不同芯片尺寸LED热分析
大尺寸LED背光源的热分析

大尺寸LED背光源的热分析1、引言随着全球环保意识的抬头,节能省电已成为当今发展的趋势[1]。
近年来,采用LED背光源的液晶显示产品在市场中的份额逐渐增加。
与传统的荧光灯管相比,LED产品具有节能省电、效率高、反应速度快、寿命长、环境适应性强和抗冲击性好等优点[2]。
2004年,SONY 公司推出全世界第一台以LED作为背光源的116.9cm(46in)液晶电视;随后,友达、三星、LG、菲利普等公司也纷纷推出了各自的以LED为背光源的大尺寸液晶电视,LED背光源从此成为众厂家研发的热点。
LED光电转化率较低,工作时会有大量电能转化为热能。
产生的热量若无法导出,将会使LED结面温度过高,进而影响LED的生命周期、发光效率和稳定性;同时,过高的温度会使液晶屏的电光性能发生变化,影响整个产品的使用。
所以,如何提高散热能力是LED背光源亟待解决的关键技术之一[3-4]。
LED背光源有直下式和侧光式两种基本结构。
直下式背光源工艺简单,不需要导光板,LED阵列置于灯箱底部,从LED发出的光经过底面和侧面反射,再通过表面的扩散板和光学模组均匀射出。
侧光式LED背光源使用的LED颗数较少,它是将点状光源设置在经过特殊设计的导光板侧边,再通过光学模组将光均匀射出。
大尺寸LCD需要使用较大功率的LED,散热的问题就显得更加重要。
因散热问题牵扯到光、电、色等一系列的问题,因此对LED背光源进行热分析是十分必要的[5-6]。
在LED散热,尤其是大功率LED的散热方面,国内外已有很多研究[7-8];但是这些研究主要集中在LED灯条本身,通过采用新材料、新技术使LED本身的散热性能提升[9-10],从而提高LED的光效转换[11],而对背光源整体的研究则很少。
本文利用通用有限元软件ANSYS,针对119.4cm(47in)侧光式LED背光源,建立了LED背光源模型,分析了几种情况下背光源的温度场分布情况,并和实际测量结果进行了对比。
AnalysisLED灯具热分析详细数据

LED照明灯具的热分析 技术 照明灯具的热分析 --- ANSYS有限元分析 有限元分析包刚强 西希安工程模拟软件(上海 有限公司 西希安工程模拟软件 上海)有限公司 上海西希安工程模拟软件(上海 有限公司 西希安工程模拟软件 上海)有限公司 上海 CCA Engineering Simulation Software (Shanghai) Co. Ltd.LED照明的散热问题 Part I LED照明的散热问题灯具研发: 多学科技术的综合应用CCA2西希安工程模拟软件(上海)有限公司LED照明的散热问题 Part I LED照明的散热问题LED照明的散热问题LED照明优势 LED照明优势响应时间纳秒级 安全低电压 环保无污染 节能 寿命长 适用性广 稳定性好 抗震性好VS LED照明劣势 LED照明劣势发光效率 散热问题后果 原因 外加电能量作用 电致发光 电流注入效率 电子和空穴辐射 半导体和封装介质 芯片外部光取出效率 PN结辐射光辐射发光量子效率30-40% 30-40%光能60-70% 60-70%热能光效率每升高10℃导致光衰 每升高 ℃导致光衰5~8%寿命每升高10℃ 每升高 ℃导致寿命减半CCA3西希安工程模拟软件(上海)有限公司Part II 热设计仿真分析的优势LED照明的热设计高温影响光效率 寿命 低熔点焊缝开裂 焊点脱落 材料热老化 元器件损害热设计目的 热设计控制产品所有电子元器件温度 工作环境不超过标准最高温度 元器件热应力分析 产品每一元器件可靠性与失效率一致电子产品(机箱) 电子产品(机箱)进风口 风道 散热器 风扇 冷板 空气流动分析LED照明 LED照明VSLED芯片 LED芯片 散热器 基板 封装材料 外部结构CCA4西希安工程模拟软件(上海)有限公司Part II 热设计仿真分析的优势热设计仿真分析的优势热设计仿真相比传统热设计的优势传统热设计特点加快产品研发周期 提高产品性能及可靠性 降低设计生产和重复设计生产费用 减少试验和测量次数可靠性取决设计者经验 试验验证成本高、 试验验证成本高、周期长 疏漏更好设计方案 产品研发成本高CCA5西希安工程模拟软件(上海)有限公司Part II 热设计仿真分析的优势LED照明产品研发流程中的仿真分析CCA6西希安工程模拟软件(上海)有限公司热分析仿真软件ANSYS Part III 热分析仿真软件ANSYSANSYS软件功能模块CCA7西希安工程模拟软件(上海)有限公司热分析仿真软件ANSYS Part III 热分析仿真软件ANSYSANSYS仿真分析的典型流程ANSYSCCA8西希安工程模拟软件(上海)有限公司热分析仿真软件ANSYS Part III 热分析仿真软件ANSYSANSYS软件热分析能力 传导材料热传导系数 施加温度(热流率或者 热生成率载荷) 热量通过固体结构传递 达到热平衡ANSYS/Multiphysics ANSYS/Mechanical ANSYS/Professional ANSYS/FLOTRAN对流对流换热系数和环境流 体温度 表面热流量辐射辐射杆单元(LINK31) 使用含热辐射选项的表面效应单元(SURF151-2D,SURF152-3D) 在AUX12中,生成辐射矩阵,作为超单元参与热分析 使用Radiosity求解器方法CCA9西希安工程模拟软件(上海)有限公司热分析仿真软件ANSYS Part III 热分析仿真软件ANSYSANSYS较其它热分析软件的优势有限体积法 有限元法 Flotherm Ansys I-deas Ice-pack Tas-Harvard thermal Cool it Betasoft电子产品热仿真分析设计软件计算传热学技术(NTS) 计算传热学技术(NTS) 计算流体力学技术(CFD) 计算流体力学技术(CFD)验证、 验证、优化热设计方案 满足产品快速开发 显著降低产品验证热测试ANSYS 优势复杂流动与专用流体软件联合分析方便 热应力应变分析 热疲劳分析 热致结构失效分析 优化分析便利CCA10西希安工程模拟软件(上海)有限公司西希安工程模拟软件(上海)有限公司CCALED路灯灯具的结构Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例LED LED路灯路灯路灯((140W 140W))灯具结构11西希安工程模拟软件(上海)有限公司CCALED路灯灯具ANSYS热仿真分析过程Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例接触定义有限元网格边界条件材料属性12西希安工程模拟软件(上海)有限公司CCALED路灯灯具ANSYS热仿真结果Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例LED LED路灯灯具温度分布路灯灯具温度分布散热器肋片温度分布散热器肋片热通量分布散热器基板温度分布13西希安工程模拟软件(上海)有限公司CCALED路灯灯具ANSYS热仿真结果Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例LED LED路灯灯具热通量分布路灯灯具热通量分布热分析误差估计基板底座与LED 芯片接触主要功能在于将热量传导到散热器上散热器是传导过程终点通过巨大的散热面积与空气进行热交换最终将热量散失到空气中14西希安工程模拟软件(上海)有限公司CCALED路灯散热的影响因素Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例LED LED 路灯散热的影响因素路灯散热的影响因素热阻,结构构件间热阻影响表面对流系数,散热系数,空气热交换,散热主渠道 材料,热传导系数影响 散热片散热面积影响 铝基板LED 颗粒功率分布 散热片形状设计,肋片分布影响 辐射系数影响外部环境影响(外部温度,海拔高度)晶片PN 结到外延层 外延层到封装基板封装基板到外部冷却装置再到空气散热问题涉及的环节15西希安工程模拟软件(上海)有限公司CCALED路灯灯具的热传导系数灵敏度分析-1Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例Q=K Q=K××A ×Δ×ΔT/T/T/ΔΔL热量传递大小vs 热传导系数vs 热传热面积vs 距离vs 温度差热传递系数越高热传递系数越高、、热传递面积越大热传递面积越大,,传输的距离越短热传导能量就越高热传导能量就越高,,越容易带走热量银和铜是最好的导热材料其次金和铝但金但金、、银太过昂贵目前散热片主要由铝和铜制成由于铜密度大由于铜密度大,,工艺复杂工艺复杂,,价格较贵通常风扇多采用较轻铝制成风冷散热器考虑材质热传导系数外还须考虑散热器热容量16西希安工程模拟软件(上海)有限公司CCALED路灯灯具的热传导系数灵敏度分析-2Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例KXX=120W/mKKXX=401W/mK KXX=401W/mK((正侧正侧))KXX=180W/mKKXX=401W/mK(KXX=401W/mK(背侧背侧背侧))17西希安工程模拟软件(上海)有限公司CCALED路灯灯具的热传导系数灵敏度分析-3Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例ANSYS DESIGNXPLORE WHAT IF 灵敏度分析优化鲁棒性分析可靠性DOEOPTISLANGOPTIMUS专用优化软件18西希安工程模拟软件(上海)有限公司CCALED路灯灯具的空气对流系数灵敏度分析-1Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例热量传递大小vs 热对流系数vs 热传热面积vs 温度差热对流系数越高热对流系数越高、、热传递面积越大热传递面积越大,,温度差越大热对流能量就越高热对流能量就越高,,越容易带走热量Q=H Q=H××A ×Δ×ΔT T自然对流垂直表面hcs=1.414(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升散热表面与环境温度的平均温升,,℃L--散热表面的特征尺寸散热表面的特征尺寸,,取散热表面的高取散热表面的高,,mhct=1.322(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升散热表面与环境温度的平均温升,,℃L--散热表面的特征尺寸散热表面的特征尺寸,,取L =2(长×宽)/(长+宽),mhcb=0.661(△t/L)0.25 ,w/m.k式中: △t--散热表面与环境温度的平均温升散热表面与环境温度的平均温升,,℃L--散热表面的特征尺寸散热表面的特征尺寸,,取L =2(长×宽)/(长+宽),m 自然对流VS 强制对流强迫对流层流Ref<105湍流Ref>105肋片效率η=th(mb)/(mb))δ0:肋片根部厚度(m)19西希安工程模拟软件(上海)有限公司CCALED路灯灯具的空气对流系数灵敏度分析-2Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例热膜系数5W/m 2K(K(正侧正侧正侧))热膜系数5W/m 2K (背侧背侧))热膜系数100W/m 2K热膜系数20W/m 2K20西希安工程模拟软件(上海)有限公司CCA LED路灯灯具的空气对流系数灵敏度分析-3Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例ANSYS DESIGNXPLORE21西希安工程模拟软件(上海)有限公司CCA LED路灯灯具散热器的设计灵敏度分析-1Part IV LED Part IV LED路灯灯具散热分析案例路灯灯具散热分析案例散热器冷却方式判据散热器设计经验总结通风条件较好场合通风条件较好场合::散热器表面热流密度小于0.039W/cm2,采用自然风冷采用自然风冷。
18w-led灯热分析报告

图片放大可以看见每个点上的温度
基板和LED芯片温度分布
散热片温度 范围:27~ 50℃ 铝基板上温 度范围:52~ 55℃
LED芯片上 温度范围: 63~68℃。
图片放大可以看见每个点上的温度
• 1、电源外置,不用考虑热影响。 • 2、优化底座结构,作一次分析; • 3、换新的散热片重新分析。(提供新图电 子版)
18W-LED筒灯热分析报告
佛山市众泰信息科技有限公司
software:EFD
筒灯模型
由于模型没有LED 灯珠和恒流源,计 算时没有考虑恒流 源对散热的影响, 同时LED灯珠设计 为6颗,每颗3瓦, 在半径为12mm的 圆上均匀分布。
边界条件
EFD热仿真材料属性及边界条件 散热片 LED 铝基板 导热垫片 电源模块 环境温度 压铸铝 输入功率3W;数量6颗 导热系数96W/mK 整合为双热阻模型,Rjb=6K/W 厚度:1.5mm 工作状态下厚度0.2mm 发光效率20%(即每颗灯珠 3W*80%=2.4W法向导热系数2W/mK
导热系数1W/mK (由于没有模型未考虑) 20oC
散热片温度分布
总功耗: 18W×0.80=14 .4W 散热片温度 范围:27~ 50℃ 最高温度位 于红色部位。
图片放大可以看见每个点上的温度
散热片温度分布
总功耗: 18W×0.80=14 .4W 散热片温度 范围:27~ 55℃
【精品】液晶显示器背光系统中的LED热分析

液晶显示器背光系统中的LED热分析摘要本文探讨了电路板上发光二极管及其封装形式的热能设计.为了满足液晶屏背光以及其他照明的需要,该LED设计成一块三芯片的多层6引脚结构.建立该LED的三维模型,并利用多物理软件包对其进行热分析。
模拟的结果表现为每一个LED的温度分布,并预测出热阻的数值。
模型测试的结果表明取出铝箔会降低热阻,而减少铜箔的厚度也有相同的效果.包装设计表明进行贴片设计的段塞流LED也会降低热阻,并且使用无铅焊锡材料同样会降低热阻,与使用导电胶相比,这种方法也会降低节点温度。
1。
介绍液晶显示器在信息显示市场中占有主导地位,可以应有于诸如笔记本电脑、移动电话和汽车导航等领域。
这些方面的应用都要求显示器易于携带而其具有较低的损耗。
在显示器中LCD利用背光源来照明,当今有几种背光技术,诸如发光二极管(LED),电致发光面板(ELP),冷阴极荧光灯(CCFL)。
由于在低功耗、长寿命、低工作电压以及控制发光亮度方面的优势,LED背光技术在中小型LCD显示器中的应用越发普遍。
当今由于更高亮度的显示器的需要,输出光的强度越来越高,这也同样要求LED有更高的驱动电压。
基于这方面的要求,对显示器效率、性能以及可靠性有着重要影响的LED封装的热处理显得更为重要。
同其他电子器件一样,LED也有其最大温度限制和工作温度。
影响LED背光的一个主要方面就是二极管上的散热.LED的寿命与二极管的结点温度有着直接的关系,而这也是影响LED工作温度与最大环境温度的因素。
如果可以保持一个较低的结点温度,这将延长LED的寿命,进而提高显示器的可靠性。
本文分析了板上LED及其封装形式的热效应,研究了包括板面尺寸及封装的设计参数。
2.LED封装及IMS板出于LED背光以及其他照明应用的需要,本文选用的是一种6引脚多元LED。
每一个封装单元中有三个的LED,并且每个LED芯片可被单独控制用以发出包括白光在内的各种颜色的光。
每一层的尺寸为3mm*3mm*2.5mm,功耗为红灯195mw,绿灯210mw,蓝灯210mw。
LED灯珠销售常遇到的技术问题总结

1、芯片尺寸和芯片辐射功率以及品牌芯片尺寸通常以mil为单位。
一般情况下,芯片越大,亮度越高。
但如果没有高倍测量显微镜,是不容易区分芯片尺寸的区别的。
市场上常会出现亮度虚标、芯片尺寸不符、假冒品牌芯片的情况。
以三安LED芯片某型号为例,芯片尺寸为23X10mil,这个芯片有4个辐射功率等级(I=20mA),辐射功率越高,做出的灯珠越亮。
D24与D27的辐射功率相差8mW,这意味着相同尺寸的芯片,做出的灯珠亮度不同.芯片是LED的核心,对LED至关重要。
最好是找他们做这种的专门了解一下,多交流。
2、灯珠支架材料(负责导电和散热)金属材料种类:目前市场上有铝支架、铁支架、黄铜支架、紫铜支架等。
铝支架最便宜,紫铜支架最贵,价格相差十几倍。
即便是紫铜支架,镀银的价格也有高低之分,市场一般称之为好支架的,大部分是黄铜镀银做的。
电镀质量(厚度,电镀方式)电镀层的处理是支架的关键点,银作为良好的光反射材料,一般为电镀银表面处理。
镀层厚度和质量关系着后面的光通量、焊接性能。
电镀层需要控制在80U''左右比较好,不过目前有很多厂家只要求电镀到40U''即可,太薄容易造成虚焊注塑所用工程的塑料材料LED支架是经过金属冲压再注塑所形成.对金属内表面进行电镀处理,。
小功率一般采用PPA、中功率一般采用PCT,些大功率采用EMC材料制作(塑胶容易吸水,所以要进行除湿)些大功率采用EMC材料制作。
大部分支架产品都出现了高温承受能力差、易变形、变黄、反射率变低和力学强度下降等问题,影响产品寿命。
经过回流焊等高温以及紫外线处理后,仍能保持高白度和反射率;在气密性方面,红墨水渗透试验,吸湿性低,在潮湿环境中具有良好的尺寸稳定性。
3、焊线材料的选择目前市场常用的有合金线、纯金线两种,金线按照粗细又分0.7、0.9、1.0、1.2 等。
金线越粗,热组越低,寿命越长。
主要从抗氧化性,耐压性,导电性,生产工艺难度,寿命,失控率,亮度色度,均匀度等方面影响。
大功率LED灯的热分析与热设计

光谱 中不包 含红外部分 ,即其热量不 能依靠辐射释
放; 其次 ,E L D灯具 的扩 散热 阻及接 触 热阻都很 大 。 而 散 热性 差 会 导 致很 严 重 的后果 ,如减 少 L D的光 输 E 出、 缩短 器 件 的寿 命 、 偏移 L D所 发 光 的 主波 长等 …。 E
收 稿 日期 :0 一 O O 2 1 1— 9 J
中图 分 类 号 :N 0 . ;M9 3 T 359 T 2 4 文 献 标 志码 : A 文章 编 号 :0 1 4 5 (0 2 0 — 2 0 0 10 — 5 12 1 )2 0 2 — 4
Th r a n l ss TM P t e m a e i n b s d o i h p we e m la a y i h r l sg a e n h g - o r LED d
பைடு நூலகம்
级 和 系统 集 成 散热 级 ] 中 , 片 是 主 要 的发 热 部 。其 芯 件, 其量 子 效 率 决 定 发热 效 率 , 底 材料 决 定 芯 片 向 衬 外 传热 效率 ; 对封 装 而言 , 装结 构 、 料 以及 丁艺直 封 材
大于 1 的 L D 芯片能量利用率还 比较低 , W E , 目前 的 电光转换效 率约为 2%, 0 其余 均转化为热能 , 而芯片
尺寸仅 为 i l l225 25m , x T ̄ .x . m。导致 芯 片的功 率 密度 m1 很 大 ( l m 级 )属 于 高热 流 密度 器件 。但 是 达 m量 W/ , L D器件 的散 热性 比较 差 , 先 因为 白光 L D的发光 E 首 E
接影响散热效率 ; 系统集成散热级也就是所谓 的外部 散热器 , 主要包括散热片 、 热管 、 风扇 、 均温板等 。近
led热学研究
5m/s空气速度。 ♣试验区截面:20.3x20.3cm2 。
♣ T型热电偶固定在试验区中心
边墙上。
LED热学模型
LED PN结内产生的热量从芯片开始沿着下述热学通道传输: PN结—反射腔—印刷板—空气(环境)
LED热学模型
总热阻可以表示为从结-环境这一热路(thermal
1 1
T_ o At_ r R a J r B la L( y 1 ) E _ R J D B L( N E ) _ R D J B
R R R
J B
J S
S B
T_ o A 1 t_ r R a J r B l a L( y 1 ) E 1 _ R J D B L( N E ) 1 _ R D J T B o _A ta r_ lR r J a B yLE _ ED N m _ R iJ t B t
♣仅对自然对流冷却 环境估算结温有用。
T T T JA
JAPJTHJ
TAfAinfailTnAainlitiaAl initial PH
P P H
JA
H
T Ainitial
T Afinal
分别表示容器内一个限定 位T置Ainit的ial 热平衡初始和最终 温度。
NC-100 Natural Convection Chamber
JX
KIHVVHF
K aK b
测量校准方法
♣先使温度控制环境的初始温 度稳定在接近室温的低温 (Tlow)状态,测量正向电压 Vlow。
♣使温度增加到高温(Thigh), 稳定后测量Vhigh的数值。
K ThighTlow Vlow Vhigh
TCS-100 Temperature Calibration System
LED芯片尺寸与亮度的比较
LED小功率芯片与大功率芯片在应用上的比较
LED小功率芯片,一般皆以5mA-20mA电流供电(产生0.015W-0.068W)者称之,而大功率芯片,则以150mA-350mA电流供电(产生0.45W-1.1W)者称之,功率为能量单位,功率P = I (电流)X V(电压),LED灯具以定电流(5mA-20mA)驱动,与正向电压(Vf)相乘即得到功率P值。
目前LED小功率尺寸四元最小为7mil X 7mil(约为0.01778cm X 0.01778cm)=49mil2,蓝光最小为7mil X 9mil(约为0.01778cm X 0.02286cm)=63mil2,因考虑PAD接线及避免遮光效应,一般PAD直径约为3.3mil-4.5mil,PAD太小不易打线、且影响导电效率;太大则会遮蔽过多光线。
(图1:四元8mil X 8mil)
(图2:蓝光7mil X 9mil)
目前LED小功率尺寸,四元最大为14mil X 14mil(196mil2);蓝光最大为
14 X 17mil(238mil2),在标准最高20mA的供电模式下,更大尺寸除了增加散热效果外,无法提升更多亮度,反而增加更多材料成本。
led的芯片大小和发光强度关系
led的芯片大小和发光强度关系?LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。
但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。
常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。
反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。
顶部包封的环氧树脂做成一定形状,有这样几种作用:保护管芯等不受外界侵蚀;采用不同的形状和材料性质(掺或不掺散色剂),起透镜或漫射透镜功能,控制光的发散角;管芯折射率与空气折射率相关太大,致使管芯内部的全反射临界角很小,其有源层产生的光只有小部分被取出,大部分易在管芯内部经多次反射而被吸收,易发生全反射导致过多光损失,选用相应折射率的环氧树脂作过渡,提高管芯的光出射效率。
用作构成管壳的环氧树脂须具有耐湿性,绝缘性,机械强度,对管芯发出光的折射率和透射率高。
选择不同折射率的封装材料,封装几何形状对光子逸出效率的影响是不同的,发光强度的角分布也与管芯结构、光输出方式、封装透镜所用材质和形状有关。
若采用尖形树脂透镜,可使光集中到LED的轴线方向,相应的视角较小;如果顶部的树脂透镜为圆形或平面型,其相应视角将增大。
一般情况下,LED的发光波长随温度变化为0.2-0.3nm/℃,光谱宽度随之增加,影响颜色鲜艳度。
另外,当正向电流流经pn结,发热性损耗使结区产生温升,在室温附近,温度每升高1℃,LED的发光强度会相应地减少1%左右,封装散热;时保持色纯度与发光强度非常重要,以往多采用减少其驱动电流的办法,降低结温,多数LED的驱动电流限制在20mA左右。
GaN基功率型LED芯片散热性能测试与分析
GaN基功率型LED芯片散热性能测试与分析摘要:与正装LED相比,倒装焊芯片技术在功率型LED的散热方面具有潜在的优势。
对各种正装和倒装焊功率型LED芯片的表面温度分布进行了直接测试,对其散热性能进行了分析。
研究表明,焊接层的材料、焊接接触面的面积和焊接层的质量是制约倒装焊LED芯片散热能力的主要因素;而对于正装LED芯片由于工艺简单,减少了中间热沉,通过结构的优化,工艺的改进,完全可以达到与倒装焊LED 芯片相同的散热能力。
关键词:功率型LED;倒装焊结构;散热性能;热阻1、引言对于功率型LED,目前的电光能量转换效率约为15 ,即85 的能量将转化为热能。
在GaN基功率型LED中,由于Ⅲ族氮化物的P型掺杂受限于Mg受主的溶解度和空穴的较高激活能,热量特别容易在P型区域中产生。
如果热量集中在尺寸很小的芯片内,会使芯片温度升高,引起热应力分布不均、芯片发光效率和荧光粉转换效率下降。
当温度超过一定值时,器件失效率呈指数规律升高。
因此在芯片制作和封装设计方面要设法降低热阻,以保证功率型LED能高效且可靠地工作。
本文在对各种功率型LED芯片的表面温度分布进行直接测试的基础上,分析了正装和倒装焊芯片结构LED的散热性能,以及制约因素和改进的途径。
2、功率型LED芯片散热物理模型2.1 芯片结构与基本参数与传统的白炽灯相比,LED器件的温度一般低于200℃ ,其热辐射非常弱。
同时由于封装结构和材料的因素,芯片侧表面和上表面的散热能力极差。
因此,LED产生的热量绝大部分是通过热传导的方式传到芯片底部的热沉,再以热对流的方式耗散掉。
表1给出了几种不同材料的热导率[1 ]。
由表1可以看出,目前在功率型LED的制备中,技术最为成熟、用得最多的蓝宝石衬底的热导率只有35~46 W/(m ·K),不足Si材料的1/4。
为了提高功率型LED器件的散热能力和出光效率,产生了倒装焊芯片(flip-chip)结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Thermal Analysis of GaN-Based Light Emitting Diodes With Different Chip SizesLianqiao Yang,Jianzheng Hu,Lan Kim,and Moo Whan Shin,Member,IEEEAbstract—In this paper,we present the thermal,electrical,and optical analyses of light emitting diode(LED)packages with dif-ferent chip sizes.The LED packages under investigation employed the same configuration of package components,except for the chip sizes.The forward current was found to increase with the chip size at the same forward voltage due to the area increase of current spreading.The luminousflux and optical power were found to increase with the chip size at the same current density.The thermal analysis was made by the transient thermal measurement and thermal simulation using thefinite volume method.It was demonstrated that the thermal resistance decreased with the chip size under the same package conditions both by simulation and experiment.The bulk thermal resistance and spreading thermal resistance were combined together to give out a quantitative inves-tigation of the partial thermal resistance variation.Moreover,the spreading thermal resistance was found to have a great effect on the total thermal resistance of LED packages.Index Terms—Chip size effect,finite volume method(FVM), light emitting diode(LED),spreading thermal resistance,tran-sient thermal measurement.I.I NTRODUCTIONS INCE theirfirst introduction in1962[1],light emitting diodes(LEDs)have found a huge application market which is increasing rapidly because of various advantages,such as being environment friendly,having long lifetime,saving en-ergy,having vivid color,etc.[2]–[4].GaN-based blue LEDs are particularly attractive devices for a variety of applications, including traffic signals,head lamps,full-color displays,mini projectors,back light units,and so on.In order to fulfill the application in general lighting,high-power LEDs keep attract-ing many researchers’interest[5]–[8].Even though great im-provements have been made on epitaxial growth and quantum efficiency,it is still difficult for a small single chip to fulfill the increasing high power requirements.To implement high-power LEDs,there are two options for the application engineer: multichip and chip size.Considering the complex electrical circuit and fabrication process,the effect of gold wires on optical efficiency,and correspondingly lower reliability,the variation of chip size and electrode shape is a simple yet good choice instead of many small chips.However,with theManuscript received December1,2007;revised March9,2008.Current version published October16,2008.This work was supported by the Korea Energy Management Corporation.L.Yang,J.Hu,and M.W.Shin are with the Department of Materials Science and Engineering,Myongji University,Yongin449-728,Korea(e-mail: mwshin@mju.ac.kr).L.Kim is with LG Display,Seoul413-811,Korea.Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/TDMR.2008.2002357Fig.1.V–I curve of the LED packages.Insets are the micrographs ofelectrode patterns for different chip sizes.increase of chip size and input power,the thermal problemis becoming more and more important because of the nega-tive effect on the optical performance,reliability,and lifetime[8]–[10].Moreover,despite the broad application in LED in-dustry,few reports can be found about the chip size effectson the electrical,optical,and thermal performances of LEDpackages.In this paper,a series of GaN-based LED chips withthe same epilayer structures but different sizes were utilized forthe LED packages by using a surface mount device method,and then,we qualitatively and quantitatively investigated theelectrical,optical,and thermal behavior of LED packages atthe same working condition.The investigation was given out bycombining transient thermal measurement,thermal simulation,and optical and electrical measurement.II.E XPERIMENTThe GaN-based blue LED chips with the same epilayerstructures but different sizes were used for this investigation.Asshown in the inset graph of Fig.1,electrode distribution was op-timized to fulfill uniform current spreading and avoid hot spotsfor different chip sizes.The LED packages employed the sameconfiguration of package components except for the chip sizes.Moreover,the details of the LED package are shown in the insetgraph of Fig.2.The fabricated LED packages were evaluatedby electrical,optical,and thermal measurement.The V–I curveand optical performance were measured with a Keithley Model238Source-Measure Unit and integrating sphere,respectively.Moreover,the thermal resistance was measured in a transientthermal tester(T3Ster,MicRed,Ltd).The measurement of the 1530-4388/$25.00©2008IEEEFig.2.Luminousflux and optical power of LED packages with current density of350mA/mm2and ambient temperature of25◦C.Inset graph is the schematic structure of LED package.thermal resistance is based on the RC structure function theory. The K factor,the temperature calibration parameter,was mea-sured in the temperature range of20◦C to80◦C with a1-mA sensor current.Transient measurement was started to record the cooling curve after driving the samples for10min at the ambient temperature of25◦C to reach a thermal stabilization. Details of the transient thermal measurement and evaluation can be found elsewhere[11].The driving current density of 350mA/mm2was used for the package with different chip sizes.Moreover,the extracted input powers from the experi-ment were0.204,0.297,0.427,0.627,and1.401W for the LED packages with chip side lengths of15,20,24,28,and40mil, respectively.III.A NALYTICAL AND N UMERICALS IMULATIONS FOR LED SThermal modeling of the LED packages was done in FLOTHERM.FLOTHERM includes a computationalfluid dynamics solver,which carries out a full3-D solution of the Navier–Stokes equations for mass,momentum,and energy conservation using thefinite volume method[5].The same dimensions as the real packages were used in the modeling.The modeled LED package has a dimension of8×8×2mm3and is composed of GaN-based blue chip,die attach,lead frame, mold,heat slug and reflector,and epoxy lens.Detailed structure of epilayers in the chip was simplified,and the effect of gold wire was not considered in modeling.Thermal conductivities used for the chip,die attach,mold,heat slug and reflector cup,lead frame,and epoxy lens are56,7.5,0.23,401,201, and0.17W/m·◦C,respectively.Thermal conductivities are assumed to be independent of temperature due to relatively small temperature change during the whole experiment.As a boundary condition during thermal simulation,the heat transfer coefficient is important to ensure an accurate result[12].In our simulation,the heat transfer coefficient was calculated in real time by FLOTHERM itself.The bottom of the heat slug was fixed at25◦C,and the initial ambient temperature was set at 25◦C.The heating power extracted from the experiment was utilized for the simulationprocess.Fig.3.Cooling curves of the LED packages at the same current density.Inset graph is forward voltage versus temperature plot for the calculation of the K factors in LED packages.IV.R ESULTS AND D ISCUSSIONSThe V–I characteristic and optical performance of LEDs with different chip sizes are shown in Figs.1and2,respectively. The forward current was found to increase with the chip size at the same forward voltage.As the chip size increased,the current spreading was effectively enlarged and thus reduced the series resistance.This can be evidenced by the chip size and the optimized electrode distribution as shown in the inset graph of Fig.1.The luminousflux increased from1403to6140mlm, and the optical power increased from35to216mW when the chip side length increased from15to40mil at the same current density of350mA/mm2.It can be seen that increasing the chip size is an effective method to obtain high brightness and high optical power with the optimized design of the electrode even if the higher junction temperature is expected for the bigger chip size package.The K factors were calculated based on(1),and the mea-surement results are shown in the inset graph of Fig.3.It can be seen that all the packaged LED samples exhibited good linear relationships between the voltages and temperatures.Therefore, the following measurement results of thermal resistance are accurate and reliable.The obtained K factors are1.482,1.235, 1.337,1.182,and1.621mV/◦C for LED packages with chip side lengths of15,20,24,28,and40,respectively andK=ΔD VF/ΔD TJ(1) whereΔD VF is the change of forward voltage andΔD TJ is the junction temperature change of the LED.Fig.3shows the cooling curves of the LED package,and Fig.4shows the comparison of the simulated and measured thermal resistance.The inset graph of Fig.4shows the simu-lated temperature distribution when chip side length is28mil. From the simulation in FLOTHERM,the net heatflow in each direction for different components was calculated,and it was found that more than98%of the heat was dissipated through the heat slug to ambient for all the cases;therefore,a1-DY ANG et al.:THERMAL ANALYSIS OF GaN-BASED LIGHT EMITTING DIODES WITH DIFFERENT CHIP SIZES573Fig.4.Simulated and measured thermal resistance.Inset graph is the simu-lated temperature distribution when chip side length is 28mil.assumption can be regarded to be accurate enough for the thermal analysis of the LED package.The calculated thermal resistance from simulation was obtained byR th =ΔT/P =(T J −T A )/P(2)where R th ,ΔT ,T J ,T A ,and P are thermal resistance,junction temperature rise,junction temperature,ambient temperature,and input power,respectively.From Fig.3,it can be seen that the stabilized junction temperature rises are 13.9◦C,14.6◦C,17.8◦C,18.5◦C,and 32.7◦C for the chip side lengths of 15,20,24,28,and 40mil,respectively.As mentioned previously,the input powers are 0.204,0.297,0.427,0.627,and 1.401W,correspondingly.It can be clearly seen that the junction temperature rise increases much more slowly than the input power.The lower increase rate of junction temperature is due to the decrease of thermal resistance.The measured thermal resistances are 67.6◦C /W,48.7◦C /W,42.4◦C /W,29.5◦C /W,and 23.2◦C /W for an LED with chip size side lengths of 15,20,24,28,and 40mil,respectively as shown in Fig.4.Moreover,the calculated thermal resistances from the simulation are 65.2◦C /W,44.7◦C /W,36.6◦C /W,22.3◦C /W,and 15.3◦C /W,correspondingly.From both the experiment and simulation results,it was demonstrated that the thermal resistance decreased with the chip size under the same package conditions.It was also found that the variation of chip size has great effect on the total thermal resistance of the LED package,and the details will be discussed thoroughly in the following discussions.Fig.5shows the differential structure functions of LED packages.The differential structure function is defined as the derivative of the cumulative thermal capacitance (C Σ)with respect to the cumulative thermal resistance (R Σ)and is ex-pressed in (3).Equation (3)can be further transformed to (4)by definitionK (R Σ)=dC Σ/dR Σ(3)K (R Σ)=cAdx/(dx/λA )=cλA2(4)Fig.5.Differential structure functions of LED package with different chip sizes at the same currentdensity.parison of R th _cd :Calculated bulk thermal resistance,calcu-lated bulk and spreading thermal resistance,and experiment results.where c is the volumetric heat capacitance,λis the thermal conductivity,and A is the cross-sectional area of the heat flow.Therefore,thermal resistance change caused by c ,λ,or A can be observed in the plot of differential structure function.By using the differential structure functions,the thermal re-sistance change in different components of the LED package can be recognized.Moreover,the partial thermal resistances from chip to die attach (R th _cd )decreased from 39.1◦C /W to 23.2◦C /W,17.4◦C /W,9.5◦C /W,and 4.9◦C /W when chip side lengths increased from 15to 20,24,28,and 40mil,as shown in Fig.5.As stated earlier,the LEDs employed the same packaging components except for the chip size.There-fore,the change of R th _cd plays a major role in the total thermal resistance variation as expected.Two reasons are believed to be responsible for the decrease of R th _cd .One is the bulk thermal resistance,and the other one is the spreading thermal resistance.The bulk thermal resistance can be calculated with (5)for different packaging componentsR thb =t/(λ·A )(5)where R thb is the bulk thermal resistance,t is the thickness,λis the thermal conductivity,and A is the thickness.However,574IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY ,VOL.8,NO.3,SEPTEMBER 2008there is a largish deviation in numerical value between the bulk thermal resistance and experiment results as shown in Fig.6.The contribution of spreading thermal resistance was believed to be responsible for the sizable deviation.When the heat flows across an interface between two components with different cross-sectional areas,constriction/spreading thermal resistance should be considered.The term constriction is used to describe the case where heat flows into a narrower region,and spreading is used to describe the opposite case.It has been known that the thermal resistance considering constriction/spreading effects can be calculated in (6)with the isothermal boundary condition at the bottom surface of the LED package [13]R c =1λπ·a · h n a n +w n ·h n ·(1−a n )/(w n +a n )+(w n −h n )·a n(6)where R c is the thermal resistance considering the constriction/spreading effect,λis the thermal conductivity of the bigger part,a n is the dimensionless contact area ratio a/b (a is the equivalent radius of the source part;b is the equivalent radius of the dissipation part),w n is the normalized plate thickness t/b ,and h n is defined as w n when w n is smaller than 1and equal to 1when w n is bigger than 1.For the LED packages under investigation,the spreading effect from chip to die attach should be considered.Moreover,for the specific cases we investigated,a is the equivalent chip radius (l 2/π;here,l is defined as the chip side length),λis the thermal conductivity of die attach-ment (7.5W/m ·◦C),b is the die attachment radius (2.5mm),t is the thickness of die attachment (0.2mm),w n equals 0.08(t/b ),and h n equals 0.08because w n is smaller than 1.The comparison of the three cases R th _cd ,only considering bulk thermal resistance (R thb _chip +R thb _dieattach ),together with spreading thermal resistance (R thb _chip +R c _dieattach ),and the measured results,is shown in Fig.6.From the comparison,we can see that the thermal resistance considering the spreading effects is much closer to the measured results than the gener-ally accepted,which only considers bulk thermal resistance.The spreading thermal resistance was found to have a great effect both on the partial and total thermal resistances,and should be taken into consideration during the thermal design of LED packages.However,there is still unneglectable numer-ical deviation between experiment and calculation even if the spreading effect were taken into consideration.The fix angle assumption of heat spreading induced calculation error [13],nonideal interface [5],and heat dissipation in other dimensions,and the temperature dependence of thermal conductivity for LED packaging materials [14]were believed to be responsible for the deviation in numerical value.V .C ONCLUSIONIn this paper,we investigated the electrical,optical,and thermal performance of LED packages with different chip sizes at the same working conditions.The forward current was found to increase with the chip size at the same forward voltage.Moreover,the optical flux and power increased with the chipsize at the same current density.The thermal resistance wasfound to decrease with the chip size both by experiment and simulation.The bulk and spreading thermal resistance were combined together to quantitatively analyze the partial thermal resistance variation,and the spreading thermal resistance was found to have great effect on the total thermal resistance.R EFERENCES[1]N.Holonyak,Jr.and S.F.Bevacqua,“Coherent (visible)light emissionfrom Ga (As 1−x P x )junctions,”Appl.Phys.Lett.,vol.1,no.4,pp.82–83,Dec.1962.[2]C.P.Kuo,R.M.Fletcher,T. D.Osentowski,M. rdizabal,M.G.Craford,and V .M.Robbins,“High performance AlGaInP visible light-emitting diodes,”Appl.Phys.Lett.,vol.57,no.27,pp.2937–2939,Dec.1990.[3]F.M.Steranka et al.,“High power LEDs—Technology status and marketapplications,”Phys.Stat.Sol.(A),vol.194,no.2,pp.380–388,Dec.2002.[4]T.Mukai,D.Morita,and S.Nakamura,“High-power UV InGaN/AlGaNdouble-heterostructure LEDs,”J.Cryst.Growth ,vol.189/190,pp.778–781,Jun.1998.[5]L.Yang,S.H.Jang,W.J.Hwang,and M.W.Shin,“Thermal analysis ofhigh power GaN-based LEDs with ceramic package,”Thermochim.Acta ,vol.455,no.1/2,pp.95–99,Apr.2007.[6]J.Hu,L.Yang,W.J.Hwang,and M.W.Shin,“Thermal and mechanicalanalysis of delamination in GaN-based light-emitting diode packages,”J.Cryst.Growth ,vol.288,no.1,pp.157–161,Feb.2006.[7]C.-H.Chao,S.L.Chuang,and T.-L.Wu,“Theoretical demonstration ofenhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals,”Appl.Phys.Lett.,vol.89,no.9,pp.091116–091118,Aug.2006.[8]C.C.Lee and J.Park,“Temperature measurement of visible light-emittingdiodes using nematic liquid crystal thermography with laser illumination,”IEEE Photon.Technol.Lett.,vol.16,no.7,pp.1706–1708,Jul.2004.[9]J.Hu,L.Yang,and M.W.Shin,“Electrical,optical and thermal degrada-tion of high power GaN/InGaN light-emitting diodes,”J.Phys.D,Appl.Phys.,vol.41,no.3,p.035107,Feb.2008.[10]N.Narendran and Y .Gu,“Life of LED-based white light sources,”J.Display Technol.,vol.1,no.1,pp.167–171,Sep.2005.[11]G.Farkas,Q.van V oorst Vader,A.Poppe,and G.Bognár,“Thermalinvestigation of high power optical devices by transient testing,”IEEE pon.Packag.Technol.,vol.28,no.1,pp.45–50,Mar.2005.[12]T.H.Lee,L.Kim,W.J.Hwang,C.C.Lee,and M.W.Shin,“Thermalanalysis of GaN-based LEDs using the finite element method and unit temperature profile approach,”Phys.Stat.Sol.(B),vol.241,no.12,pp.2681–2684,Oct.2004.[13]F.N.Masana,“A closed form solution of junction to substrate thermal re-sistance in semiconductor chips,”IEEE pon.,Packag.,Manuf.Technol.A ,vol.19,no.4,pp.539–545,Dec.1996.[14]L.Yang,J.Hu,and M.W.Shin,“Investigation of thermal measure-ment variables in high power GaN-based LEDs,”Solid State Phenom.,vol.124–126,pp.483–486,2007.Lianqiao Yang received the B.S.degree from Wuhan University,Wuhan,China,in 2004and the M.S.degree from Myongji University,Yongin,Korea,in 2006.She is currently working toward the Ph.D.degree in the Department of Materials Science and Engineering,Myongji University.Her research interest is the thermal analysis of high-power LED packages and systems.Ms.Yang is a recipient of an Excellent For-eign Students Scholarship from the Korea Research Foundation.Y ANG et al.:THERMAL ANALYSIS OF GaN-BASED LIGHT EMITTING DIODES WITH DIFFERENT CHIP SIZES575Jianzheng Hu was born in Yicheng,China,in 1976.He received the B.S.and M.S.degrees from Wuhan University,Wuhan,China,in 2001and 2004,re-spectively.He is currently working toward the Ph.D.degree in the Department of Materials Science and Engineering,Myongji University,Yongin,Korea.His research interests are thermal and mechanical design for optoelectronic packages and reliability test and analysis of high-power LEDs.Mr.Hu is a recipient of an Excellent For-eign Students Scholarship from the Korea ResearchFoundation.Lan Kim received the B.S.degree in computer engi-neering from Dalian Nationalities University,Dalian,China,in 2002.She received the M.S.and Ph.D.degrees in material science and engineering from Myongji University,Yongin,Korea,in 2004and 2008,respectively.She is currently with LG Display,Seoul,Korea.Her research interest is the thermal analysis of high-power LED packages andsystems.Moo Whan Shin (M’07)was born in Seoul,Korea,in 1960.He received the B.S.degree in metallurgy from Yonsei University,Seoul,in 1986and the M.M.S.E.and Ph.D.degrees in materials science and engineering from the North Carolina State Univer-sity,Raleigh,NC,in 1988and 1991,respectively.While in graduate school,he was a Research As-sistant and was with the Microelectronics Center of North Carolina,Research Triangle Park,NC,by the financial support from the BOC Group,Inc.From 1991to 1994,he was with the Department of Electri-cal and Computer Engineering,North Carolina State University as a Research Associate and contributed to the development of wide band-gap semiconductor devices such as SiC MESFET,SiC JFET,and Diamond IGFET for high-power,high-frequency,and high-temperature applications.From 1994to 1995,he was the Senior Engineer (Engineer III)of the Electrical Engineering and Applied Physics Department,Case Western Reserve University,Cleveland,OH,where he was engaged in research work in the field of high-power and high-frequency GaN and SiC devices.Since 1995,he has been with the Department of Materials Science and Engineering,Myongji University,Yongin,Korea,where he is currently a Professor.He is currently a Director of the Creation Research Institute,Myongji University.He has published more than 180journal and conference papers related to semiconductor devices for high-temperature and high-power applications.He is the holder of 12patents on thermal design of high-power LEDs and their applications.He has been a technical advisor to Seoul Semiconductor Company.His primary current research interests are the thermal packaging of high-power GaN-based LEDs.Dr.Shin has served as a Chair of the International Seminar on Light Emitting Diodes for the years 2005and 2006.He has also been a Chair of the Advisory Committee for the LEDEXPO,Korea,since 2005.Dr.Shin is a lifetime member of the Institute of Microelectronics and Packaging Society-Korea and the editorial committee of the Korean Institute of Metals and Materials.He was a steering committee member of several conferences including the International Symposium on Blue Lasers and Light Emitting Diodes and the International Conference on Properties and Applications of Dielectric Materials.He served as a committee member of the National Science and Technology Development,Korea,in 1999.。