双因素差分析方法
双因素试验的方差分析

i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ
Ⅲ
甲
50 63 52
乙
47 54 42
丙
47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。
双因素重复测量方差分析spss

双因素重复测量方差分析spss今天,在社会科学研究中,双因素重复测量方差分析(又称双因素实验设计)是许多研究者经常使用的一种统计分析方法。
本文旨在介绍双因素重复测量方差分析的概念、框架及其在社会科学研究中的应用,并就双因素重复测量方差分析的数据分析工具:spss(统计分析系统)的使用方法及注意事项作出详细介绍。
首先,本文将对双因素重复测量方差分析的概念和框架进行介绍。
双因素重复测量方差分析是一种统计分析方法,主要用于研究具有两个因素的实验中,旨在检验两个因素之间是否存在交互作用,以及它们对被试的反应是否有显著的影响。
双因素重复测量方差分析的框架主要包括实验设计、变量定义、数据分析和分析结果四个部分。
其中,实验设计主要涉及实验条件、处理组构成、实验时序和抽样等;变量定义涉及双因素、因变量定义以及潜在参数的定义;数据分析主要涉及从数据中提取模式和信息、建立模型、利用模型进行预测和主观判断等;分析结果是指从实验数据解释得出的结论,它包括实验效应的分析和检验,以及实验结果的解释。
其次,本文将介绍在社会科学研究中双因素重复测量方差分析的应用。
一般而言,双因素重复测量方差分析可用于量化两个相关因素之间的交互作用,并从中推断哪个因素对整体结果的影响更大,以及这些因素的比例,从而帮助研究者更好地解决研究问题。
具体而言,双因素重复测量方差分析可用于社会科学研究的诸多领域,如社会心理学中的心理实验研究和个体差异研究、社会学研究中的社会状况研究、组织心理学研究中的组织文化研究等,旨在从多维度研究和探索社会心理状态和社会状况,以及它们对社会变量的影响。
最后,本文将介绍双因素重复测量方差分析的数据分析工具:spss的使用方法及注意事项。
spss(统计分析系统)是一款专业的统计分析软件,可用于双因素重复测量方差分析及其他统计分析。
spss操作简单方便,可以实现数据收集、数据清理、数据探索、数据分析以及图形分析等,可以有效地运用统计学原理,以正确分析双因素重复测量实验数据。
spssau方差分析之双因素方差分析操作

双因素方差
双因素方差分析,用于分析定类数据(2个)与定量数据之间的关系情况.例如研究人员性别,学历对于网购满意度的差异性;以及男性或者女性时,不同学历是否有着网购满意度差异性;或者同一学历时,不同性别是否有着网购满意度差异性.
双因素方差分析是相对于单因素方差分析而言;区别在于X(定类数据)的个数;如果仅为一个称为单因素方差;两个为双因素方差;单因素方差分析(即方差分析)的使用非常普遍;但双因素方差更多用于实验研究.
首先判断p值是否呈现出显著性,如果呈现出显著性,则说明X或者交互项对于Y有着差异(影响)关系.
分析结果表格示例如下(SPSSAU同时会生成拆线图):
备注:双因素方差分析基本上仅用于实验研究中,请谨慎使用。
SPSSAU操作截图如下:。
论文—双因素试验的方差分析

X ijk ~ N (ij , 2 ) ( ij 和 2 未 知 ), 记 X ijk i = ijk , 即 有
ijk X ij ijk ~ N (0, 2 ), 故 X ijk ijk 可视为随机误差. 从而得到如下数学模型
X ijk ij ijk, ijk ~ N(0, 2), 各 ijk 相互独立, i 1, , r; j 1, , s; k 1, , t;
1 st
1 rt
X
j 1 k 1
r t
s
t
ijk
,i=1,2, ,r,
X
j =
X
i 1 k 1
类似地,引入记号: , i , j , i , j , 易见
i 1
r
i 0 ,
j 1
s
j
0.
为水平 B j 的效应. 这样可以将
仍称 为总平均,称 i 为水平 A i 的效应,称 成
ij
j
ij
表示
= + i + j +
ij
( i 1, , r; j 1, , s ) ,
(3)
与无重复试验的情况类似,此类问题的检验方法也是建立在偏差平方和的分解上的。 2. 偏差平方和及其分解 引入记号: X =
1 rst
X
i 1 j 1 k 1
r
s
t
ijk
,
X
ij =
1 X ijk ,i=1,2, ,r,j=1,2, ,s, t k 1
t
X
i =
试 验 结 因 素 果 A 因 素 B
第二节 双因素方差分析 PPT课件

分析步骤
(构造检验的统计量)
计算均方(MS)
行因素的均方,记为MSR,计算公式为
MSR SSR k 1
列因素的均方,记为MSC ,计算公式为
MSC SSC r 1
误差项的均方,记为MSE ,计算公式为
MSE SSE (k 1)(r 1)
分析步骤
(构造检验的统计量)
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 对于因素的每一个水平,其观察值是来自正态分布
总体的简单随机样本
2. 各个总体的方差必须相同 对于各组观察数据,是从具有相同方差的总体中抽
取的
3. 观察值是独立的
无交互作用的双因素方差分析 (无重复双因0
343
340
品牌2
345
368
363
330
品牌3
358
323
353
343
品牌4
288
280
298
260
地区5 323 333 308 298
数据结构
分析步骤
(提出假设)
• 提出假设
– 对行因素提出的假设为
• H0:m1 = m2 = … = mi = …= mk (mi为第i个水平的
平方和 自由度 误差来源
均方
(SS) (df) (MS)
F值
P值
F 临界值
行因素 SSR
MSR k-1 MSR
MSE
列因素 SSC
MSC r-1 MSC
MSE
误差
SSE (k-1)(r-1) MSE
总和 SST kr-1
双因素方差分析
(例题分析)
SPSS双因素方差分析

SPSS双因素方差分析例1 对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。
采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。
现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。
三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?这可以认为是无重复实验的双因素方差分析,SPSS软件版本:18.0中文版。
1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示。
数据文件见“小白鼠喂3种不同的营养素增重数量.sav”,可以直接使用。
2、统计分析菜单选择:分析-> 一般线性模型-> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮(无重复双因素方差分析不能选全因子!),在“构建项”下拉菜单中选择“主效应”(只能选主效应)把左边的因子与协变量框中区组和营养素均选入右边的模型框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两两比较”按钮,进入下面对话框将左边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面。
点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。
3、结果解读这是一个所分析因素的取值情况列表。
变量的描述性分析这是一个典型的方差分析表,有2个因素“营养素”和“区组”,首先是所用方差分析模型的检验,F值为11.517,P小于0.05,因此所用的模型有统计学意义,即认为至少有一个因素对体重增长有显著影响,可以用它来判断模型中系数有无统计学意义;第二行是截距,它在我们的分析中没有实际意义,忽略即可;第三行是变量是区组,P<0.001,可见有统计学意义(即认为区组对体重增长有显著影响),不过通常我们关心的也不是他;第四行是我们真正要分析的营养素,非常遗憾,它的P值为0.084,没有统计学意义(即认为营养素对体重增长没有显著影响)。
双因素试验方差分析

SS E df E
SST
注意
df E dfT df A f B , SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方 和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
SS A DA p, SSB DB p
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。 例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。 统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。 我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
双因素无重复(无交互作用)试验资料表
因素 B 因素 A
B1
X 11 ... X a1
B2
X 12 ... X a2
... Bb
... ... ... X 1b ... X ab
Ti. X ij X i. T b i.
j 1
b
A1 ... Aa
a b i 1 j 1
1 b i ij i 水平Ai对试验结果的效应 a j 1 1 a j ij j 水平Bj对试验结果的效应 b i 1 试验误差 ij X ij ij
特性:
i 1
a
i
0;
j 1
b
j
0; ij ~ N 0,
双因素方差分析剖析

双因素方差分析剖析在双因素方差分析中,有两个主要的因素被研究。
这些因素可以是两个不同的处理条件、两个不同的处理时间、两个不同的处理剂量等。
同时,每个因素都可以有两个或多个水平(即取值范围)。
为了进行双因素方差分析,研究人员首先需要确定研究对象和目标变量。
然后他们需要确定每个因素的水平和变量的测量方法。
例如,如果他们想要研究两种不同的药物对于治疗一种疾病的效果,他们需要确定每种药物的剂量以及测量疾病症状的方法。
接下来,研究人员需要收集数据,并进行统计分析。
在双因素方差分析中,主要的统计指标是方差和F值。
方差用来衡量不同因素和不同水平之间的差异。
F值是方差之比,用来判断不同因素之间是否存在显著差异。
进行双因素方差分析之后,研究人员可以得出结论。
如果F值大于临界值,那么可以得出不同因素之间存在显著差异的结论。
如果F值小于临界值,那么就可以得出不同因素之间没有显著差异的结论。
此外,研究人员还可以通过进行后续的多重比较来进一步分析不同因素之间的差异。
常用的多重比较方法包括Tukey方法和Bonferroni方法。
然而,双因素方差分析也存在一些限制。
首先,它只能处理两个或多个因素对于一个或多个变量的影响。
如果有更多的因素需要考虑,就需要进行更复杂的分析方法。
其次,双因素方差分析假设变量的分布是正态分布的,并且各组之间的方差是相等的。
如果数据不符合这些假设,就需要采用其他的非参数方法进行分析。
总之,双因素方差分析是一种常用的统计方法,可以帮助研究人员研究两个或更多因素对于一个或多个变量的影响。
它可以帮助确定不同因素之间的重要性,并且可以探索不同因素之间的相互作用。
然而,研究人员需要在收集数据和进行分析时注意假设的前提条件,并且需要根据具体情况选择合适的统计方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B S S A B
d f AB
M S AB SS AB
df AB
FAB
MSAB MSE
F (a 1b 1, abn 1)
误差
SSE
d fE
MSE
SSE dfE
总和 S S T d f T
这里 dfABdfAdfB各离差平方和的计算公式参看出P180_181
例3 P183 例题2 因素 B(蛋白质)
可推得:
SST
2
~ 2 ab1
SSA
2
~
2
a1
SSB
2
~
2 b1
SSE
2
~2a1b1
将
SST
2
,
SS2A,
SS2B,SS2E
的自由度分别记作
dfT,dfA,dfB,dfE ,则
F A S S S S E Ad d f fE A M M S S E A~ F a 1 ,a 1 b 1
F B S S S S E Bd d f fE B M M S S E B~ F b 1 ,a 1 b 1
成立,则 Xijk ~N,2 可推得: S S 2 A ~2 a 1 ,S S 2 B ~2 b 1 ,S S 2 T ~2 a b n 1
S S A 2 B ~2 a 1 b 1 ,S S 2 E ~2 a b n 1
则 F AS S S S E Ad d ffE AM M S S E A~Fa 1 ,a bn 1
双因素方差分析方法
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。
例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。
统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。
F A S S S S E Ad d f fE A M M S S E A~ F a 1 ,a 1 b 1 F B S S S S E Bd d f fE B M M S S E B~ F b 1 ,a 1 b 1
对给定的检验水平 ,
当 F A F a 1 ,a 1 b 1 时,
各因素离差平方和的自由度为水平数减一,总平方 和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
S S A D A p ,S S B D B p
S S E R D A D B p ,S S T R p
其中:
DA
a
Ti.2
b,
i1
p T2 ab,
DB
因素A(能量)
A1
A2
B 1
9.62 8.68 9.31 9.97 7.74 6.84 6.34 6.09
B 2
6.15 7.86 7.38 7.05 6.30 5.81 6.54 6.63
B 3
4.93 5.59 6.10 5.46 3.33 2.85 3.60 3.19
输入数据时,C2表示行因素 水平,C3表示列因素水平。 第几次重复不必列明,软件
总平均 的效应
试验误差
X ijkij ij ijk
观测值
因素A
交互作用
的效应 的效应
➢ 有交互作用的双因素试验的方差分析
线性统计模型 X ijkij ij ijk
其中
1
ab
a i1
b
ij
j 1
所有期望值的总平均
i
1 a
b
ij
j1
ig
水平Ai对试验结果的效应
j
1 a
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j 1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
甲 乙 丙 丁
a
T. j X ij i1
ⅠⅡ Ⅲ
50 63 52 47 54 42 47 57 41 53 58 48
bi1
ij
gj
水平Bj对试验结果的效应
ijijij 交互效应
ijk Xijk ij 试验误差
a
b
特性: i 0; j 0;
i1
j1
a
b
ij0 ; ij0 ;ijk~N 0 ,2
i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H 0 1:12 La 0
...
Xabn
双因素(有重复)试验方差分析表
方差来源 平方和 自由度 均方和
F值
F 值临介值
因素A S S A 因素B S S B
d fA
MSA
SS A df A
FA
MSA MSE
d fB
MSB
SSB dfB
FB
MSB MSE
F ( a 1 ,
ab n 1) F (b 1 ,
ab n 1)
间的交互作用对试验指标的影响力.
双因素有重复(有交互作用)试验资料表
因素 B 因素 A
A1
...
B 1
X111 ... X11n
B 2 ...
X121
...
...
...
X12n
...
......
B b
X1b1 ...
X1bn
Xa11
Xa21
...
Xab1
Aa
...
...
...
...
Xa1n
Xa2n
SSA称为因素A的离差平方和,反映因素 A 对试验 指标的影响。 SSB称为因素B的离差平方和,反映因素 B 对试验指标的影响。SSAB称为交互作用的离差平方和, 反映交互作用AB对试验指标的影响。SSE称为误差平 方和,反映试验误差对试验指标的影响。
若“各因素、各水平及其交互作用的影响无统计意义”的假设
F BS S S S E Bd d ffB EM M S S E B~Fb 1 ,a bn 1
F A B S S S A S E B d d f fE A B M M S S A E B ~ F a 1 b 1 ,a b n 1
由 FA,FB,FAB作右侧假设检验来考察各因素及因素
拒绝H01,即A 因素的影响有统计意义。
当 F B F b 1 ,a 1 b 1 时,
拒绝H02,即B 因素的影响有统计意义。
F 右侧检验
双因素(无交互作用)试验的方差分析表
方差来源 平方和 自由度 均方和
因素A S S A 因素B S S B 误差 S S E 总和 S S T
d fA
MSA
双因素无重复(无交互作用)试验资料表
因素 B
因素 A
b
B 1 B 2 ... B b T i. X ij
j1
A1
X11 X12 ... X1b
T 1.
...
... ... ... ... . . .
Aa
Xa1 Xa2 ... Xab
T a.
a
ab
T. j X ij T .1 T .2 ... T .b T
我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
➢无交互作用的双因素试验的方差分析
数学模型
假设某个试验中,有两个可控因素在变化,因素A 有a个水平,记作A1,A2,…,Aa;因素B有b个水平, 记作B1,B2,….Bb;则A与B的不同水平组合AiBj(i=1, 2,…,a;j=1,2,…,b)共有ab个,每个水平组合 称为一个处理,每个处理只作一次试验,得ab个观测 值Xij,得双因素无重复实验表
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。
例1的上机操作
原始数据,行因素水平,列因素水平
对应例1 的数据输入方式
工人对产品产量有显著影响,而机器对产品产量的影响极显著。
(A)
*
(B)
**
0.010.0220.05 在 0.01下接受,在 0.05下否决
0.0010.01
自会识别。
结果显示如P185
均<0.01
饲料中能量的高低、蛋白质含量的不同 及两者的交互作用对鱼的体重的影响极 有统计意义。
各因素,各水平,各交互作用下的均值。
1 b
a i1
Ti.2
23495
DB
1 a
b
T.2j
j1
42040.67
p T2 31212 ab
SSTRp466
dfT n111
SSAD Ap114.67
dfA a13
SSBD Bp318.5
dfB b12
S S E S S T S S A S S B 3 2 .8 3dfEdfAdfb6
a i1
b
ij
j 1
所有期望值的总平均
i
1 a
b
ij
j1
ig
水平Ai对试验结果的效应
j
1 a
bi1
ij
gj
水平Bj对试验结果的效应
ij Xij ij
试验误差
i
1 a
b
ij
j1
ig
水平Ai对试验结果的效应
j
1 a
bi1
ij
gj
水平Bj对试验结果的效应
ij Xij ij
试验误差