空气-蒸汽对流给热系数的测定

合集下载

对流给热系数测定实验报告

对流给热系数测定实验报告

对流给热系数测定实验报告实验名称:对流换热系数的测量实验一、实验目的1.测量圆形水平直管外的水蒸气凝结换热系数α0和圆形水平直管内冷流体(空气或水)的强制对流换热系数αi2.观察水蒸汽在圆直水平管外壁上的冷凝状况。

3掌握热电阻测温方法。

4掌握计算机自动控制和流量调节的方法。

5了解涡轮流量传感器和智能流量积算仪的工作原理和使用方法。

6了解电动调节阀压力传感器和变频器的工作原理和使用方法。

7掌握化工原理实验软件库的使用。

二、实验装置流程图及实验流程简述2途经阀○6、阀○7由蒸汽分布管进入套管换热器的环隙通道,冷凝水蒸汽自蒸汽发生器○9.阀门○ 8号污水排入沟渠。

水从阀门流出○4或电动调节阀○5、12控制的旋涡气泵产生的空气依次经过阀○冷流体水或来自由变频器○13.10进入套管式热交换器、涡轮流量计的内管○ 水或空气流量调节阀○ 加热后排入下水道或通风口。

三、简述实验操作步骤及安全注意事项空气-蒸汽系统1.开启电源。

依次打开控制面板上的总电源、仪表电源。

1.调整手动调节阀○ 10以最大化空气量。

2.启动涡流空气泵○9、阀○8,排除套管环隙中积存的冷凝水,然后适当关小3.排蒸汽管道的冷凝水。

打开阀○8.注意阀门○ 8不能开得太大,否则会有严重的蒸汽泄漏。

阀门○6,蒸汽从蒸汽发生器○2沿保温管路流至阀○7;慢慢打开阀○7,4.调节蒸汽压力。

打开阀○蒸汽开始流入套管环空,并加热内管的外表面。

控制蒸汽压力稳定在0.02MPa,不超过0.05mpa,否则蒸汽不够用。

5.测量不同流量下的相应温度。

当巡检仪在控制面板上显示的11个温度、压力数据和智能流量积算仪显示的空气流量稳定时,记录所有温度、压力6,分别取最大空气流量的1/2及1/3,分别记录下相应流量下的流量数据。

然后再调节阀○稳定的温度和压力数据,使共有3个实验点。

7和阀门○ 6、关闭仪器电源和主电源。

6.实验结束后,关闭蒸汽阀○水~水蒸汽系统操作步骤和方法与空气-蒸汽系统基本相同,只是冷流体由空气变为冷水,并且仍然选择了三个实验点。

空气-蒸汽对流给热系数测定数据处理(数据表格、计算示例及图解)

空气-蒸汽对流给热系数测定数据处理(数据表格、计算示例及图解)

一、原始数据记录表二、计算结果表实验号流量 温度(℃)m 3/h冷流体进口温度t1 冷流体出口温度t2 冷流体进口侧蒸汽温度T1冷流体出口侧蒸汽温度T2 1 5 35.8 76.8 102.9 102.4 2 7.5 36.6 76.5 101.9 101.2 3 10 37.2 76.9 102.2 101.8 4 12.5 38.4 77.5 102.5 102 5 15 40.1 77.8 102.4 101.9 6 17.5 41.9 78.3 102.5 101.9 7 20 43.4 78.6 102.4 101.8 8 22.544.1 78.5 102.5101.9序号Δt m \℃K W/m 2·℃Pr Re X Y m α21 43.2337 29.90223 0.597055 7324.592 1.143919 0.033442 0.020978 41.67203 2 41.99407 44.92077 0.596638 10982.84 0.826950.022261 0.020978 57.64489 3 41.92402 59.64674 0.595804 14633.02 0.656813 0.016765 0.020978 72.57683 4 41.33924 74.365130.5943118267.16 0.549236 0.013447 0.020978 86.79224 5 40.38487.940270.592657 21888.62 0.474507 0.011371 0.020978 100.4611 6 39.42766 101.6829 0.593118 25494.11 0.418598 0.009834 0.020978 113.8787 7 38.54594 114.7875 0.591641 29098.25 0.376053 0.008712 0.020978 126.7624 838.45563 126.43840.591149 32721.39 0.342197 0.007909 0.020978 139.3041计算示例:(以第一组为例)平均温度t 平均1=(t 1+t 2)/2=(35.8+76.8)/2=56.3℃ 此温度下,空气的各项物性分别为:空气进口处密度ρ’=1E-05*t 2-4.5E-03*t+1.2916=1.069947 空气的比热Cp :1005J/(kg ·℃) 温度在60℃以下 空气的导热系数λ=-2E-08*t 2+8*E-05*t+0.0244=0.028841空气的粘度μ=(-2E-06*t 2+5*E-03*t+1.7169)*1E-05=1.71338E-05序号平均温度t 平均空气进口处密度ρ’ 空气质量流量m 2 空气的比热Cp 实际流量V ’ 空气的导热系数λ空气的粘度μ NuNu/Pr 0.4ln(N u/Pr 0.4ln(R e)156.3 1.069947 0.001577 1005 0.001474 0.0288411.71338E-05 23.11853 28.41545 3.346933 8.898993 256.55 1.069104 0.002365 1005 0.002212 0.028861.71333E-05 31.95831 39.29159 3.671011 9.30409 357.05 1.067422 0.00315 1005 0.002951 0.0288991.71324E-05 40.18246 49.43051 3.900568 9.591036 457.95 1.064407 0.003932 1005 0.003694 0.0289691.71308E-05 47.93689 59.02894.078027 9.81286558.95 1.061076 0.004712 1005 0.00444 0.0290461.7129E-05 55.33806 68.21856 4.222717 9.993722 660.1 1.05727 0.005487 1009 0.00519 0.0291361.71268E-05 62.53688 77.06899 4.344701 10.1462 761 1.05431 0.006262 1009 0.005939 0.0292061.71251E-05 69.44557 85.66854 4.450486 10.27843 861.3 1.053327 0.007041 1009 0.006685 0.0292291.71245E-0576.25566 94.10077 4.544366 10.39578标定用流体的体积流量V 1=5m 3/h ρf=7800kg/m 3 ρ=1.205kg/m 3,由此可得出实际的空气流量为: V ’=()ρρρρρρ--f f ’)’(V=)()( 1.205-78001.069947 1.069947-7800205.136005=0.001474空气质量流量m 2=ρ’V ’=1.069947*0.001474=0.001577 d 2=0.016m l=1m 换热面积A=π*d 2*lm=0.020978d 4023.018.128.0=⨯⎪⎭⎫ ⎝⎛⨯π K=m 122p 2t t -t m ∆A c )(=43.2337*1*016.0*35.8-76.8*1005*0.001577π)(=29.90223Pr=λμ*p c =0.02884105-1.71338E *1005=0.597055Re===2d *V *4·d d πμρμρ’u 0.016*05-1.71338E * 1.069947*0.001474*4π=7324.592 X=8.022224.0Pr 1⎪⎪⎭⎫ ⎝⎛⨯μλm = 1.1439190.00157705-1.71338E 0.597055*0.02884118.00.4=⎪⎭⎫ ⎝⎛⨯ 0.0334421==KY 8.0224.0222m m Pr ⎪⎪⎭⎫ ⎝⎛⨯=μλα=41.6720305-1.71338E 0.0015770.0209780.597055*0.0288418.00.4=⎪⎭⎫ ⎝⎛⨯ 因为流体是被加热,故Nu 中n 取0.4,则:23.11853r *e *023.0u 4.08.0==P R N 28.415450.59705523.11853r 0.44.0==P Nu 3.3469330.59705523.11853ln Pr ln 0.44.0=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛Nu 8.898993Re ln =)(三、冷流体给热系数的准数式:Nu/Pr 0.4=ARe m,由实验数据作图拟合曲线方程,确定式中常数A 及m,如下:500010000150002000025000300003500040000450005000020406080100ReData: Data1_B Model: Allometric1Equation: y = a*x^b Weighting: y No weightingChi^2/DoF = 2.8642E-11R^2= 1 a 0.023±1.9337E-8b 0.8±8.3367E-8N u /P r 0.4作曲线如上,按照y=a*x^b 拟合,由表内数据可知a=0.023,b=0.8;与Nu/Pr 0.4=ARe m 比较,即确定常数A=0.023,m=0.8 ,与经验式Nu/Pr 0.4=0.023Re 0.8中数值完全一致.四、以ln(Nu/Pr 0.4)为纵坐标,ln(Re )为横坐标,如下:8.89.09.29.49.69.810.010.210.410.63.23.43.63.84.04.24.44.6ln(Nu/Pr0.4 Linear Fit of C1l n (N u /P r 0.4ln(Re)Equation y = a + b*xAdj. R-Squ 1ValueStandard ErC1Intercep -3.772 5.88102E-6C1Slope0.8 5.99225E-7作曲线如上,按照y=a+b*x 拟合,由表内数据可知a=-3.772,b=0.8;即ln(Nu/Pr 0.4)=-3.772+0.8*ln(Re),取e 的指数,两边消去ln ,则8.0Re ln 772.30.4)ln(N u/PrRe 023.0*Nu/Pr 8.00.4===-e e e ,与Nu/Pr 0.4=ARe m比较,即确定常数A=e -3.772=0.023,m=0.8 ,与经验式Nu/Pr 0.4=0.023Re 0.8中数值完全一致.。

对流给热系数的测定(数据处理)

对流给热系数的测定(数据处理)

实验三 对流给热系数的测定一、实验目的1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型;2、测定空气(或水)在圆直管内强制对流给热系数i α;3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。

4、掌握热电阻测温的方法。

二、基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1)式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃);αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃;A i ——内管的外壁、内壁的传热面积,m2;(T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1-2)(t w -t)m ——内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=- (1-3)式中:T 1、T 2——蒸汽进、出口温度,℃;T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。

当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。

由式(1-3)可得:m w P i t t A t t C V )()(012--=ρα (1-4)若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。

2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。

3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。

二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。

如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。

空气-水蒸气对流给热系数测定实验报告

空气-水蒸气对流给热系数测定实验报告

空气-水蒸气对流给热系数测定实验报告
实验目的:测定空气-水蒸气对流给热系数。

实验原理:空气-水蒸气对流给热系数是指在给定条件下,单位时间内单位面积的对流热流量。

在实际应用中,了解对流给热系数的大小对于设计和优化热传递设备非常重要。

实验装置:实验装置包括一个加热管、一个水槽以及一个温度计。

通过控制加热管的电压和水槽的温度,可以得到不同的条件下空气-水蒸气对流的热传递情况。

实验步骤:
1. 将实验装置准备好,确保加热管和温度计的位置正确。

2. 首先将加热管的电压调整到一个固定值,记录加热管上的电压和电流。

3. 启动水槽并将水温调整到一个适当的温度。

4. 将温度计放置在实验装置中,记录下来水的初始温度。

5. 开始记录时间和温度,每隔一段时间记录一次温度值。

6. 进行多组实验,每组实验可以改变加热管的电压或者水槽的温度,以得到不同的实验数据。

实验数据处理:
1. 将实验数据整理成表格。

2. 根据实验数据绘制温度-时间曲线。

3. 计算出空气-水蒸气对流的热传递系数。

4. 对不同实验条件下得到的热传递系数进行比较和分析。

实验结果:
根据实验数据计算得出的空气-水蒸气对流给热系数为X(单位)。

实验讨论:
根据实验结果可以得出结论:在给定的实验条件下,空气-水
蒸气对流给热系数为X,说明X。

实验结论:
通过本实验测定得到空气-水蒸气对流给热系数为X(单位),实验结果具有一定的参考价值,并为相关热传递设备的设计和优化提供了理论依据。

空气蒸汽对流给热系数的测定

空气蒸汽对流给热系数的测定

五、实验数据记录与处理1、实验原始数据记录表,根据相关计算式进行相关数据计算。

实验原始数据记录表计算示例(以次序1数据作为计算示例): 空气进口处密度:52310 4.510 1.2916t t ρ--=-⨯+=10-5× 38.62-4.5×10-3 ×38.6+1.2916=1.1328kg/m 3;空气质量流量:m s2 =ρV=4×1.1328÷3600=0.0012kg/s ;空气流速:u=4V/(πd 2)=4×4/(3.14×0.016×0.016×3600)= 5.5290m/s ;2.给热系数K 的计算空气定性温度:t 平均=(t 1+t 2)/2=(38.6+79.6)/2=59.1℃<60℃ 则空气比热:Cp=1005 J/(kg·°C) 定性温度下的空气密度ρ:52310 4.510 1.2916t t ρ--=-⨯+ =10-5× 59.12-4.5×10-3 ×59.1+1.2916=1.0606kg/m 3;冷、热流体间的对数平均温差:()()12211221ln t T t T tT t T t m-----=∆==40.32℃ 传热面积:22A d l π==3.14×0.016×1=0.0502m 2 对流传热系数:()mp t A t t c m K ∆-=1222= = 26.46W/(m 2·℃);3.近似法求给热系数α2 则α2=K=24.43W/(m 2·℃);(103.0-79.6)-(102.5-38.6)ln [(103.0-79.6)/(102.5-38.6)]0.0502×40.32空气粘度:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)=(-2×10-6×38.62+5×10-3×38.6+1.7169)×10-5=1.906×10-5P a.s 空气导热系数:8252108100.0244t t λ--=-⨯+⨯+ =-2×10-8×38.62+8×10-5×38.6+0.0244=0.0275 W/(m·K ) 雷诺数:μρdu =Re = ;普兰特数:λμ2Pr p c == =0.6966 ;努赛尔数:λαdNu ==26.46×0.016/0.0275=15.39 ; 对于流体在圆形只管内做湍流时的对流传热系数,如符合以下条件:Re=1×104—1.2×105,Pr=0.7-120,管长与管内径之比l/d≥60,则Nu=0.023Re 0.8Pr n 。

实验三对流给热系数测定实验(空气-水蒸气体系)

实验三对流给热系数测定实验(空气-水蒸气体系)

实验三 对流给热系数测定实验(空气-水蒸气体系)3.1 实验目的1) 观察水蒸气在水平管外壁上的冷凝现象;2)测定空气在圆形直管内强制对流给热系数和换热器总传热系数并随着流量的变化规律;3)掌握热电阻测温方法;4)掌握化工原理实验软件库(VB 实验数据处理软件系统)的使用。

3.2 基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=α0A 0(T -T W )m =αi A i (t w -t)m (1—15) 式中:V 被加热流体体积流量,m 3/s ; ρ 被加热流体密度,kg/m 3; C P 被加热流体平均比热,J/(kg ·℃);α0、αi 水蒸气对内管外壁的冷凝给热系数和流体对内管内壁的对流给热系数,W/(m 2·℃);t 1、t 2 被加热流体进、出口温度,℃; A 0、A i 内管的外壁、内壁的传热面积,m 2; (T -T W )m 水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1—16)(t w -t)m 内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w mw -----=- (1—17) 式中:T 1、T 2 蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2 外壁和内壁上进、出口温度,℃。

当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。

由式(1—17)可得:m P Tw T A t t C V )()(0120--=ρα (1—18)mw P it t A t t C V )()(012--=ρα (1—19) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 0或A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1 —18)算得实测的水蒸气(平均)冷凝给热系数α0;通过 式(1 —19)算得实测的流体在管内的(平均)对流给热系数αi 。

实验7. 空气-蒸汽对流给热系数的测定

实验7. 空气-蒸汽对流给热系数的测定

实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。

二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。

间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。

当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。

固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档