蒸发器温度控制系统1

合集下载

温度控制工作原理

温度控制工作原理

温度控制工作原理
温度控制是一种常见的自动控制系统,其工作原理主要包括传感器测量、信号处理和执行器控制三个步骤。

在温度控制系统中,首先需要使用温度传感器来测量环境的温度。

这些传感器可以是热敏电阻、热电偶、热电阻等。

传感器将温度转化为电信号,并将其发送给信号处理部分。

接下来,信号处理部分将接收到的电信号进行处理和转换,以便后续的控制和操作。

这个过程通常包括放大、滤波、线性化和数字化等步骤。

信号处理的目的是将传感器测得的温度信号转换为适合后续控制器处理的信号。

最后,控制器接收到经过信号处理的温度信号,并根据预设的温度设定值和算法进行计算和决策,以确定是否需要采取控制措施。

控制器可以是PID控制器、模糊控制器或者其他类型的控制器。

根据计算结果,控制器将信号发送给执行器。

执行器负责根据控制器的指令来控制环境条件,以实现温度的调节。

执行器可以是加热器、冷却器、风扇等。

通过控制执行器的工作状态和功率,温度可以被保持在预设的设定值附近。

整个温度控制的过程是一个反馈循环,温度测量值不断地被传感器测量、信号处理和控制器计算,然后再通过执行器进行调节,以实现温度控制的精确度和稳定性。

mvr蒸发器操作手册

mvr蒸发器操作手册

MVR蒸发器操作手册一、总则本操作手册旨在为MVR蒸发器的操作提供指导,确保设备在安全、高效的状态下运行。

本手册适用于硫酸钠MVR蒸发结晶器的操作,其他类型的MVR蒸发器可参考使用。

二、工艺描述MVR蒸发器采用先进的能源回收技术,通过回收二次蒸汽的能量来加热给水,从而减少对新鲜蒸汽的需求。

该设备主要由加热器、分离器、压缩机等组成。

三、系统的能量平衡及控制MVR蒸发器的能量平衡主要通过加热器、分离器和压缩机来实现。

加热器将给水加热至沸腾状态,分离器将蒸汽和水分离,压缩机将二次蒸汽压缩并传递给加热器进行再次加热。

通过控制各部分的运行参数,确保系统的稳定运行。

四、工艺运行指标MVR蒸发器的工艺运行指标包括蒸汽压力、温度、给水流量、分离器液位等。

在操作过程中,应密切关注这些参数的变化,确保其在设计范围内。

五、MVR蒸汽压缩机的操作MVR蒸汽压缩机的操作步骤如下:1.检查设备及管道是否处于良好状态,确保无泄漏、堵塞等现象。

2.打开蒸汽进口阀,向压缩机内注入蒸汽。

3.启动压缩机,注意观察压力表和温度表的变化。

4.当压力达到设定值时,打开蒸汽出口阀,将蒸汽排出。

5.观察分离器的液位变化,及时调整进料速度和蒸汽量。

六、系统的测试及开机准备系统的测试及开机准备步骤如下:1.检查电源及仪表是否正常,确保设备处于良好状态。

2.打开原料罐至强制循环蒸发器进料管上所有阀门,确保物料能够顺畅进入蒸发系统。

3.打开蒸发系统各泵组的轴封水进出阀门,确保泵组正常运行。

4.运行自控系统界面,点击蒸发开始按钮,进料泵自动启动开始进料。

5.当进料液达到结晶分离器液位设定值时,强制循环泵和出料泵根据设计要求自动启动。

6.观察分离器液位变化,及时调整进料速度和蒸汽量。

7.当分离器液位达到设定值时,进料泵自动停止进料完成。

8.检查各部分运行参数是否正常,如有问题及时处理。

基于SMPT—1000实验平台的蒸发器控制实验设计

基于SMPT—1000实验平台的蒸发器控制实验设计

基于SMPT—1000实验平台的蒸发器控制实验设计摘要:由于过程工业流程相对复杂,生产过程往往伴有高温、高压、强非线性等特性,把生产装置移到实验室进行控制是非常困难的。

SMPT-1000实验平台是运用高精度动态仿真技术将实际工业装置的各种对象特性用数字化手段完整地在小型化半实物实验装置上得到再现的一个实验平台,能够很好地模拟实际工业现场的状况,方便在实验室进行有针对性地控制实验和研究。

关键词:SMPT-1000;蒸发器;温度控制;工业控制方案一、控制要求及工艺流程本文主要对蒸发器进行控制。

根据“西门子杯全国大学生工业自动化挑战赛设计开发型竞赛组”的参赛题目,在浓缩液产量稳定4.63的前提下,保证浓缩液中组分(糖分)维持在7.4%~7.6%的波动范围之内。

所有操作要保证有序进行,工况要保持全程稳定,并要充分考虑生产过程中可能出现的异常情况。

从生产单元冷态起,按照开车步骤实施全自动顺序控制,保证开车稳步进行,保证系统无扰投运。

蒸发器的工艺流程为:浓缩的稀液由蒸发器上部进入,吸收过热蒸汽提供的热量,稀液中的水分变成二次蒸汽从蒸发器顶部排出,浓缩液从蒸发器底部排出。

二、特性分析1.对象特性分析通过综合分析,蒸发器装置是一个复杂的被控对象,主要输入变量包括稀液输入量、稀液浓度、过热蒸汽输入量等;主要输出变量是蒸发器的液位、蒸发器的温度、蒸发器的压力、浓缩液输出量、浓缩液浓度、二次蒸汽输出量等。

上述输入变量与输出变量之间相互关联。

本文主要对蒸发器的温度进行控制,蒸发器的温度主要由过热蒸汽的输入量决定,过热蒸汽输入量增加,蒸发器温度升高,同时蒸发器的温度受稀液的输入量的影响,当稀液输入量增加,会降低蒸发器的温度。

2.被控参数特性分析本文主要对蒸发器的温度进行控制。

温度动态特性的特点:其一,惯性大,容量滞后大,有些过程的时间常数达到十几分钟;其二,温度对象通常是多容的。

由于温度滞后大,控制起来不灵敏,但传统的PID控制方法也能达到很好的控制效果。

冻库的工作原理

冻库的工作原理

冻库的工作原理
冻库是一种用于储存和保持物品冷却状态的设施。

它的工作原理是基于低温环境的创建和维持。

以下是冻库的工作原理的详细解释:
1. 制冷系统:冻库内部安装了制冷系统,通常由压缩机、冷凝器、蒸发器和膨胀阀等组成。

制冷系统的工作原理是通过循环制冷剂来吸收和释放热量,从而使冻库内部保持低温。

2. 制冷剂流动:制冷剂在制冷系统中流动,并通过循环来完成制冷过程。

首先,制冷剂从蒸发器中经过,吸收冻库内物品散发的热量,使其蒸发并变成低温的气体。

然后,压缩机将这些低温气体压缩,使其温度升高。

接下来,制冷剂通过冷凝器,在此过程中释放热量,并转化为高压液体。

最后,制冷剂通过膨胀阀进入蒸发器,重新开始循环。

3. 保温材料:冻库内外都有一层保温材料,例如聚氨酯发泡材料。

保温材料可以防止外界热量进入冻库内部,从而保持低温环境的稳定性。

4. 控制系统:冻库配备了温度控制系统,可以监测和调节冻库内部的温度。

控制系统会根据预设的温度要求,控制制冷系统的运行,确保冻库内部保持恒定的低温。

5. 空气循环:冻库内部还设有空气循环系统,其作用是优化冻库内部的空气流通,均匀分布温度,以避免温差过大和冷冻物品之间的不均衡。

冻库的工作原理通过上述步骤实现,确保冻库内部保持较低的温度,以便储存和保持物品的新鲜度、质量和安全性。

这种储存方式广泛应用于食品行业、医药行业和科学研究领域,以满足冷链需求。

液氨蒸发器温度控制系统课程设计

液氨蒸发器温度控制系统课程设计

液氨蒸发器温度控制系统课程设计
该课程设计旨在设计一个液氨蒸发器温度控制系统,以实现对蒸发器温度的精确控制。

1.引言
介绍液氨蒸发器的基本原理和应用领域。

阐述温度控制在液氨蒸发器中的重要性。

2.系统需求分析
分析液氨蒸发器的工作要求和温度控制的目标。

确定系统的输入和输出要求。

3.控制系统设计
选择合适的传感器来监测蒸发器的温度。

选择适当的执行器来调节蒸发器的温度。

设计控制算法以实现温度的闭环控制。

考虑系统的稳定性和鲁棒性。

4.系统硬件设计
确定所需的硬件组件,如传感器、执行器和控制器。

进行硬件接线和布局设计,确保信号传输的可靠性。

5.系统软件设计
开发控制系统的软件程序。

实现传感器数据采集和执行器控制的算法。

编写用户界面(UI)以监视和调节系统的温度。

6.系统集成和测试
进行硬件和软件的集成。

进行系统级的功能测试和性能评估。

优化系统参数和算法以实现更好的控制性能。

7.结果分析与总结
分析系统测试结果,评估系统的控制性能。

总结设计过程和经验教训。

提出改进系统的建议和未来研究方向。

空调的工作原理 (2)

空调的工作原理 (2)

空调的工作原理
引言概述:空调是现代生活中不可或缺的家电产品,它能够调节室内温度,提供舒适的生活环境。

但是,许多人对空调的工作原理并不了解。

本文将详细介绍空调的工作原理,帮助读者更好地理解空调的运行机制。

一、制冷循环系统
1.1 蒸发器:空气中的热量被吸收
1.2 压缩机:将低温低压的制冷剂压缩成高温高压的气体
1.3 冷凝器:制冷剂释放热量,变成高压液体
二、蒸发冷却原理
2.1 制冷剂蒸发:在蒸发器中吸收室内空气的热量
2.2 热空气被冷却:经过蒸发器后,空气温度下降
2.3 冷却空气送回室内:冷却后的空气再次送回室内,降低室内温度
三、温度控制系统
3.1 感温器:检测室内温度
3.2 控制器:根据感温器反馈的信息,调节制冷系统的运行
3.3 室内温度调节:通过控制制冷系统的运行,实现室内温度的调节
四、空气过滤系统
4.1 过滤器:过滤室内空气中的灰尘、细菌等有害物质
4.2 净化空气:通过过滤器净化空气,提高室内空气质量
4.3 健康环境:保证室内空气清洁,提供健康的生活环境
五、能源节约技术
5.1 节能设计:采用高效压缩机和换热器,减少能源消耗
5.2 定时控制:通过定时开关机功能,避免长时间运行浪费能源
5.3 能效标识:选择能效标识高的空调产品,节约用电成本
通过以上对空调的工作原理的详细介绍,相信读者对空调的运作机制有了更深入的了解。

空调不仅可以提供舒适的室内环境,还能通过节能技术减少能源消耗,实现环保节能的目的。

希望本文能够帮助读者更好地利用空调,享受更加舒适健康的生活。

制冷系统的工作原理

制冷系统的工作原理

制冷系统的工作原理制冷系统是我们日常生活中经常接触到的一种技术,它用于制造冷空气、冷水或冷冻食物等。

本文将详细介绍制冷系统的工作原理,包括压缩机、冷凝器、膨胀阀和蒸发器四个主要组成部分。

1. 压缩机:制冷系统的核心部分是压缩机。

压缩机是一个机械设备,其主要功能是将低温低压的气体(制冷剂)压缩成高温高压的气体。

在这个过程中,制冷剂会吸收一定量的热量,并转变成高温气体。

2. 冷凝器:高温高压的制冷剂从压缩机流入冷凝器。

冷凝器通常是一个长而细的管道,它被设计成能够散发热量。

当高温制冷剂通过冷凝器时,空气或水会经过冷凝器的表面,导致制冷剂冷却下来并转变成液体。

这个过程中,热量会被从制冷剂中移除。

3. 膨胀阀:此时,制冷剂变为低温低压状态的液体。

接下来,制冷剂通过膨胀阀进入蒸发器。

膨胀阀是一个狭窄的通道,它限制了制冷剂的流量,导致其压力急剧下降。

当制冷剂通过膨胀阀时,其能量也会下降,使其变为低温低压的液体。

4. 蒸发器:低温低压的制冷剂进入蒸发器,这是制冷系统中的另一个重要组件。

蒸发器通常由一系列的管道或盘管组成,其表面积很大,有助于加快制冷剂与周围空气的热量交换。

当低温制冷剂与温暖的空气接触时,它会吸收空气中的热量,并转变成低温气体。

通过不断重复上述过程,制冷系统能够持续地生产冷空气或冷水。

这种循环往复的工作原理使得制冷系统能够有效地降低周围环境的温度。

除了这四个主要组成部分,制冷系统还包括一些辅助元件,如冷却剂、冷冻剂和电子控制系统。

1. 冷却剂:冷却剂是制冷系统中的介质,它能够在制冷循环中吸收和释放热量。

常用的冷却剂包括氨气、氟利昂等。

2. 冷冻剂:冷冻剂是制冷系统中的工质,它的主要功能是通过吸热和放热来实现制冷效果。

一些常见的冷冻剂包括氨、二氧化碳和氟利昂等。

3. 电子控制系统:现代制冷系统通常配备有电子控制系统,它能够监测和调节制冷系统的温度、压力和流量等参数。

通过电子控制系统,我们可以实现制冷系统的自动控制和调节,提高能效并确保系统的安全运行。

过程控制系统课程设计题目

过程控制系统课程设计题目

(一)采用 MATLAB 仿真;所有仿真,都需要做出以下结果:( 1 ) 超调量( 2 ) 峰值时间( 3 ) 过渡过程时间(4) 余差( 5 ) 第一个波峰值( 6 ) 第二个波峰值( 7 ) 衰减比( 8 ) 衰减率( 9 ) 振荡频率( 10 ) 全部 P 、I 、 D 的参数( 11 ) PID 的模型(二)每人一个题目,自己完成课程设计报告,报告的格式如图论文格式一. 液氨的水温控制系统设计液氨蒸发器主、副对象的传递函数分别为:G (s) = 1 ,G (s) = 1 e 一0.1s 01 (20s +1)(30s +1) 02 0.2s +1主、副扰动通道的传递函数分别为:G (s) = 1 ,G (s) = 1 f 1 0.2s +1 f 2试分别采用单回路控制和串级控制设计温度控制系统,具体要求如下:( 1 ) 分别进行控制方案设计,包括调节阀的选择、控制器参数整定,给出相应的闭环系统原理图;( 2 ) 进行仿真实验,分别给出系统的跟踪性能和抗干扰性能(包括一次扰动和二次扰动);( 3 ) 说明不同控制方案对系统的影响。

二.炉温控制系统设计设计任务:某加热炉的数学模型为G(s) = e一150s ,试设计大时延控制系统,具体要求如下:( 1 ) 仿真分析以下控制方案对系统性能的影响: PID 、微分先行、中间微分、Smith 预估、增益自适应预估;给出相应的闭环控制系统原理图;( 2 ) 在不同控制方式下进行仿真实验,比较系统的跟踪性能和抗干扰性能;选择一种较为理想的控制方案进行设计,包括调节阀的选择、控制器参数整定。

三.锅炉夹套与被加热介质的温度控制1.设计任务(可 2 人选此题)了解、熟悉锅炉夹套与内胆温度控制系统的工艺流程和生产过程的静态、动态特性,根据生产过程对控制系统所提出的安全性、经济性和稳定性要求,结合所学知识实现温度的控制。

2.设计要求( 1 ) 从组成、工作原理上对工业型传感器、执行机构有一定的了解和认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 设计任务
液氨蒸发器采用出口产品温度为主被控变量,加热蒸汽流量为副被控变量。

主、副对象的传递函数分别为:
11?)G(s?0.1s es)?G(011)??1)(30s(20s020.2s?1,
主、副扰动通道的传递函数分别为:
1?)(sG G(s)?11f1s?0.2,2f试分别采用单回路控制和串级控制设计温度控
制系统。

设计要求如下:
(1)分别进行控制方案设计,给出相应的闭环系统原理图;
(2)对设计的控制系统进行仿真,整定控制器参数;
(3)给出系统的跟踪性能和抗干扰性能仿真,包括一次扰动和二次扰动;(4)对不同控制方案对系统的影响做对比分析。

2 整体方案设计
2.1 单回路控制变量的选择
对于被控量和操作量选择的原则,其中,被控量选择的原则是能直接反映生产过程中产品产量和质量,选择的结果直接影响生产,因此此设计的被控量是温度。

操纵量是克服扰动影响、使系统重新恢复平稳运行的积极因素,应该遵循快速有效的克服干扰的原则去选择操纵量,因此此设计的操纵量是加热蒸汽流量。

2.2 串级控制系统的选择
串级控制系统选择主变量时要遵循以下原则:在条件许可的情况下,首先应尽量选择能直接反应控制目的的参数为主变量;其次要选择与控制目的有某种单值对应关系的间接单数作为主变量;所选的主变量必须有足够的变化灵敏度。

故在本系统中选择出口产品温度作为主变量。

副回路的设计质量是保证发挥串级系统优点的关键。

副变量的选择应遵循以下原则:应使主要干扰和更多的干扰落入副回路;应使主、副对象的时间常数匹配;应考虑工艺上的合理性、可能性和经
济型。

故选择本系统中的加热蒸汽流量为副变量。

又因为外环是主回路,内环是副回路,所以温度调控是主回路。

2.3 控制器的选择
PID控制器的参数整定是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

在串级控制系统中,由于对副回路没有太大的要求,所以只需要有比例环节即可(即P为常数,I=0)。

而对于要求较高的主回路,由于主变量一般不得有偏差,所以主回路一般由比例微分控制(P,I均为常数)。

3 系统仿真与参数整定
3.1 单回路系统的仿真与参数整定
针对设计要求,单回路前向通道中含有主、副控制器及扰动,而调节器一般位于扰动的前面,所以PID调节器在最前面。

设计中副被控变量为加热蒸汽流量,
3-1-1单回路控制系统方框图图仿真图3-1-2 单回路控制系统simulink 图仿真整定过程:值以达到期望的效果。

的参数设置为仅存在比例调节,变换不同的P首先将PID3-1-3
图P=1,I=0,无扰动信号3-1-4
图P=3,I=0,无扰动信号3-1-5
图,无扰动信号P=5,I=0 ,无扰动信号I=0P=7,图3-1-6
但是震荡频率加稳定性下降。

超调量越大,P上面四幅图片可得当越大时,调节器比例带必须适当加PI快,响应时间变短。

为了保持系统原来的衰减率,
大。

又因为要使PI调节在稍微牺牲控制系统的动态品质以换取较好的稳态性能,所以P值不应过大,因此选择P=7。

3-1-7图P=7,I=0.1,无扰动信号
3-1-8图P=7,I=0.3,无扰动信号
积分环节的作用除消除系统的余差外,也加大了系统的振荡频率,使响应速度变快。

但是随着I的增大,超调量过大,也调节时间过长,系统动态性能降低,因此选择I=0.1最佳
3-1-9图P=7,I=0.1,一次扰动信号
3-1-10图P=7,I=0.1,二次扰动信号
通过反复试验过程,此时系统的阶跃响应效果比较理想,控制器参数整定比较合理。

加入扰动以后超调量有所增大,但后面能够达到期望值,具有一定的调节作用。

3.2 串级控制系统的仿真与参数整定
针对设计要求,产品温度作为主变量必然处于主回路,蒸汽流量作为副变量位于
3-2-1串级控制系统方框图图由方框图对应得到系统仿真图仿真图3-2-2 串级控制系统simulink图仿真整定过程:假设扰动均,增益分别为副PID调节器设计为比例控制,K1,K2首先将主、。

串级系统的整定比单回路复为零,在给定阶跃输入下得到输出响应y1(t),y2(t)杂,因为两个调节器串在一起工作,各回路之间相互联系,相互影响。

改变主、这种影响副回路的过渡过程都有影响,对主、副调节器中的任何一个整定参数,
程度取决于主、副对象的动态特性、而且待整定的参数比单回路多,因此,串级系统的整定必然比较困难和繁琐。

常用的工程整定方法有:试凑法,两步整定法和一步整定法。

其中一步整定法步骤为:选择一个合适的负调节器放大倍数K2,按纯比例控制规律设置负调节器。

本设计中经过多次调试,确定K2=12。

主调节器也先置于纯比例作用,使串级控制系统投入运行,用整定单回路的方法整定主调节器参数。

实验步骤如下图:
3-2-3图K1=1,I=0,K2=12,无扰动
3-2-4图K1=5,I=0,K2=12,无扰动
3-2-5图K1=7,I=0,K2=12,无扰动
由上图可知P越大,系统的响应过程越好,超调量变大,震荡频率加大,响应时间变短。

由单回路控制得知P不应过大,因此选择K1=7。

因为副回路是随动系统,允许有误差,因为副调节器可以不引入积分作用,因此只需讨论主调节器的I值即可。

图3-2-6
K1=5,I=0.1,K2=12,无扰动
图3-2-7
K1=7,I=0.1,K2=12,无扰动
3-2-8图K1=7,I=0.2,K2=12,无扰动
由上图很明显得知,K1增大震荡剧烈,超调量增大,调节时间变短,震荡频率加快。

而引入积分环节后,超调变小,调节时间变短。

I=0.2时较I=0.1时震荡剧烈,调节时间过长,所以I=0.1。

图3-2-9
K1=7,I=0.1,K2=12,一次扰动(主扰动)
3-2-10图K1=7,I=0.1,K2=12,二次扰动(副扰动)
图3-2-11
K1=7,I=0.1,K2=12,一、二次扰动均作用系统
加入时间滞后环节后系统的仿真图
图3-2-12
此时系统的参数整定数值为
图3-2-13
K1=0.2,I=0.1,K2=0.3,一、二次扰动均作用
以下为整定过程中各参数变化后的效果
图3-2-14
K1=0.2,I=0.2,K2=0.3,一、二次扰动均作用(含时滞)
3-2-15

K1=0.2,I=0.1,K2=1,一、二次扰动均作用(含时滞)
图3-2-16
K1=7,I=0.1,K2=0.3,一、二次扰动均作用(含时滞)
主、副调节器共同作用,使得系统响应加快,两种干扰同时作用时,使超调量进一步加大,调节时间变长。

串级控制系统由于副回路的存在,提高了系统的工作频率,减小了震荡周期,在衰减系数相同的情况下,缩短了调节时间,提高了系统的快速性。

4 小结
通过以上分析可知:串级控制的副控制器具有“粗调”的作用,而主控制器具有“细调”的作用。

由串级控制器和单回路控制器的仿真图比较可知,采用单回路控制,系统的阶跃响应达到要求时,系统对一次,二次扰动的抑制效果不是很好。

若主、副控制器两者相互配合,控制质量必然高于单回路控制系统。

.。

相关文档
最新文档