平面向量简单练习题

合集下载

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

反思 感悟
用向量法求长度的策略 (1)根据图形特点选择基底,利用向量的数量积转化,用公式 |a|2=a2求解. (2)建立坐标系,确定相应向量的坐标,代入公式:若a=(x,y), 则|a|= x2+y2.
跟踪训练2 在△ABC中,已知A(4,1),B(7,5),C(-4,7),则BC边上的 中线AD的长是
∴A→B=-32C→D,∴A→B与C→D共线. 又|A→B|≠|C→D|,∴该四边形为梯形.
12345
4.当两人提起重量为|G|的旅行包时,两人用力方向的夹角为θ,用力大
小都为|F|,若|F|=|G|,则θ的值为
A.30°
B.60°
C.90°
√D.120°
解析 作O→A=F1,O→B=F2,O→C=-G(图略), 则O→C=O→A+O→B,
答案 物理中的向量:①物理中有许多量,比如力、速度、加速度、位 移都具有大小和方向,因而它们都是向量. ②力、速度、加速度、位移的合成就是向量的加法,因而它们也符合向 量加法的三角形法则和平行四边形法则;力、速度、加速度、位移的分 解也就是向量的分解,运动的叠加也用到了向量的加法. ③动量mv是数乘向量. ④力所做的功就是作用力F与物体在力F的作用下所产生的位移s的数量积.
解析 对于 A,A→B-A→C=C→B,故 A 中结论错误; 对于 B,设 θ 为向量A→B与B→C的夹角, 因为A→B·B→C=A→B·B→C·cos θ,而 cos θ<1, 故A→B·B→C<A→B·B→C,故 B 中结论正确; 对于 C,A→B+A→C·A→B-A→C=A→B2-A→C2=0, 故A→B=A→C,所以△ABC 为等腰三角形,故 C 中结论正确;
A.v1-v2
√B.v1+v2

十年高考分类解析:第5章 平面向量与直线、平面、简单几何体

十年高考分类解析:第5章 平面向量与直线、平面、简单几何体

十年高考分类解析第五章 平面向量与直线、平面、简单几何体一、选择题1.(2002上海春,13)若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定...成立的是( ) A.(a +b )+c =a +(b +c ) B.(a +b )·c =a ·c +b ·c C.m (a +b )=m a +m b D.(a ·b )c =a (b ·c )2.(2002天津文12,理10)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OCβα+=,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为( ) A.3x +2y -11=0 B.(x -1)2+(y -2)2=5 C.2x -y =0 D.x +2y -5=0 3.(2001江西、山西、天津文)若向量a =(3,2),b =(0,-1),则向量2b -a 的坐标是( )A.(3,-4)B.(-3,4)C.(3,4)D.(-3,-4)4.(2001江西、山西、天津)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OB OA ⋅等于( )A.43B.-43 C.3 D.-35.(2001上海)如图5—1,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1=a ,11D A =b ,A A 1=c .则下列向量中与M B 1相等的向量是( )A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 6.(2001江西、山西、天津理,5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A.-21a +23bB.21a -23b C.23a -21bD.-23a +21b 7.(2000江西、山西、天津理,4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则①(a ·b )c -(c ·a )b =0 ②|a |-|b |<|a -b | ③(b ·c )a -(c ·a )b 不与c 垂直 ④(3a +2b )(3a -2b )=9|a |2-4|b |2中,是真命题的有( ) A.①② B.②③ C.③④ D.②④8.(1997全国,5)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率为( )A.-31 B.-3 C.31 D.3二、填空题 9.(2002上海文,理2)已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =_____. 10.(2001上海春,8)若非零向量α、β满足|α+β|=|α-β|,则α与β所成角的大小为_____.11.(2000上海,1)已知向量OA =(-1,2),OB =(3,m ),若OA ⊥AB ,则m = . 12.(1999上海理,8)若将向量a =(2,1)围绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为_____.13.(1997上海,14)设a =(m +1)i -3j ,b =i +(m -1)j ,(a +b )⊥(a -b ),则m =_____. 14.(1996上海,15)已知a +b =2i -8j ,a -b =-8i +16j ,那么a ·b =_____.15.(1996上海,15)已知O (0,0)和A (6,3)两点,若点P 在直线OA 上,且21=PA OP ,又P 是线段OB 的中点,则点B 的坐标是_____. 三、解答题16.(2003上海春,19)已知三棱柱ABC —A 1B 1C 1,在某个空间直角坐标系中,1},0,0,{},0,23,2{AA m AC m AB =-=={0,0,n }.(其中m 、n >0).如图5—2.(1)证明:三棱柱ABC —A 1B 1C 1是正三棱柱;(2)若m =2n ,求直线CA 1与平面A 1ABB 1所成角的大小.17.(2002上海春,19)如图5—3,三棱柱OAB —O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3.求:(1)二面角O 1—AB —O 的大小;(2)异面直线A 1B 与AO 1所成角的大小. (上述结果用反三角函数值表示)18.(2002上海,17)如图5—4,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OA =4,OB =3,∠AOB =90°,D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点,若OP ⊥BD ,求OP 与底面AOB 所成角的大小.(结果用反三角函数值表示)图5—3 图5—4 图5—519.(2002天津文9,理18)如图5—5,正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .(1)建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.20.(2002天津文22,理21)已知两点M (-1,0),N (1,0),且点P 使,MN MP ⋅,PN PM ⋅NP NM ⋅成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),θ为PM 与PN 的夹角,求tan θ.21.(2001江西、山西、天津理)如图5—6,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空间直角坐标系O —xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥底面边长为2a ,高为h .(1)求cos<DE BE , >;(2)记面BCV 为α,面DCV 为β,若∠BED 是二面角α—VC —β的平面角,求∠BED .图5—6 图5—7 图5—822.(2001上海春)在长方体ABCD —A 1B 1C 1D 1中,点E 、F 分别在BB 1、DD 1上,且AE ⊥A 1B ,AF ⊥A 1D.(1)求证:A 1C ⊥平面AEF ;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角).则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB =4,AD =3,AA 1=5时,求平面AEF 与平面D 1B 1BD 所成角的大小.(用反三角函数值表示)23.(2001上海)在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .如图5—8.(1)求证:A ′F ⊥C ′E .(2)当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小(结果用反三角函数表示)24.(2000上海春,21)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形, ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.(1)求证:P A ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;(3)对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算: (a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.25.(2000上海,18)如图5—9所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为arccos 1010,求四面体ABCD 的体积.图5—9 图5—10 图5—1126.(2000天津、江西、山西)如图5—10所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值;(3)求证:A 1B ⊥C 1M .27.(2000全国理,18)如图5—11,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.(1)证明:C 1C ⊥BD ;(2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;(3)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.28.(1999上海,20)如图5—12,在四棱锥P —ABCD 中,底面ABCD是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且P A ⊥底面ABCD ,PD 与底面成30°角.(1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的大小.29.(1995上海,21)如图5—13在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值.●答案解析 1.答案:D解析:因为(a ·b )c =|a |·|b |·cos θ·c 而a (b ·c )=|b |·|c |·cos α·a 而c 方向与a 方向不一定同向.评述:向量的积运算不满足结合律. 2.答案:D解析:设OC =(x ,y ),OA =(3,1),OB =(-1,3),αOA =(3α,α),β=(-β,3β)又α+β=(3α-β,α+3β)∴(x ,y )=(3α-β,α+3β),∴⎩⎨⎧+=-=βαβα33y x又α+β=1 因此可得x +2y =5评述:本题主要考查向量法和坐标法的相互关系及转换方法. 3.答案:D解析:设(x ,y )=2b -a =2(0,-1)-(3,2)=(-3,-4). 评述:考查向量的坐标表示法. 4.答案:B解法一:设A (x 1,y 1),B (x 2,y 2),AB 所在直线方程为y =k (x -21),则⋅=x 1x 2+y 1y 2.又⎪⎩⎪⎨⎧=-=x y x k y 2)21(2,得k 2x 2-(k 2+2)x +42k =0,∴x 1·x 2=41,而y 1y 2=k (x 1-21)k (x 2-21)=k 2(x 1-21)(x 2-21)=-1.∴x 1x 2+y 1y 2=41-1=-43.解法二:因为直线AB 是过焦点的弦,所以y 1·y 2=-p 2=-1.x 1·x 2同上. 评述:本题考查向量的坐标运算,及数形结合的数学思想.5.答案:A解析:)(21111BC BA A A BM B B MB ++=+==c +21(-a +b )=-21a +21b +c评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力.6.答案:B解析:设c =m a +n b ,则(-1,2)=m (1,1)+n (1,-1)=(m +n ,m -n ).∴⎩⎨⎧=--=+21n m n m ∴⎪⎪⎩⎪⎪⎨⎧-==2321n m 评述:本题考查平面向量的表示及运算.7.答案:D解析:①平面向量的数量积不满足结合律.故①假;②由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,所以垂直.故③假; ④(3a +2b )(3a -2b )=9·a ·a -4b ·b =9|a |2-4|b |2成立.故④真. 评述:本题考查平面向量的数量积及运算律. 8.答案:A解析:设直线l 的方程为y =kx +b (此题k 必存在),则直线向左平移3个单位,向上平移1个单位后,直线方程应为y =k (x +3)+b +1即y =kx +3k +b +1因为此直线与原直线重合,所以两方程相同.比较常数项得3k +b +1=b .∴k =-31. 评述:本题考查平移变换与函数解析式的相互关系. 9.答案:13解析:∵(2a -b )·a =2a 2-b ·a =2|a |2-|a |·|b |·cos120°=2·4-2·5(-21)=13. 评述:本题考查向量的运算关系. 10.答案:90°解析:由|α+β|=|α-β|,可画出几何图形,如图5—14.|α-β|表示的是线段AB 的长度,|α+β|表示线段OC 的长度,由|AB |=|OC |∴平行四边形OACB 为矩形,故向量α与β所成的角为90° 评述:本题考查向量的概念,向量的几何意义,向量的运算.这些知识不只在学习向量时用到,而且在复数、物理学中也是一些最基本的知识.11.答案:4解析:∵OA ={-1,2},OB ={3,m },OA OB AB -=={4,m -2},又OA ⊥AB , ∴-1×4+2(m -2)=0,∴m =4.评述:本题考查向量的概念,向量的运算,向量的数量积及两向量垂直的充要条件. 12.答案:(223,22) 解析:设a =OA =2+i ,b =OB ,由已知OA 、OB 的夹角为4π,由复数乘法的几何意义,得OB =OA (cos4π+isin4π)=(2+i )i i 22322)2222(+=+. ∴b =(223,22) 评述:本题考查向量的概念,向量与复数一一对应关系,考查变通、变换等数学方法,以及运用数学知识解决问题的能力.13.答案:-2∵(a +b )⊥(a -b ),∴(m +2)×m +(m -4)(-m -2)=0,∴m =-2.评述:本题考查平面向量的加、减法,平面向量的数量积及运算,两向量垂直的充要条件. 14.得∴a ·b =(-3)×5+4×(-12)=-63.评述:本题考查平面向量数量积的坐标表示及求法. 15.答案:(4,2)解析:设P (x ,y ),由定比分点公式12113210,22116210=+⋅+==+⋅+=y x , 则P (2,1),又由中点坐标公式,可得B (4,2).16.(1)证明:∵}0,23,2{mm AB AC BC =-=,∴| BC |=m , 又}0,0,{},0,23,2{m AC m m AB =-= ∴|AB |=m ,|AC |=m ,∴△ABC 为正三角形.又·1AA =0,即AA 1⊥AB ,同理AA 1⊥AC ,∴AA 1⊥平面ABC ,从而三棱柱ABC —A 1B 1C 1是正三棱柱.(2)解:取AB 中点O ,连结CO 、A 1O .∵CO ⊥AB ,平面ABC ⊥平面ABB 1A 1,∴CO ⊥平面ABB 1A 1,即∠CA 1O 为直线CA 1与平面A 1ABB 1所成的角.在Rt △CA 1O 中,CO =23m ,CA 1=22n m +, ∴sin CA 1O =221=CA CO ,即∠CA 1O =45°. 17.解:(1)取OB 的中点D ,连结O 1D ,则O 1D ⊥O B.∵平面OBB 1O 1⊥平面OAB , ∴O 1D ⊥平面OA B.过D 作AB 的垂线,垂足为E ,连结O 1E . 则O 1E ⊥A B.∴∠DEO 1为二面角O 1—AB —O 的平面角. 由题设得O 1D =3,sin OBA =72122=+OB OA OA , ∴DE =DB sin OBA =721 ∵在R t △O 1DE 中,tan DEO 1=7,∴∠DEO 1=arctan7,即二面角O 1—AB —O 的大小为arctan 7.(2)以O 点为原点,分别以OA 、OB 所在直线为x 、y 轴,过O 点且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系如图5—15.则O (0,0,0),O 1(0,1,3),A (3,0,0),A 1(3,1,3),B (0,2,0).设异面直线A 1B 与AO 1所成的角为α, 则}3,1,3{},31,3{1111-=-=--=-=OO OA A O OA OB B A , cos α71||||1111=⋅A O B A A O B A , ∴异面直线A 1B 与AO 1所成角的大小为arccos71.18.解法一:如图5—16,以O 点为原点建立空间直角坐标系. 由题意,有B (3,0,0),D (23,2,4),设P (3,0,z ),则 ={-23,2,4},OP ={3,0,z }.∵BD ⊥OP ,∴BD ·OP =-29+4z =0,z =89.∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. tan POB =83,∴∠POB =arctan 83. 解法二:取O ′B ′中点E ,连结DE 、BE ,如图5—17,则DE ⊥平面OBB ′O ′,∴BE 是BD 在平面OBB ′O ′内的射影. 又∵OP ⊥B D.由三垂线定理的逆定理,得OP ⊥BE .在矩形OBB ′O ′中,易得Rt △OBP ∽Rt △BB ′E , ∴B B OBE B BP '=',得BP =89. (以下同解法一)19.解:(1)如图5—18,以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2 a ),C 1(a aa 2,2,23-). (2)坐标系如图,取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1有 1MC =(-23a ,0,0),且AB =(0,a ,0),1AA =(0,0,2 a ) 由于1MC ·AB =0,1MC ·1AA =0,所以MC 1⊥面ABB 1A 1. ∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角. ∵1AC =(a a a 2,2,23-),AM =(0,2,2a a ),∴1AC ·AM =0+42a +2a 2=49a 2.而|1AC |=a a a a 32443222=++. |AM |=a a a 232422=+. ∴cos <1AC ,AM >=23233492=⋅aa a. 所以1AC 与AM 所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.20.解:(1)记P (x ,y ),由M (-1,0),N (1,0)得PM =-MP =(-1-x ,-y ),PN =-NP =(1-x ,-y ),MN =-NM =(2,0)∴MP ·MN =2(1+x ),PM ·PN =x 2+y 2-1,NM ·NP =2(1-x ). 于是,MP ·MN ,PM ·PN ,NM ·NP 是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+,0)1(2)1(2)],1(2)1(2[21122x x x x y x 即⎩⎨⎧>=+0,322x y x 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆.(2)点P 的坐标为(x 0,y 0).·PN =x 02+y 02-1=2.|PM |·|PN |=20202020)1()1(y x y x +-⋅++.∴cos θ2202043tan .41||||x x x PB PM PN PM --=-=⋅θ 21.解:(1)由题意知B (a ,a ,0),C (-a ,a ,0),D (-a ,-a ,0),E (2,2,2ha a -).由此得,)2,23,2(),2,2,23(h a a DE h a a BE =--= ∴42322)232()223(22h a h h a a a a +-=⋅+⋅-+⋅-=⋅, 222221021)2()2()23(||||h a h a a +=+-+-==. 由向量的数量积公式有cos<DE BE , >222222222210610211021423||||h a h a h a h a h a DE BE DE BE ++-=+⋅++-=⋅ (2)若∠BED 是二面角α—VC —β的平面角,则CV BE ⋅,则有CV BE ⊥=0.又由C (-a ,a ,0),V (0,0,h ),有=(a ,-a ,h )且)2,2,23(ha a BE --=,∴02223222=++-=⋅h a a CV BE . 即h =2a ,这时有cos<DE BE ,>=31)2(10)2(610622222222-=++-=++-a a a a h a h a , ∴∠BED =<DE BE ,>=arccos (31-)=π-arccos 31评述:本小题主要考查空间直角坐标的概念、空间点和向量的坐标表示以及两个向量夹角的计算方法;考查运用向量研究空间图形的数学思想方法.22.(1)证明:因为CB ⊥平面A 1B ,所以A 1C 在平面A 1B 上的射影为A 1B . 由A 1B ⊥AE ,AE ⊂平面A 1B ,得A 1C ⊥AE . 同理可证A 1C ⊥AF .因为A 1C ⊥AF ,A 1C ⊥AE , 所以A 1C ⊥平面AEF .(2)解:过A 作BD 的垂线交CD 于G ,因为D 1D ⊥AG ,所以AG ⊥平面D 1B 1BD .设AG 与A 1C 所成的角为α,则α即为平面AEF 与平面D 1B 1BD 所成的角.由已知,计算得DG =49. 如图5—19建立直角坐标系,则得点A (0,0,0),G (49,3,0),A 1(0,0,5), C (4,3,0).AG ={49,3,0},A 1C ={4,3,-5}. 因为AG 与A 1C 所成的角为α, 所以cos α=25212arccos ,25212||||11==⋅⋅αC A AG C A AG .由定理知,平面AEF 与平面D 1B 1BD 所成角的大小为arccos25212. 注:没有学习向量知识的同学可用以下的方法求二面角的平面角.解法一:设AG 与BD 交于M ,则AM ⊥面BB 1D 1D ,再作AN ⊥EF 交EF 于N ,连接MN ,则∠ANM 即为面AEF 与D 1B 1BD 所成的角α,用平面几何的知识可求出AM 、AN 的长度.解法二:用面积射影定理cos α=AEFABDS S ∆∆. 评述:立体几何考查的重点有三个:一是空间线面位置关系的判定;二是角与距离的计算;三是多面体与旋转体中的计算.23.建立坐标系,如图5—20.(1)证明:设AE =BF =x ,则A ′(a ,0,a ),F (a -x ,a ,0),C ′(0,a ,a ),E (a ,x ,0)∴A '={-x ,a ,-a },E C '={a ,x -a ,-a }. ∵F A '·E C '=-xa +a (x -a )+a 2=0 ∴A ′F ⊥C ′E(2)解:设BF =x ,则EB =a -x 三棱锥B ′—BEF 的体积 V =61x (a -x )·a ≤6a (2a )2=241a 3 当且仅当x =2a时,等号成立. 因此,三棱锥B ′—BEF 的体积取得最大值时BE =BF =2a,过B 作BD ⊥EF 于D ,连B ′D ,可知B ′D ⊥EF .∴∠B ′DB 是二面角B ′—EF —B 的平面角在直角三角形BEF 中,直角边BE =BF =2a ,BD 是斜边上的高.∴BD =42a .∴tan B ′DB =22='BDBB 故二面角B ′—EF —B 的大小为arctan22.评述:本题考查空间向量的表示、运算及两向量垂直的充要条件.二次函数求最值或均值不等式求最值,二面角等知识.考查学生的空间想象能力和运算能力.用空间向量的观点处理立体几何中的线面关系,把几何问题代数化,降低了立体几何的难度.本题考查的线线垂直等价于F A '·E C '=0,使问题很容易得到解决.而体积的最值除用均值不等式外亦可用二次函数求最值的方法处理.二面角的平面角的找法是典型的三垂线定理找平面角的方法,计算较简单,有一定的思维量.24.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴AP ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABV =31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(×AD )·AP |=|-4-32-4-8|=48它是四棱锥P —ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).评述:本题考查了空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量的夹角公式和直线与平面垂直的判定定理、棱锥的体积公式等.主要考查考生的运算能力,综合运用所学知识解决问题的能力及空间想象能力.25.解:如图5—21建立空间直角坐标系由题意,有A (0,2,0)、C (2,0,0)、E (1,1,0) 设D 点的坐标为(0,0,z )(z >0)则BE ={1,1,0},AD ={0,-2,z },设BE 与AD 所成角为θ. 则AD ·BE =2·224+cos θ=-2,且AD 与BE 所成的角的大小为arccos1010.∴cos 2θ=101422=+z ,∴z =4,故|BD |的长度为4. 又V A —BCD =61|AB |×|BC |×|BD |=38,因此,四面体ABCD 的体积为38.评述:本题考查空间图形的长度、角度、体积的概念和计算.以向量为工具,利用空间向量的坐标表示、空间向量的数量积计算线段的长度、异面直线所成角等问题,思路自然,解法灵活简便.26.解:如图5—22,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1)∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB 30101||||1111=⋅CB BA . (3)证明:依题意,得C 1(0,0,2)、M (21,21,2),A 1={-1,1,2}, M C 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M . 评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件.27.(1)证明:设CB =a ,CD =b ,1CC =c ,则|a |=|b |,∵CB CD BD -==b -a , ∴BD ·1CC =(b -a )·c =b ·c -a ·c =|b |·|c |cos60°-|a |·|c |cos60°=0,∴C 1C ⊥BD .(2)解:连AC 、BD ,设AC ∩BD =O ,连OC 1,则∠C 1OC 为二面角α—BD —β的平面角.∵21)(21=+=CD BC CO(a +b ),2111=-=CC C (a +b )-c∴CO ·211=OC (a +b )·[21(a +b )-c ]=41(a 2+2a ·b +b 2)-21a ·c -21b ·c=41(4+2·2·2cos60°+4)-21·2·23cos60°-21·2·23cos60°=23.则|CO |=3,|O C 1|=23,∴cos C 1OC 3311=⋅O C CO (3)解:设1CC CD =x ,CD =2, 则CC 1=x2. ∵BD ⊥平面AA 1C 1C ,∴BD ⊥A 1C ∴只须求满足:D C C A 11⋅=0即可. 设A A 1=a ,AD =b ,=c , ∵A 1=a +b +c ,C 1=a -c ,∴C A 11⋅=(a +b +c )(a -c )=a 2+a ·b -b ·c -c 2=x x 242+-6,令6-242x x -=0,得x =1或x =-32(舍去). 评述:本题蕴涵着转化思想,即用向量这个工具来研究空间垂直关系的判定、二面角的求解以及待定值的探求等问题.28.(1)证明:∵P A ⊥平面ABCD ,∴P A ⊥AB ,又AB ⊥AD .∴AB ⊥平面P AD .又∵AE ⊥PD ,∴PD ⊥平面ABE ,故BE ⊥PD .(2)解:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a ,0),(0,2a ,0).∵P A ⊥平面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°.于是,在Rt △AED 中,由AD =2a ,得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt △AFE 中,由AE =a ,∠EAF =60°,得AF =2a,EF =23a ,∴E (0,23,21a a )于是,CD a a AE },23,21,0{=={-a ,a ,0} 设AE 与CD 的夹角为θ,则由cos θ||||CD AE CDAE ⋅420)()23()21(002321)(0222222=++-⋅++⋅+⋅+-⋅a a a a a a a a ∴θ=arccos42,即AE 与CD 所成角的大小为arccos 42. 评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段.29.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量OD [TX →]的坐标为{0,-23,21}. (2)依题意:}0,1,0{},0,1,0{},0,21,23{=-==, 所以}0,2,0{},23,1,23{=-=--=-=OB OC BC OA OD AD . 设向量AD 和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 评述:本题考查空间向量坐标的概念,空间向量数量积的运算及空间向量的夹角公式.解决好本题的关键是对空间向量坐标的概念理解清楚,计算公式准确,同时还要具备很好的运算能力.。

人教版高二必修四数学第二章平面向量试题

人教版高二必修四数学第二章平面向量试题

以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。

【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。

5、已知点M是 ABC的重⼼,若,求的值。

6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。

2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。

2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。

【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。

平面向量基本定理

平面向量基本定理

选择题A.B.C.D.C本题考查向量数量积的定义及运算、平面向量基本定理、解方程(组)等基础知识,考查转化与化归思想、分析问题与解决问题的能力.选择题在△ABC中,若cosAcosB>sinAsinB,则△ABC为( ).A.锐角三角形B.直角三角形C.钝角三角形D.无法判定CcosAcosB-sinAsinB=cos(A+B)>0,即-cosC>0,∴cosC<0,∴C为钝角.选择题已知向量a、b,且,,,则一定共线的三点是( ).A.A、B、DB.A、B、CC.B、C、DD.A、C、DA,∴A、B、D三点共线.选择题记,设为平面向量,则( )A.B.C.D.D本题考查平面向量的模、数量积以及分段函数、函数最值,考查向量的加法和减法的几何意义.中档题.和是以为邻边的平行四边形的两条对角线对应的向量,所以选择题平面向量,,(),且与的夹角等于与的夹角,则()A.B.C.D.D本题考查平面向量中的有关知识:平面向量基本定理、向量加法的几何含义、向量数量积的定义以及利用数量积求夹角等基础知识.单选不同的方法难易度不一样,中档题.方法一)因为,,所以,又,所以即.方法二)由几何意义知为以,为邻边的菱形的对角线向量,又,故.选择题设A1,A2,A3,A4是平面直角坐标系中两两不向的四点,若,,且,则称A3,A4调和分割A1,A2.已知点C(c,0),D(d��0),(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( ).A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上D由题意得,,且,若C,D都在AB的延长线上,则λ>1,μ>1,,这与矛盾,故选D.选择题设分别为的三边的中点,则()A.B.C.D.A本题考查平面向量基本定理、向量的线性运算,简单题。

=, 选A.选择题O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,λ∈[0,+∞]则P的轨迹一定通过△ABC的( ).A.外心B.内心C.重心D.垂心B解法一:如图所示,设为上的单位向量,为上的单位向量,则的方向为∠BAC的平分线的方向.又λ∈[0,+∞),∴的方向与的方向相同.∵,∴点P在上移动.∴P的轨迹一定通过△ABC的内心.故选B.解法二:由于P点轨迹通过△ABC内一定点且该定点与O点位置和△ABC的形状无关,故取O点与A点重合,由平行四边形法则,很容易看出P点在∠BAC的平分线上,故选B.选择题如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.4A平面向量数量积的运算.,,,同理可得.选择题设向量a,b满足|a+b|=,|a-b|=,则a b = ( )A. 1B. 2C. 3D. 5A本题考察向量的运算,简单题。

【高中数学】平面向量的应用 典型例题课件 高一下学期数学人教A版(2019)必修第二册

【高中数学】平面向量的应用 典型例题课件 高一下学期数学人教A版(2019)必修第二册

+
.



×




+ ×


=
题型8 三角形的面积公式
.
典例8、[分析计算能力]在△ 中, = ∘ , = ,其面积为 ,则
++
等于(
+ +
A.
思路

B.

)

C.

D.


根据三角形面积公式分析计算,再利用正弦定理和余弦定理解三角形进行
由余弦定理得
即 =
=

+


− = + − × = ,
++
,由于
+ +
=


=



=

.

的值;

(2)若 = , =
思路

,求△

的面积.
本题通过直观图形,利用正、余弦定理进行分析计算.(1)在△ 和△ 中,利用
正弦定理表示出和,从而运算求解比值.(2)直接利用正弦定理解三角形.
题型6 正、余弦定理在几何中的运用
.
典例6、[分析计算能力、观察记忆能力]如图,在△ 中,平分∠,且

− ,从而得

出角的值;(2)先利用余弦定理找出, 的关系,再利用基本不等式放缩,求出 +
的取值范围.
题型4 平面向量基本定理的应用
典例4、[分析计算能力]在△ 中,角, , 的对边分别为, , ,且 +
( + ) − = .

平面向量的线性运算练习题

平面向量的线性运算练习题

平面向量的线性运算练习题1. 已知平面向量a = 3i - 2j,b = 2i + 5j,求向量a + b的结果。

求解:a +b = (3i - 2j) + (2i + 5j)= 3i - 2j + 2i + 5j= 5i + 3j所以,向量a + b的结果为5i + 3j。

2. 已知平面向量u = 4i - 3j,v = 2i + 7j,w = -i + 2j,求向量2u - 3v + 4w的结果。

求解:2u - 3v + 4w = 2(4i - 3j) - 3(2i + 7j) + 4(-i + 2j)= 8i - 6j - 6i - 21j - 4i + 8j= -2i - 19j所以,向量2u - 3v + 4w的结果为-2i - 19j。

3. 已知平面向量p = -3i + 4j,q = 5i + 2j,r = 2i - j,s = -i - 5j,求向量(p + q) - (r - s)的结果。

求解:(p + q) - (r - s) = (-3i + 4j + 5i + 2j) - (2i - j + -i - 5j)= (-3i + 5i + 2i) + (4j + 2j - j - 5j)= 4i + 0j= 4i所以,向量(p + q) - (r - s)的结果为4i。

4. 已知平面向量a = 2i + 3j,b = 4i - 5j,求向量a与向量b的数量积。

求解:a ·b = (2i + 3j) · (4i - 5j)= 2i · 4i + 2i · -5j + 3j · 4i + 3j · -5j= 8i^2 - 10ij + 12ij - 15j^2= 8i^2 + 2ij - 15j^2 (注意i^2 = -1,j^2 = -1)= 8(-1) + 2ij - 15(-1)= -8 + 2ij + 15= 7 + 2ij所以,向量a与向量b的数量积为7 + 2ij。

平面向量坐标运算知识点

平面向量坐标运算知识点

平面向量坐标运算知识点一、知识概述《平面向量坐标运算知识点》①基本定义:平面向量坐标运算,简单说就是用坐标来表示平面向量,然后做各种运算。

就像给向量这个抽象的东西在平面上找好了“住址”(坐标),方便计算向量的和、差、数乘等。

比如向量A在平面直角坐标系里,有个坐标(x,y),这就是它在这个“数学小区”里的具体位置信息。

②重要程度:在数学学科里,平面向量坐标运算就像是一把魔力钥匙,能打开很多难题的大门。

它在几何图形的平移、伸缩,力的合成与分解等问题里都占着相当重要的分量。

要是不掌握这个,很多跟向量相关的稍微复杂点的题都搞不定。

③前置知识:要学这个,得先把平面直角坐标系、向量的基本概念(比如向量的大小和方向是啥)、向量的加法、减法这些基础知识掌握得妥妥的。

就像盖房子,前面那些知识是地基,平面向量坐标运算这楼才能盖起来。

④应用价值:实际应用场景超多。

比如说在物理里计算力的分解与合成,把力当成向量,用坐标运算就能轻松算出各个方向的分力或者合力。

在计算机图形学里,图形的平移、旋转、缩放都可以用向量坐标运算来描述,这样才能让图形在屏幕上“乖乖听话”,准确地实现各种效果。

二、知识体系①知识图谱:在整个向量知识体系里,平面向量坐标运算像是一条主线。

它跟向量的基本运算(向量加法等)、向量的性质(如平行、垂直的判定)都有千丝万缕的联系。

就像一张复杂的人际关系网里的关键角色,联系着很多其他相关概念的。

②关联知识:跟三角函数有点联系呢,有时候在计算向量夹角的时候会用到三角函数的知识。

还有跟解析几何也相关,有时候在解析几何里表示直线的方向或者图形在平面上的位置关系时,平面向量坐标运算就派上大用场了。

③重难点分析:- 掌握难度:这个知识点理解起来不算太难,但是要熟练运用还是有一定难度的。

刚开始接触时,让向量和坐标对应起来,建立这种思维转换有点挑战。

- 关键点:坐标的正确选取和运算规则的准确应用是关键。

一个坐标错误,后面的计算统统白搭。

高一数学第二章平面向量检测题及答案解析

高一数学第二章平面向量检测题及答案解析

高一数学平面向量测试题本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试结束后,只将第Ⅱ卷和答题卡一并交回。

参考公式:将点),(y x P 按向量),(b a 平移后得点),(y x P ''',则⎩⎨⎧+='+='b y y ax x第Ⅰ卷(选择题部分 共40分)注意事项:1. 答第Ⅰ卷时,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,仅一项符合要求)1.已知向量b a ,,则“R b a ∈=λλ,”成立的必要不充分条件是 ( )A .0 =+b aB .a 与b 方向相同C .b a ⊥D .a∥b2.在△ABC 中,AB =a ,AC=b ,如果|||=|a b ,那么△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形3.1(26)32+-a b b 等于 ( )A .2-a bB .-a bC .aD .b4.下列命题正确的是( )A .若ABC 、、是平面内的三点,则AB AC BC -= B .若12e e 、是两个单位向量,则12e e =。

C .若a b 、 是任意两个向量,则a b a b +≤+D .向量12(0,0),(1,2)e e ==-可以作为平面内所有向量的一组基底5.一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成120 角,且12,F F 的大小分别为1和2,则有( )A .13,F F 成90角B .13,F F 成150角C .23,F F 成90角D .23,F F 成60角6.如图,设,P Q 为ABC ∆内的两点,且2155AP AB AC =+,AQ =2AB +1AC ,则ABP ∆的面积与ABQ ∆的面积之比为 A .15B .45 C .14 D .137.设点M 是线段BC 的中点,点A 在直线BC 外,216,BCAB AC AB AC =∣+∣=∣-∣,则AM ∣∣=( )A .8B .4C .2D .18.平面上O,A,B 三点不共线,设,OA a OB b ==,则△OAB 的面积等于( )A .222|||()|a b a b -B .222|||()|a b a b +C .2221|||()2|a b a b - D .2221|||()2|a b a b + 9.函数2)62cos(-+=πx y 的图像F 按向量a 平移到F /,F /的解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于( )A .)2,6(-πB .)2,6(πC .)2,6(--πD .)2,6(π-10.定义平面向量之间的一种运算“”如下,对任意的a=(m,n),b p,q)=(,令 a b=mq-np ,下面说法错误的是( )A .若a 与b 共线,则a b=0B .ab=b aC .对任意的R λ∈,有a)b=(λλ(ab)D .2222(ab)+(ab)=|a||b|第Ⅱ卷(非选择题部分 共60分)二、填空题(本大题6小题,每题4分,共24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
53.已知向量 则实数k等于______.
54.已知向量 =(-1,2), =(3, ),若 ⊥ ,则 =___________.
55.已知平面向量 , ,且 // ,则 =.
56.已知 , 且 与 垂直,则 的值为__________.
57.已知向量 ,则 等于
58.已知向量 , , ,若 ∥ ,则k=.
A. B. C.
26.已知平面向量a=(1,2),b=(-2,m)且a∥b,则2a+3b=
27.设 满足 则 ()
28.已知平面内三点 ,则x的值为()
29.已知向量 = , = ,若 ⊥ ,则| |=()
二、填空题
30.若 ∥ ,则x=.
31.已知向量 , ,若向量 与 平行,则 ______.
32.边长为2的等边△ABC中,
C.锐角三角形D.等边三角形
17.下列向量中,与 垂直的向量是().
A. B. C. D.
18.设平面向量 ()
19.已知向量 , ,若 ,则 等于
20.已知向量 满足 则 ()
21.设向量 =(1. )与 =(-1,2 )垂直,则 等于()
23.化简 =
25.如图,正方形 中,点 , 分别是 , 的中点,那么 ()
一、选择题
1.已知三点 满足 ,则 的值( )
2.已知 , ,且 ,则 ( )
5.已知 ,则向量 与 的夹角为()
6.设向量 ,则 的夹角等于()
7.若向量 和向量 平行,则 ()
8.已知 ,向量 与 垂直,则实数 的值为( ).
9.设平面向量 , ,若向量 共线,则 =()
10.平面向量 与 的夹角为 , , ,则
60.已知向量 , , , ,则 .
61.设 , ,若 // ,则 .
62.若 的夹角是。
63.设向量a=(t,-6),b=(—3,2),若a//b,则实数t的值是________
三、解答题(题型注释)
64.已知 , ,且 与 夹角为120°求
(1) ;(2) ;(3) 与 的夹角
65.已知单位向量 , 满足 。
46.已知向量 , ,且 ,则 的值为.
47. 与 共线,则 .
48.已知向量 ,向量 ,且 ,则 .
49.已知四点 ,则向量 在向量 方向上的射影是的数量为.
50.设向量 与 的夹角为 , , ,则 等于.
51.已知向量 , ,其中 ,且 ,则向量 和 的夹角是.
52.已知向量 与向量 的夹角为60°,若向量 ,且 ,则 的值为______
42.已知A(1,2),B(3,4),C(-2,2),D(-3,5),则向量 在向量 上的投影为______.
43.已知向量 若 则 .
44.设向量 , ,且 ,则锐角 为________.
45.已知A(4,1,3)、B(2,-5,1),C为线段AB上一点,且 ,则C的坐标为_____________
33.已知向量a和向量b的夹角为135°,|a|=2,|b|=3,则向量a和向量b的数量积a·b=________.
34.若 , 点的坐标为 ,则 点的坐标为.
35.已知向量 =( , ), =( , ),若 ,则 =.
36.已知向量a=(1, ),则与a反向的单位向量是
37.若向量 , 的夹角为120°,| |=1,| |=3,则|5 - |=.
求 ;
(2)求 的值。
66.(11分)已知向量求 .
67.(本小题满分12分)已知 ,函数 .
(1)求函数 的最小正周期;
(2)在 中,已知 为锐角, , ,求 边的长.
68.(本小题满分14分)
已知向量 , 且满足 .
(1)求函数 的解析式;
(2)求函数 的最小正周期、最值及其对应的 值;
(3)锐角 中,若 ,且 , ,求 的长.
69.已知向量 .
⑴当 的值;
⑵求 的最小正周期和单调递增区间
70.(本小题满分l2分)(注意:在试题卷上作答无效)
已知 的三个顶点的坐标为
(I)若 ,求 的值;
(II)若 ,求 的值.
71.设非零向量 = , = ,且 , 的夹角为钝角,求 的取值范围
11.已知向量 , ,若 ,则实数x的值为
12.设向量 , ,当向量 与 平行时,则 等于
13.若 ,则向量 的夹角为()
14.若 , 且( )⊥ ,则 与 的夹角是()
15.已知向量 =(cos120°,sin120°), =(cos30°,sin30°),则△ABC的形状为
A.直角三角形B.钝角三角形
38.已知 为相互垂直的单位向量,若向量 与 的夹角等于 ,则实数 _____.
39.若向量 =(2,3), =(4,7),则 =________.
40.在平面直角坐标系xOy中,已知向量a=(1,2),a- b=(3,1),c=(x,3),若(2a+b)∥c,则x=.
41.已知向量 , , .若 与 共线,则 =________.
相关文档
最新文档