=∠知6AE ED ==,于是12AD AE ED <+=. 显然12是最佳上界.17.1.37★★ 正三角形ABC 边长为1,M 、N 、P 分别在BC 、CA 、AB 上(含顶点),AP AN BP BM MC CN +=+=+,求MNP △的最大周长和最小周长. 解析 如图,易知1AP AN BP BM MC CN +=+=+=.CMB PTNS A由PN AP AN +≤等知MNP △的周长3AB BC CA ++=≤,达到最大值时M 、N 、P 分别落在ABC △的三个顶点上.又作BAC ∠的平分线AST ,PT 、NS 分别与AST 垂直于T 、S ,由于30PAS NAS ∠=∠=︒,1222AP AN PT SN PN =+=+≤,故12PN ≥,取等号时PN AS ⊥,且P 、N 是AB 、AC 的中点,同理有PM ,12MN ≥,故MNP △的周长32≥,取等号仅当M 、N 、P 为各边之中点时.17.1.38★★ 已知面积为T 的梯形ABCD 满足AB CD ∥,E 为边AB 上一点,且满足EC AD ∥,直线AC 、BD 、DE 交出的三角形面积为t .当t T 最大时,求ABCD. 解析 如图,设DE 与AC 交于M ,BD 与AC 交于N ,则MND S t =△.D设CD x =,()AB y x =≥,2ADCE ABCD S xS x y=+梯形,即2ADCExT S x y =+,2()DMC xTS x y =+△,又设AM CM p ==,MN q =,则y AB AN p q x CD CN p q +===-,解出q y x p y x -=+,即2()2()2()DMN y x xT y x xT t S y x x y x y --==⋅=+++△.于是要2()()y x xx y -+达到最大,即21(1)k k -+达最大,其中1y k x=≥.令1112S k ⎛⎫= ⎪+⎝⎭≤,则222111212122(12)(1)2228k S S S S S S k -+-⎛⎫=-=⋅⋅-⋅= ⎪+⎝⎭≤,仅当212S S =-时达到最大,此时3k =. 17.1.39★★ 已知ABC △的边AB 、AC 上分别有点D 、E ,F在DE 上,求证:ABC S △,并求等号成立的条件. 解析 如图,连结CD 、AF .设1AD k DB =,2AE k CE =,3DFk EF=,则CB EFDA23111111EFC EFC AFC ADC ABC AFC ADC ABC S S S S kS S S S k k k =⋅⋅=⋅⋅+++△△△△△△△△. 同理 321321111DFB ABC S k k S k k k =⋅⋅+++△△. 于是31222221231111(1)(1)(1)44464EFC DFB ABC S S k k k S k k k ⋅=⋅⋅⨯⨯=+++△△△≤. 开方即得结论.取等号时1231k k k ===,即DE 是中位线,F 为DE 中点.17.1.40★★ 已知Rt ABC △中,90C ∠=︒,CD AB ⊥于D ,B ∠的平分线交CD 于E ,交CA 于F ,G 是EF 的中点,连结CG ,设CFG △、BED △、BFC △的周长分别为1C 、2C 、3C .求123C C C +的最大值. ADGF EB C解析 易知1902CFB ABC BED CEF ∠=︒-∠=∠=∠,可得CE CF =,则CG 平分ECF ∠,而90ECF BCD ABC ∠=︒-∠=∠,所以FCG ECG CBF ABF ∠=∠=∠=∠,可推得CFG △∽BFC △∽BED △.因此13C CF C BF =,23C BEC BF=. 设CFx BF =,因为2BE BF GF =-,2CF GF BF =,所以 22121212BE GF CF x BF BF BF ⎛⎫=-⋅=-⋅=- ⎪⎝⎭. 因此,221212333199(12)2488C C C C CF BE x x x C C C BF BF +⎛⎫=+=+=+-=--+ ⎪⎝⎭≤,所以,当14x =,即4CF BF =时,123C C C +有最大值98. 17.1.41★★ BE 、CF 是ABC △的中线,且BE CF ⊥,设AC b =,()AB c c b =>. (1)求BC 之长(用b 、c 表示); (2)若ABC △存在,求bc的范围.解析 (1)设BE 交CF 于G ,则G 为ABC △的重心,故2GF GC =,2GE BG =,设GE x =,GF y =,因FGB △、EGC △、GBC △为直角三角形,于是有:CB EGFA22222222214,414,444.x y b y x c x y BC ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③由①+②得222215()()4x y b c +=+, 由③得 2221()5BC b c =+,即BC =(2)如果ABC △存在,则AB AC BC AB AC +>>-,于是有:0)c b c b c b ⎧+>⎪⎪⎨⎪-<>>⎪⎩从而2222221()(),51()().5c b b c c b b c ⎧+>+⎪⎪⎨⎪-<+⎪⎩④⑤不等式④恒成立;由不等式⑤得:241040b b c c ⎛⎫⎛⎫-+< ⎪ ⎪⎝⎭⎝⎭, 解之得:122bc<<. 由于0c b >>,结合不等式⑤的解,得:112bc<<. 所以,当112b c<<时,ABC △存在.17.1.42★★ ABC △中,点D 、E 、F 分别在BC 、CA 、AB 上,求证:1min(,,)4AFE BFD CED ABC S S S S △△△△≤,并求等号成立的条件. 解析 如图,222AFE BFD DCE ABC ABC ABC S S S AF AE BF BD CD CE AF BF BD CD CE EAS S S AB AC AB BC BC CA AB BC AC ⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅=⋅⋅⋅⋅⋅△△△△△△. CD B EFA易知221()4AF BF AF BF AB AF BF ⋅⋅=+≤,仅当F 为AB 中点时取等号,同理2BD CD BC ⋅,214CE EA AC ⋅≤,于是记min(,,)AFE BFD CED S S S S =△△△,则33164AFE BFD DCE ABCABC ABC ABC S S S S S S S S ⋅⋅△△△△△△△≤≤. 所以14ABC S S △≤,取等号时仅当D 、E 、F 为各边中点.17.1.43★★★ 已知:锐角ABC △中,角平分线AD 、中线BM 、高CH 交于一点P ,证明:45BAC ∠>︒.解析 如图,若45BAC ∠︒≤,则由于90ACB ∠<︒,得45ABC ∠>︒,故AC BC >,AH BH >.MQPCDBHN A作边AB 上的中线CN ,交BM 于Q ,易知N 在AH 内,于是12AH HP NQ AC CP QC =<=,故在直角三角形AHC 中,60BAC ∠>︒,矛盾,于是45BAC ∠>︒.17.1.44★★★ 证明托勒密定理和托勒密不等式:对于凸四边形ABCD ,AB CD AD BC AC BD ⋅+⋅⋅≥,等号成立仅当A 、B 、C 、D 共圆.解析 如图,今在AB 或延长线上取一点M ,在AD 或延长线上取一点N ,使2AB AM AC AD AN ⋅==⋅,连结MC 、NC 、MN .易知ABC △∽ACM △,故AC MC BC AB =⋅,同理,ACNC CD AD=⋅,又ABD △∽ANM △,故 2AM BD AC MN BD AD AD AB=⋅=⋅. 由于MN CM CN +≤,上几式代入,得2BD AC AC ACBC CD AD AB AB AD⋅⋅+⋅≤, 去分母,即得托勒密不等式.等式成立的条件是M 、C 、N 共线,此时180ABC ADC ACM ACN ∠+∠=∠+∠=︒,即A 、B 、C 、D 共圆.D NCMB A17.1.45★★★ 边长为1的正方形内部或边界上有n 个点,则必有两点距离3)n =,1(4)n =.解析 如图(a),先说明一个结果:ABC △中AD 为角平分线,AA '是AD 的反向延长,则由90A AB A AC ''∠=∠>︒,得A B AB '>,A C AC '>.(a)CD BAA'先考虑3n =的情形,假定P 、Q 、R 三点在正方形ABCD (边长1)内或边上.若P 在内,则可用QPR ∠角平分线反向延长,交到正方形某边或顶点为P ',这样P QR '△的每边都不小于PQR △的相应边.于是P 、Q 、R 三点最终都被“调”到正方形ABCD 的边或顶点上.再通过平移,必能使某点落在正方形的顶点上,其余点若在正方形内,再按上述办法继续调,最终三个顶点都落在正方形边界上,且其中至少有一个点的正方形的顶点.不妨设P 落在A 的位置,若Q 在AD 或AB 上,则1PQ <≤,于是由对称性,可设Q 在CD 上,而R 在BC 上.如图(b).若AQ -则(b)CRB QD A2DQ, 1CQ <,同理1CR <,RQ 综上所述结论成立.以下讨论4n =的情形.由于正方形内或边上最远两点距离是正方形对角线长度,故正方形ABCD (边长1)中四点P 、Q 、R 、S中任两点距离如四点构成凸四边形PQRS ,不妨设90S ∠︒≥,则2222PS SR PR +≤≤,所以PS 、SR 中有一个1≤.如四点中S 位于PQR △内或边上,不妨设12090PSR ∠︒>︒≥,同理得min(,)1PS PS <.17.1.46★★★ 设ABC △三边长分别为a 、b 、c ,D 、E 分别在AB 、AC 上,且DE 平分ABC △的面积,求DE 的最值(用a 、b 、c 表示).解析 如图,设CF 、BH 为中线.H E CBD F A设AD x =,AE y =,则由12ADE ABC S S =△△,有12xy bc =.又由余弦定理,222222cos ()2(1cos )()(1cos )DE x y xy A x y xy A x y bc A =+-=-+-=-+-.因(1cos )bc A -为常数,故DE 的大小取决于||x y -.由于xy 为常数,故x y -是x 的增函数.当||x y -取最大值,x 需最大或最小,x 最大为AB c =(这时y 取最小值2b ),最小为2c (这时y 取最大值b ).因此DE 的最大值是AB 、AC 中短边上的中线.比如当c b ≥时,DE 的最大值为. 记()f x x y =-,若()0f c ≥,02c f ⎛⎫⎪⎝⎭≤,则x y =可取到,于是当122cb ≤≤时,DE 的最小值为=当12c b <或2c b >时,比如2c b >时,x 总不会小于y ,此时2c x =时,||x y -最小,DE 就是CF ,即为AB 、AC 中长边上的中线,所以在2c b >的前提下,DE.2b c >时可以类推. 17.1.47★★ 在Rt ABC △中,D 、E 、F 分别为AB 、AC 、BC 的中点,H 为斜边AB 的高的垂足,G 是DH 的中点.设O 为AB 上的任一点,求证:EOF ∠取最大的角便是EGF ∠.F NB HGDOAEC解析 连结CH ,则HF 为Rt CHB △斜边BC 上的中线,故12HF BC FB ==.D 、E 分别为AB 、AC 中点,故DE ==∥12BC ,所以DE HF =,ADE ABC FHB ∠=∠=∠,从而EDG FHG ∠=∠.又DG GH =,故EDG △≌FHG △. 于是有EG GF =,EGD FGH ∠=∠.延长EG 至N ,使GN EG =,连结HN ,易知FGH △≌NGH △. 从而FH HN =.结合GF GN =知GH 为线段FN 的垂直平分线.设O 为AB 上任一异于G 的点,则OF ON =,且易知ON OF OE =>(若O 在G 的左边,OF OE >,O 在G 的右边,则OE OF >).从而 OFG ONG OEM ∠=∠∠≤,在OEM △与MGF △中,EMO ∠与FMG ∠为对顶角,于是有:EOF EOM MGF ∠=∠∠≤(等号当且仅当点O 与点G 重合时取到). 这就证明了EOF ∠取最大角时便是EGF ∠.17.1.48★★★ 设四边形四边依次为a 、b 、c 、d ,则其面积S其中2a b c dp +++=.取到最大值时,仅当四边形内接于圆. 解析 如图,连结AC 、BD ,交于O ,AOB θ∠=,则由四边形的余弦定理(见题13.1.7),得cbda O D CBA22222cos b d a c AC BD θ+--=⋅,又42sin ABCD S AC BD θ=⋅⋅四边形,两式平方后相加,得2222222164()ABCD S AC BD b d a c =⋅-+--四边形,即ABCD S 四边形 由托勒密不等式(参见题17.1.44),有AC BD ac bd ⋅+≤,故ABCD S 四边形==.由托勒密定理知,仅当ABCD 内接于圆时,面积取最大值.17.1.49★★★中,D 、E 分别是边BC 、AB 上的点,且123∠=∠=∠.如果ABC △、EBD △、ADC △的周长依次为m 、1m 、2m ,求证:1254m m m +≤. 321CD B EA解析因为23∠=∠,所以ED AC ∥,EBD △∽ABC △,1m BDm BC=;又13∠=∠,所以ADC △∽BAC △,2m AC m BC =,设AC b =,BC a =,由ADC △∽BAC △得22AC b DC BC a ==,222b a b BD a a a -=-=,这样,由2212m BD a b m BC a -==,2m AC b m BC a ==,可得2221221551244m m a b b b b b m a a a a a +-⎛⎫⎛⎫=+=-++=--+ ⎪ ⎪⎝⎭⎝⎭≤.当12b a =,即2BC AC =时,等号成立. 17.1.50★★★为ABC △内一点,过O 引三条边的平行线DE BC ∥,FG CA ∥,HI AB ∥.D 、E 、F 、G 、H ,I 为各边上的点(如图),记1S 为六边形DGHEFJ 的面积,2S 为ABC △的面积.证明:1223S S ≥.O E CFI BD G HA解析 可以从DGO △、OHE △,OIF △的面积与ABC △的面积关系入手.设BC a =,CA b =,AB c =,FI x =,EH y =,DG z =.易知OIF △∽HOE △∽GDO △∽ABC △,所以,z OD BI c a a ==,y OE FCb a a ==, 由此可得1x y z IF FC BIabca++++==. 由柯西不等式知:222222221133OIF OEH OGD S S S x y z x y z S a b c a b c ++⎛⎫=++++= ⎪⎝⎭△△△≥,从而223OHAG OEFC OIBD S S S S ++四边形四边形四边形≤.而四边形OHAG 、OECF 、OIBD 均为平行四边形,所以213AHG CEF BDI S S S S ++△△≤,即1223S S ≥.17.1.51★★★直角三角形ABC 中,1BC =,90C ∠=︒,30A ∠=︒,P 、Q 、R 分别在AB 、BC 、CA 上,求()max , , PQ QR RP 的最小值. 解析如图,猜想最小值是当PQR △为正三角形时取到.为求此值,不妨设图中的PQR △为正三角形.作QD AC ∥,S 在AB 上.当S 在AP 上时1302PSQ PRQ ∠=︒=∠,故S 、P ,Q 至R 等距,S 在BP 上亦然.P SARCQB于是SR RQ=,SR RQ=,RQ =,而显见SQ +=,故RQ 当37CQ =时,RQ. 若能证明对一般的动点P 、Q 、R ,有()max , , PQ QR RP 问题就解决了.用反证法,假定PQ ,QR,RP <设ABC △的费马点为F (图中未画出),则120BFA AFC CFB ∠=∠=∠=︒,设FA a =,FB b =,FC c =,则由余弦定理,知2222223 , 1. ,4 a c ac b c bc a b ab ++=++=⎧++=⎪⎨⎪⎩①②③①-②,得()()1b c a b c -++=, ②-③,得()()2a b a b c -++=,故a b c >>,22a b b c -=-,32a b c =-,代入②得2222331b c bc b c bc +-==++,于是224b bc =,2b c =,4a c =,代入上式得c,b,a =a b c ++=()12ABC APFR CRPQ BPFQ S S S S PR FA RQ FC PQ FB ==++⋅+⋅+⋅△≤)a b c <++=,矛盾! 因此()max , , PQ QR RP. 评注PQR △实为费马点的等角共扼点的垂足三角形.a b c ++其实也等于(CD =,ABD △为向外作的正三角形.17.1.52★★★证明:若a 、b 、c 能构成三角形的三边长,则1a b +、1b c +、1c a+也能.又若a 、b 、c 构成锐角三角形三边长,则1a b +、1b c +、1c a+呢? 解析 不妨设a ≥b ≥c >0,问题归结为:若b c a +>,则111a b c a b c+>+++.证明如下: 111122a b c a b c b c +>+++++ 1112222b c b c b c>+=+++.当a 、b 、c 构成锐角三角形时,1a b +、1b c +、1c a+也构成锐角三角形,证明如下(仍设a ≥b ≥c >0):由于()()()()22112c a a b c a a b +++++≥,下证()()()221a b c a b c >+++即可,此等价于()222b c a bc ab ca +>+++,由于()2222222b c b c bc a bc a bc+=++>+>+,又()()()()2b c b c b c a b c ab ac +=++>+=+,两式相加即得结论.17.1.53★★★点D 、E 、F 分别在BC 、CA 、AB 上,若分别记AEF S △、BFD S △、CED S △为1S 、2S 、3S ,证明:DEF S △≥当且仅当AD 、BE 、CF 共点时等号成立.D CEFA解析 设1AF BF λ=,2BD CD λ=,3CEAEλ=,则 ()()111311ABC S S λλλ=++△, ()()222111ABC S S λλλ=++△, ()()332311ABC S S λλλ=++△,所以123DEF ABC S S S S S =---△△()()()()()()()()()123213213123111111111ABCS λλλλλλλλλλλλ⎡⎤=⋅+++-+-+-+⎣⎦+++△ ()()()1231231111ABCSλλλλλλ+=+++△. 又有()()()1231232322123111ABCS S S S λλλλλλ=+++△, 故 223123123DEF ABC DEF ABCABC S S S S S S S S S S S ⎛⎫⋅=⋅⎪⎝⎭△△△△△()212312314λλλλλλ+=≥,于是命题得证.仅当1231λλλ=时取等号,由塞瓦逆定理知,此时必有AD 、BE 、CF 共点. 17.1.54★★★已知定角()XOY θ=∠内有一定点P ,动直线l 过P ,交XOY ∠两边于M 、N ,求OM ON +之最小值(假定POX α=∠,POY β=∠,PO d =).解析 如图,由面积得MON MOP NOP S S S =+△△△,即sin sin sin OM ON OM OP ON OP θαβ⋅⋅=⋅⋅+⋅⋅,此式可化为sin sin sin ON OM dαβθ+=. βαPY NOKMX用柯西不等式(或展开后用平均不等式),可得()()sin sin sin OM ON OM ON d ON OM θαβ⎛⎫+=++ ⎪⎝⎭2≥,故OM ON +的最小值为2sin dθ.等号成立,仅当OM ON =.其与sin sin sin ON OM d αβθ+=联立,可解得)sin sin dOM βθ=,)sin sin dON αθ=.又作PK OY ∥,与OX 交于K ,则sin sin dOK βθ=⋅,OK OM <,这样的M 、N 的确存在. 17.1.55★★★★已知锐角三角形ABC ,D 、E 、F 分别是BC 、CA 、AB 上的动点,求证:222DE EF FD ++达到最小时,满足GD BC ⊥、GE AC ⊥、GF AB ⊥,及等价的AB AC BCGF GE GD==,此处G 为DEF △重心,并用ABC △三边及面积表示这个最小值.解析 如图,先设E 、F 固定,M 为EF 中点,则2222122DE DF MD EF +=+.当MD 达最小时,应有MD BC ⊥,如对三边作处理,便有GD BC ⊥、GE AC ⊥、GF AB ⊥,此时GFD GED S S =△△,sin sin FG FGD GE EGD ⋅=⋅∠∠,故sin sin FG B GE C ⋅=⋅,sin sin FG GEC B=,同理此值为sin GD A ,此即AB AC BCGF GE GD==.CD B GE MFA下证此时的DEF △确实达到三边之平方和最小.先求此值,设GF k AB =⋅,GE k AC =⋅,GD k BC =⋅,则()2222ABC k AB BC CA S ++=△. 又2222cos DE GE GD GE GD C =++⋅⋅()2222cos k AC BC AC BC C =++⋅()222222k AC BC AB =+-,同理有另两式,加之,得()22222223DE EF FD k AB BC CA ++=++222212ABCS AB BC CA =++△. 下证对于一般的DEF △,有()()222222DEEF FD AB BC CA ++++212ABC S △≥.找到DEF △重心G ,由中线长,易知有()()222222DEEF FD AB BC CA ++++()()2222223FG GD GE AB BC CA =++++()23FG AB GD BC GE CA ⋅+⋅+⋅≥212ABC S △≥.评注 这里用到柯西不等式,不难得出等号成立之条件.此题还包含了另一个问题:三角形内求一点至三边距离平方和最小.17.1.56★★★已知ABC △,D 、E 分别在BC 、AB 上,AD 、CE 交于O ,记ACO △、EDO △、BED △的面积分别是1S 、2S 、3S ,求3S 的最小值(假定1s 、2s 已知,用1S 、2S 表示之). 解析 如图,若设AEO S S =△,ODC S S =△′,则由简单的比例知S S ⋅′12S S =⋅,又O CDBEA12AEC ACDEDC AED S S S AO CO AO CO S EO DO DO EO S S ⋅==⋅=⋅⋅△△△△ AEC ACD AED EDC S S BC ABS S BD BE=⋅=⋅△△△△ 12333ABC S S S S S S S S ++++'==△3231S =+,故3S最小值为S 达到此值时S S =′,即ED AC ∥.17.1.57★★★已知ABC △三边分别为a 、b 、c ,其中b 、c 确定,D 为BC 中点,ADC θ=∠,求sin θ的最大值(a 不固定,用b 、c 表示).θCDBA解析 易知2222cos a b c bc A =+-,()222212cos 4AD l b c bc A ==++(延长AD 一倍至E 并连CE 即知).于是()22222sin 4sin ABC bc A S a l θ==△,()2222222222sin sin 1cos 4b c Ab c b c A θ=+-下证此式()222224b c bc+≤.这等价于()()22222222224cos sin b c b c A b c A +-+≥,这可由222b c bc +≥及2cos 0A ≥推出,故sin θ的最大值为222bcb c +,仅当90BAC =∠゜或AB AC =时成立.17.1.58★★★★(费马光行最速原理)光线由A 到B ,在介质分界面l 上折射.设C 为l 上一点,直线AC 、BC 与l 所夹锐角分别为1θ、2θ,又设C ′是l 上另一点.求证:当1v 、2v (光线在两种不同介质中的速度)满足θ2θ1B 1B DCC 'ElA F1122cos cos v v θθ= 时必有1212AC BC AC BCv v v v ''+>+. 解析 作点B 关于直线l 的对称点1B ,则有1B C BC =,1B C ′BC =′, 12DCB DCB θ==∠∠.过A 作CA 的垂线,过1B 作1B C 的垂线,两垂线交于点F ,且与l 分别交于E 、D .在DEF △中,EF C ⋅′A DF C +⋅′()12C EF C FD B S S ''>+△△()22DEF CEF CDF S S S ==+△△△1EF CA DF CB =⋅+⋅.由正弦定理,得2211cos sin sin cos v EF FDE DF FED v θθ===∠∠, 故 2v AC ⋅′11v B C +⋅′211v AC v B C >⋅+⋅, 即111212B C B CAC AC v v v v ''+>+,得 1212AC BC AC BCv v v v ''+>+. 17.1.59★★★★ABC△内(或边界上)有一点D ,180ADC ABC +=∠∠゜,CD AB a ==,AC b =.a <b <2a ,求ABC ACD S S -△△的最大值(用a 、b 表示,需分情况讨论).解析 易知90ADC >∠゜.如图,延长AD 至P ,使APC ABC CDP ==∠∠∠,则CP CD AB ==,且A 、B 、P 、C 共圆,于是四边形ABPC 为等腰梯形,因此ABC ACD APC ACD DCP S S S S S -=-=△△△△△.BCPEDA问题归结为求DCP S △的最大值.当然是希望90DCP =∠゜,这样212DCP S a =△.下面来研究DCP ∠的可取范围,设DCP θ=∠.由于AE CE =,DAC DCA ∠≥∠,因此CD AD ≥. 在ACP△中,由等腰三角形CDP知22b a AD AP -=⋅(见题9.2.3)2222sin 2AD AD DP CD CD DP a a a θ=+⋅+⋅=+⋅≤,即221sin 22b a θ-≤.因为b <2a ,故左式<1,θ总有解,下面讨论之.(1)当1ba<,θ可取90゜,此时的最大面积正是212a ; (2)当2ba <时,取22sin 122b a θ=-,则22sin 22b PD a a a θ==-,DCP S △得最大值为2sin cos 22a θθ=.17.1.60★★★★已知:定角60O =∠゜,内有一定点P ,OP 平分O ∠,OP d =,过P 作一动直线交O ∠两边于A 、B (OAB ∠、90OBA ∠≤゜),过A 、B 分别作OA 、OB 的垂线交于Q .求四边形AOBQ 面积的最大值,并刻画此时AB 的位置.解析 不妨设OA a =,OB b =,作AD OB ⊥于D ,则cos602a BDb a b =-=-゜,2cos ab ABO AB -=∠,同理2cos b a OAB AB-=∠. 由正弦定理,sin sin BQ ABBAQ Q=∠,或cos sin 60BQ ABOAB =∠゜,故2b BQ a ⎫-⎪⎭,2215222422ABQ a b a b S BD BQ b a ab ⎫⎫⎛⎫=⋅⋅=--=--⎪⎪⎪⎝⎭⎝⎭⎝⎭△,又OAB S =△,故)224OBQA S ab a b =--. 下面求出a 与b 之间的关系.由AOB AOP BOP S S S =+△△△,得sin30sin30sin60ad bd ab +=゜゜゜,不妨设d 于是a b ab+=.由此得ab ≥4ab ≥.又()()()()22222466938ab a b ab a b ab ab ab -+=-+=-=--≤.于是当2a b ==时,OBQA S 达到最大值(一般情况下.当ab =时达到最大值2),此时AB OP ⊥.17.1.61★★★★ABC △的边BC 内有一点D ,AD BC ⊥,又在BC 上找一点E ,使BE CD =(E 比D 靠近B ),过E 任作一直线,交AB 于F ,交AC 的延长线于G ,求证:BC FG <. 解析1 如图(a ),连结BG 、DG ,显然ABC ∠、ACB ∠均为锐角.由梅氏定理,有1BA FG ECAF GE CB⋅⋅=,于是欲证结论变成求证1BA EC AF GE ⋅<,或BF GE CEAF CE-<. 作GH BC⊥于H,连结AE、AH,注意左边为BEG DCG DHG AHG AEG AEG AEG AEG S S S S CH EH CE GE CES S S S CE CE CE--=<===<△△△△△△△△. 于是结论成立.(b)(a)ME D CGNBFAHGC DE BF A解析2 如图(b ),作FM 、GN 与BC 垂直,垂足为M 、N .由梅氏定理知1AG CE BFGC BE AF⋅⋅=, 用AG AC AF AB >及CE BDBE CD=代入,得 1AC BD BF AB CD GC ⋅⋅<,或BF CGBD CD AB AC⋅<⋅, 如图(b )所示,此即BM CN <,于是BC MN FG <<.17.1.62★★★★已知非钝角三角形ABC ,BC 上的一些点,以ABC △中(包括边界和内部)的A 为最远,这些点构成的线段长为a l ,同理定义b l 、c l ,求证:()14a b c l l l a b c ++>++,其中BC a =,CA b =,AB c =.解析 不妨设a ≥c ≥b .首先证明一个结果:设P 为ABC △内部或边界上任一点,则ABC △中离P 最远的点是ABC △的顶点.为证明这一点,只需连结PA 、PB 、PC ,不妨设任一点Q 在APC △内,如图(a ),延长PQ 与AC 交于R ,ARP ∠或90PRC ∠≥゜,故()max ,PA PC PR PQ >≥,结论成立.于是对ABC 内任一点,只要比较它与A 、B 、C 的距离即可.(b)(a)ECND M B FLABPC Q R A如图(b ),由BC ≥AB ≥AC ,作BC 、CA 、AB 的中垂线LD 、EM 、FN ,其中D 、E 、F 分别是三边中点,M 、N 在BC 上,L 在AB 上. 易知a l MN =,b l AC =,c l BL =.于是。