2015年广西钦州市中考数学试题(解析版)
2015年广西中考数学真题卷含答案解析

2015年南宁市初中毕业升学考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D四个结论,其中只有一个是正确的.1.3的绝对值是( )A.3B.-3C.13D.-132.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是( )3.南宁快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营.首条BRT西起南宁火车站,东至南宁东站,全长约为11300米.其中数据11300用科学记数法表示为( )A.0.113×105B.1.13×104C.11.3×103D.113×1024.某校男子足球队的年龄分布如条形图所示,则这些队员年龄的众数是( )A.12B.13C.14D.155.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于( )A.30°B.45°C.60°D.90°6.不等式2x-3<1的解集在数轴上表示为( )7.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )A.35°B.40°C.45°D.50° 8.下列运算正确的是( )A.4ab÷2a=2abB.(3x 2)3=9x 6C.a 3·a 4=a 7D.√6÷√3=2 9.一个正多边形的内角和为540°,则这个正多边形的每个外角等于( ) A.60° B.72° C.90° D.108°10.如图,已知经过原点的抛物线y=ax 2+bx+c(a ≠0)的对称轴为直线x=-1.下列结论中:①ab>0;②a+b+c>0;③当-2<x<0时,y<0.正确的个数是( )A.0个B.1个C.2个D.3个11.如图,AB 是☉O 的直径,AB=8,点M 在☉O 上,∠MAB=20°,N 是MB⏜的中点,P 是直径AB 上一动点.若MN=1,则△PMN 周长的最小值为( )A.4B.5C.6D.712.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b 中较大的数,如:max{2,4}=4.按照这个规定,方程max{x,-x}=2x+1x的解为( )A.1-√2B.2-√2C.1-√2或1+√2D.1+√2或-1第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:ax+ay= .14.要使分式1x -1有意义,则字母x 的取值范围是 .15.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸取一个小球,则取出的小球标号是奇数的概率是 .16.如图,在正方形ABCD 的外侧,作等边△ADE,则∠BED 的度数为 °.17.如图,点A 在双曲线y=2√3x(x>0)上,点B 在双曲线y=kx (x>0)上(点B 在点A 的右侧),且AB ∥x轴.若四边形OABC 是菱形,且∠AOC=60°,则k= .18.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第1次点A向左移动3个单位长度到达点A1,第2次从点A1向右移动6个单位长度到达点A2,第3次从点A2向左移动9个单位长度到达点A3,……,按照这种移动规律进行下去,第n次移动到达点A n.如果点A n与原点的距离不小于20,那么n的最小值是.三、解答题(本大题共2小题,每小题满分6分,共12分)19.计算:20150+(-1)2-2tan45°+√4..20.先化简,再求值:(1+x)(1-x)+x(x+2)-1,其中x=12四、解答题(本大题共2小题,每小题满分8分,共16分)21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点B顺时针旋转90°后得到△A2BC2.请在图中画出△A2BC2,并求出线段BC在旋转过程中所扫过的面积.(结果保留π)22.今年5月份,某校九年级学生参加了南宁市中考体育考试.为了了解该校九年级(1)班学生的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班学生人数和m的值;(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分(60分)共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流.请用“列表法”或“画树状图法”,求出恰好选到一男一女的概率.五、解答题(本大题满分8分)23.如图,在▱ABCD中,E,F分别是AB,DC边上的点,且AE=CF.(1)求证:△ADE≌△CBF;(2)若∠DEB=90°,求证:四边形DEBF是矩形.六、解答题(本大题满分10分)24.如图①,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上,修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道的宽为a米.图①(1)用含a的式子表示花圃的面积;,求此时甬道的宽;(2)如果甬道所占面积是整个长方形空地面积的38(3)已知某园林公司修建甬道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图②所示.如果学校决定由该公司承建此项目,并要求修建的甬道宽不少于2米且不超过10米,那么甬道宽为多少米时,修建的甬道和花圃的总造价最低?最低总造价为多少元?图②七、解答题(本大题满分10分)25.如图,AB是☉O的直径,C,G是☉O上两点,且AC⏜=CG⏜.过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连结BC,交OD于点F.(1)求证:CD是☉O的切线;(2)若OFFD =23,求∠E的度数;(3)连结AD,在(2)的条件下,若CD=√3,求AD的长.八、解答题(本大题满分10分)26.在平面直角坐标系中,已知A,B是抛物线y=ax2(a>0)上两个不同的动点,其中A在第二象限,B在第一象限.(1)如图①所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A,B 两点的横坐标的乘积;(2)如图②所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A,B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由;(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P,C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.图①图②答案全解全析:一、选择题1.A因为|3|=3,所以选项A正确.故选A.2.B由题意可知,主视图有两层,上面的一层有一个正方形,在左侧下面的一层有两个正方形.选项B符合.故选B.3.B11300=1.13×104.故选B.4.C14岁的人数最多,所以众数为14.故选C.5.A∵DE∥BC,∴∠CAE=∠C=30°.故选A.6.D∵2x-3<1,∴2x<4,∴x<2.在数轴上表示应为从2画起(空心),向左,选项D符合题意,故选D.7.A∵AB=AD,∴∠ADB=∠B=70°,∵AD=DC,∴∠C=∠DAC.∵∠ADB是△ADC的外∠ADB=35°.故选A.角,∴∠C=128.C4ab÷2a=2b,选项A错误;(3x2)3=27x6,选项B错误;√6÷√3=√2,选项D错误;a3·a4=a7,选项C正确.故选C.9.B由(n-2)·180°=540°,得n=5,所以每一个外角等于360°=72°.故选B.5<0,所以ab>0,所以①正确;当x=1时,y=a+b+c>0,所以②正10.D因为对称轴为直线x=-b2a确;由对称轴可知抛物线与x轴的交点坐标为(-2,0),(0,0),所以-2<x<0时,图象在x轴下方,即y<0,所以③正确.故选D.11.B△PMN的周长为PM、PN、MN的和,其中MN=1,所以只要PM、PN的和最小即可.如图,取N关于AB的对称点C,连结MC交AB于P,此时PM、PN的和最小,PM、PN的和就是MC的长⏜的中点,∴∠NOB=20°.∵直径度.连结OM、ON、OC.∵∠MAB=20°,∴∠MOB=40°.∵N为BMAB⊥CN,∴∠COB=20°.∴∠MOC=60°.∵OM=OC,∴△MOC为等边三角形.∵AB=8,∴MC=OM=4.∴△PMN的周长的最小值为1+4=5.故选B.12.D(1)当x>-x,即x>0时,max{x,-x}=x,2x+1=x,解这个方程可得x=1±√2.经检验,x=1±√2是原方程的解.∵x>0,∴x=1+√2.x(2)当x<-x,即x<0时,max{x,-x}=-x,2x+1=-x,解这个方程可得x=-1.经检验,x=-1是原方程的解.x综上所述,x=1+√2或x=-1.故选D.评析本题是新概念学习题,考查的是分类讨论思想与解一元二次方程.属中档题.二、填空题13.答案a(x+y)解析ax+ay=a(x+y).14.答案x≠1解析若分式1有意义,则分母x-1≠0,即x≠1.x-115.答案0.6解析一共有5个小球,标号是奇数的小球有3个,所以取出的小球标号是奇数的概率是3÷5=0.6.16.答案45解析由题意可知,∠BAE=150°,BA=AE,∴∠AEB=15°.∴∠BED=45°.17.答案 6√3解析 作AD ⊥x 轴交x 轴于点D,∵∠AOC=60°,∴AD=√3OD,∴可设A(x,√3x). ∵点A 在双曲线y=2√3x(x>0)上,∴x ·√3x=2√3. ∴x 2=2.∵x>0,∴x=√2.∴A(√2,√6).∴OA=2√2.∵四边形OABC 是菱形, ∴AB=OA=2√2.∵AB ∥x 轴,∴B(3√2,√6). ∵点B 在双曲线y=k x(x>0)上, ∴k=xy=3√2×√6=6√3.评析 本题考查了反比例函数与菱形的综合应用,需要借助反比例函数关系式求出菱形的边长,再利用菱形的性质求出反比例函数图象上的点的坐标.属中档题. 18.答案 13解析 根据题意,写出移动后各点所表示的数:A 1:-2 A 2:4 A 3:-5 A 4:7 A 5:-8 A 6:10 A 7:-11 A 8:13 A 9:-14 A 10:16 A 11:-17 A 12:19 A 13:-20如果点A n 与原点的距离不小于20,那么n 的最小值是13.三、解答题19.解析 原式=1+1-2×1+2(4分) =2.(6分)20.解析 原式=1-x 2+x 2+2x-1(2分) =2x.(4分)当x=12时,原式=2×12=1.(6分)四、解答题21.解析 (1)△A 1B 1C 1如图所示.(3分,正确作出一点给1分) (2)△A 2BC 2如图所示.(6分,正确作出一点给1分)在Rt △ABC 中,AB=2,AC=3, ∴BC=√22+32=√13.(7分) ∵∠CBC 2=90°,∴S 扇形BCC 2=90π(√13)2360=13π4.(8分)22.解析 (1)全班学生人数:15÷30%=50(人).(2分) m=50-2-5-15-10=18.(3分)(2)51≤x<56.(5分)(3)画树状图或列表如下:或男1男2 女 男1男2男1女男1 男2 男1男2女男2女男1女男2女(7分)由图或表可知,所有可能出现的结果共有6种,并且它们出现的可能性相等,“一男一女”的结果有4种,即:男1女,男2女,女男1,女男2. ∴P(一男一女)=23.(8分) 五、解答题23.证明 (1)∵四边形ABCD 是平行四边形, ∴AD=CB,∠A=∠C.(2分) ∵AE=CF,(3分)∴△ADE ≌△CBF.(4分)(2)证法一:∵△ADE ≌△CBF, ∴DE=BF.(5分)∵四边形ABCD 是平行四边形,∴AB=CD.∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)证法二:∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD.(5分)∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)六、解答题24.解析 (1)花圃的面积为(60-2a)(40-2a)平方米或(4a 2-200a+2 400)平方米.(2分)(2)(60-2a)(40-2a)=60×40×(1-38),(4分)即a 2-50a+225=0,解得a 1=5,a 2=45(不合题意,舍去).∴此时甬道的宽为5米.(5分)(3)∵2≤a ≤10,花圃面积随着甬道宽的增大而减小,∴800≤x 花圃≤2 016.由图象可知,当x ≥800时,设y 2=k 2x+b,因为直线y 2=k 2x+b 经过点(800,48 000)与(1 200,62 000),所以{800k 2+b =48 000,1 200k 2+b =62 000.解得{k 2=35,b =20 000.∴y 2=35x+20 000.(6分)当x ≥0时,设y 1=k 1x,因为直线y 1=k 1x 经过点(1 200,48 000),所以1 200k 1=48 000. 解得k 1=40.∴y 1=40x.(7分)设修建甬道、花圃的总造价为y 元,依题意,得解法一:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000=40(2 400-4a 2+200a-2 400)+35(4a 2-200a+2 400)+20 000(8分)=-20a 2+1 000a+104 000=-20(a-25)2+116 500.∵-20<0,∴当a<25时,y 随a 的增大而增大.(9分)而2≤a ≤10,∴当a=2时,y 最小=105 920.∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105 920元.(10分) 解法二:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000(8分)=-5x 花圃+116 000.∵-5<0,∴y 随x 花圃的增大而减小.(9分)而800≤x 花圃≤2 016,∴当x花圃=2016时,y最小=105920.∴当x花圃=2016时,4a2-200a+2400=2016.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)解法三:y=y甬道+y花圃=40x甬道+35(60×40-x甬道)+20000(8分)=5x甬道+104000.∵5>0,∴y随x甬道的增大而增大.(9分)而800≤x花圃≤2016,∴384≤x甬道≤1600.∴当x甬道=384时,y最小=105920.∴当x甬道=384时,60×40-(4a2-200a+2400)=384.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)评析本题考查的是一元二次方程与函数的实际应用,需要通过实际问题的情境和函数图象列出合理的表达式,属较难题.七、解答题25.解析(1)证法一:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.∴OC∥BD.(2分)∵CD⊥BD,∴OC⊥CD.∴CD是☉O的切线.(3分)证法二:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.(2分)∵CD⊥BD,∴∠DCB+∠CBG=90°.∴∠DCB+∠OCB=90°.∴OC⊥CD.∴CD是☉O的切线.(3分)(2)∵OC ∥BD,∴△OCF ∽△DBF,△EOC ∽△EBD.(4分,至少写出一对三角形相似给1分)∴OC BD =OF DF ,OC BD =OE BE. ∵OF DF =23,∴OE BE =23.(5分)设OC=OB=r,OE=x,则x x+r =23, 解得x=2r.∴OE=2r.(6分)在Rt △OEC 中,sin E=OC OE =r 2r =12,∴∠E=30°.(7分)(3)∵∠E=30°,CD ⊥BD,∴∠ABD=60°,∠ABC=∠CBD=30°.∴BC=2CD=2√3,BD=CD tan30°=3.解法一:∵OC BD =OF DF =23,∴OC=2,AB=4.(8分)连结AG.∵AB 是☉O 的直径,∴∠AGB=90°,∵∠ABD=60°,∴∠BAG=30°.∴BG=12AB=2,AG=2√3.(9分)∴DG=BD -BG=1.∴AD=√AG 2+DG 2=√(2√3)2+12=√13.(10分)解法二:连结AC.∵AB 是☉O 直径,∴∠ACB=90°.∴AB=BC cos ∠ABC =2√3cos30°=4.(8分)过点D 作DM ⊥AB 于点M.∴DM=BD ·sin 60°=3√32,BM=BD ·cos 60°=32. ∴AM=AB -BM=4-32=52.(9分)∴AD=2+AM 2√(3√32)2+(52)2=√13.(10分)八、解答题26.解析 (1)∵抛物线y=ax 2(a>0)关于y 轴对称,AB 与x 轴平行,∴A,B 关于y 轴对称.∵∠AOB=90°,AB=2,∴A(-1,1),B(1,1).(1分)∴1=a(-1)2,解得a=1.∴抛物线的解析式为y=x 2.(2分)∵A(-1,1),B(1,1),∴A,B 两点的横坐标的乘积为-1.(3分)(2)过A,B 分别作AG,BH 垂直x 轴于G,H.由(1)可设A(m,m 2),B(n,n 2),m<0,n>0.(4分)∵∠AOB=∠AGO=∠BHO=90°,∴∠AOG+∠BOH=∠AOG+∠OAG=90°.∴∠BOH=∠OAG.(5分)∴△AGO ∽△OHB.∴AG OG =OH BH.(6分) ∴m 2-m =n n 2,化简得mn=-1.∴A,B 两点的横坐标的乘积是常数-1.(7分)(3)解法一:过A,B 分别作AA 1,BB 1垂直y 轴于A 1,B 1.设A(m,m 2),B(n,n 2),D(0,b),m<0,n>0,b>0.∵AA 1∥BB 1,∴△AA 1D ∽△BB 1D.∴AA 1DA 1=BB 1B 1D ,即-m m 2-b =nb -n 2,化简得mn=-b. ∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=145.∴P (-125,145).(10分)解法二:设直线AB:y=kx+b(k ≠0),A(m,m 2),B(n,n 2),m<0,n>0,b>0.联立得{y =kx +b,y =x 2,得x 2-kx-b=0,依题意可知m,n 是方程x 2-kx-b=0的两根. ∴m 2-km-b=0,n 2-kn-b=0.∴nm 2-kmn-bn=0,mn 2-kmn-bm=0.两式相减,并化简得mn=-b.∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=14.∴P (-125,145).(10分)评析 本题考查的是函数图象与三角形的综合应用,需要借助抛物线表示出点的坐标,并借助相似三角形的性质、勾股定理列出方程.属较难题.。
广西初三初中数学中考真卷带答案解析

广西初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.(1)求证:∠ABD=∠CBD;(3分)(2)若∠C=2∠E,求证:AB=DC;(4分)(3)在(2)的条件下,求四边形AEBD的面积.(5分)2.如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.(1)求a,c的值;(4分)(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;(4分)(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)(4分)3.在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(5分)(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:(1)tan∠PEF的值是否发生变化?请说明理由;(5分)(2)直接写出从开始到停止,线段EF的中点经过的路线长.(4分)4.(11·钦州)(本题满分6分)先化简,再求值:(a+1)(a-1)+a (1-a),其中a=2012.5.(11·钦州)(本题满分6分)如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.6.(11·钦州)(本题满分7分)如图,在平面直角坐标系中,点O为原点,反比例函数y=的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC的面积.7.(11·钦州)(本题满分9分)某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图(1)频数分布表中的m=_ ▲,n=_ ▲;(2)样本中位数所在成绩的级别是_ ▲,扇形统计图中,E组所对应的扇形圆心角的度数是_ ▲;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?8.(11·钦州)(本题满分9分)某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?9.10.(8分)如图,已知CA=CD,∠1=∠2.(1)请你添加一个条件,使得△ABC≌△DEC.你添加的条件是;(2)添加条件后证明:△ABC≌△DEC.11.(8分)小华是某校八年级一班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.请你根据上面不完整的频率分布表,解答下列问题:(1)表中a和b所表示的数分别为a=,b=;(2)小华班上男生身高的极差是 cm;(3)身高的中位数落在哪个分组?;(4)若身高不低于165cm的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?12.(8分)如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx-2的图象经过点A、C,并与y轴交于点E,反比例函数的图象经过点A.(1)点E的坐标是;(2)求一次函数和反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.13.(8分)2009年,王先生在某住宅小区购买了一套140m2的住房,当时该住房的价格为2500元/m2,两年后该住房的价格变为3600元/m2.(1)问该住房价格的年平均增长率是多少?(2)王先生准备进行室内装修,在购买相同质量的材料时,甲、乙两建材商店有不同的优惠方式:在甲商店累计购买2万元材料后,再购买的材料按原价的90%收费;在乙商店累计购买1万元材料后,再购买的材料按原价的95%收费.当王先生计划累计购买材料超过2万元时,请你帮他算一算在何种情况下选择哪一家建材商店购买材料可获得更大优惠.14.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当∠B AC=60º时,DE与DF有何数量关系?请说明理由;(3)当AB=5,BC=6时,求tan∠BAC的值.15.(12分)如图,抛物线:y=ax2+bx+4与x轴交于点A(-2,0)和B(4,0)、与y轴交于点C.(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标;(3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行.当点M原点时,点Q立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式,并求出S的最大值.二、选择题1.(11·钦州)70等于A.0B.1C.7D.-72.(11·钦州)一组数据3,4,5,5,6,8的极差是A.2B.3C.4D.53.(11·钦州)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立体的个数是A.3B.4C.5D.64.(11·钦州)“十二·五”期间,,钦州市把“建大港,兴产业,造新城”作为科学发展的三大引擎,其中到2015年港品吞吐能力争取达到120 000 000吨,120 000 000用科学记数法表示为A.1.2×107B.12×107C.1.2×108D.1.2×10-85.(11·钦州)下列计算正确的是6.(11·钦州)如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格,B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针方向90º旋转,再右平移6格D.把△ABC绕着点A顺时针方向90º旋转,再右平移6格7.(11·钦州)下列关于x的一元二次方程中,有两个不相等的实数根的方程是A.x2+1=0B.x2-2x+1=0C.x2+x+1=0D.x2+2x-1=08.(11·钦州)已知⊙O1和⊙O2的半径分别为2和5,如果两圆的位置关系为外离,那么圆心距O1O2的取值范围在数轴上表示正确的是9.(11·钦州)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件A.必然事件B.不可能事件C.随机事件D.确定事件10.(11·钦州)函数y=ax-2 (a≠0).与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是11.(11·钦州)一个圆锥的底面圆的周长是2π,母线长是3,则它的侧面展开图的圆心角等于A.150ºB.120ºC.90ºD.60º12.(11·钦州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的A.B.C.D.13.-7的绝对值是【】14.点P(2,-3)所在的象限是【】A.第一象限B.第二象限C.第三象限D.第四象限15.涠洲岛是全国假日旅游新热点,上岛休闲度假,体验海岛风情,感受火山文化已成为众多游客的首选,据统计该景区去年实现门票收入约598000元.用科学记数法表示598000是【】A.0.598×106B.59.8×104C.5.98×104D.5.98×10516.下列四个图形中,是轴对称图形的有【】17.如图,由6个小正方体搭建而成的几何体的俯视图是【】18.下列运算正确的是【】A.(-2x2)3=-6x6B.x4÷x2=x2C.2x+2y=4xy D.(y+x)(-y+x)=y2-x219.若三角形的两边长分别为2和6,则第三边的长可能是【】A.3B.4C.5D.820.21.若一个圆柱的底面半径为1、高为3,则该圆柱的侧面展开图的面积是【】A.6B.C.D.22.已知⊙O1与⊙O2相切,若⊙O1的半径为1,两圆的圆心距为5,则⊙O2的半径为【】A.4B.6C.3或6D.4或623.如图所示,渔船在A处看到灯塔C在北偏东60º方向上,渔船向正东方向航行了12海里到达B处,在B处看到灯塔C在正北方向上,这时渔船与灯塔C的距离是【】24.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90º后,所得直线的解析式为【】A.y=x-2B.y=-x+2C.y=-x-2D.y=-2x-1三、填空题1.(11·钦州)在-2,2,这三个实数中,最小的是 _ .2.(11·钦州)写出一个正比例函数,使其图象经过第二、四象限:_ .3.(11·钦州)在4张完全相同的卡片上分别画上图①、②、③、④.在看不见图形的情况下随机抽取一张,卡片上的图形是中心对称图形的概率是 _ .4.(11·钦州)分式方程=的解是_ .5.(11·钦州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_ .6.(11·钦州)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是_ .7.因式分解:xy-7y=.8.9.函数的自变量x的取值范围是.10.若一个多边形的内角和是900º,则这个多边形是边形.11.在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,又是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率为.12.如图,△ABC的面积为63,D是BC上的一点,且BD∶CD=2∶1,DE∥AC交AB于点E,延长DE到F,使FE∶ED=2∶1,则△CDF的面积为.四、计算题(6分)计算:.广西初三初中数学中考真卷答案及解析一、解答题1.如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.(1)求证:∠ABD=∠CBD;(3分)(2)若∠C=2∠E,求证:AB=DC;(4分)(3)在(2)的条件下,求四边形AEBD的面积.(5分)【答案】(1)证明:∵AD∥BC∴∠ADB=∠CBD∵AB=AD∴∠ADB=∠ABD∴∠ABD=∠CBD(2)∵AE∥DB∴∠E=∠CBD由(1)得∠ABD=∠CBD∴∠ABC=2∠CBD=2∠E又∵∠C=2∠E∴∠ABC=∠C在梯形ABCD中,∴AB=DC【解析】略2.如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.(1)求a,c的值;(4分)(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;(4分)(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)(4分)【答案】【解析】略3.在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(5分)(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:(1)tan∠PEF的值是否发生变化?请说明理由;(5分)(2)直接写出从开始到停止,线段EF的中点经过的路线长.(4分)【答案】【解析】略4.(11·钦州)(本题满分6分)先化简,再求值:(a+1)(a-1)+a (1-a),其中a=2012.【答案】解:解法一:原式=a2-1+a-a2 ………………4分=a-1………………5分当a=2012时,原式=a-1=2012-1=2011………………6分解法二:原式=(a+1)(a-1)-a (a-1)………………2分=(a-1) (a+1-a)=a-1………………5分当a=2012时,原式=a-1=2012-1=2011………………6分【解析】略5.(11·钦州)(本题满分6分)如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.【答案】证明:∵四边形ABCD是平行四边形∴BC=AD BC∥AD………………2分∴∠ACB=DAC………………3分∵BE∥DF∴∠BEC=∠AFD………………4分∴△CBE≌△ADF………………5分∴BE=DF………………6分【解析】略6.(11·钦州)(本题满分7分)如图,在平面直角坐标系中,点O为原点,反比例函数y=的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC的面积.【答案】解:(1)∵y=的图象经过点(1,4),∴4=,即k=4………………3分∴所求反比例函数的关系式为y=………………4分=8………………7分(2)S菱形OABC【解析】略7.(11·钦州)(本题满分9分)某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图(1)频数分布表中的m=_ ▲,n=_ ▲;(2)样本中位数所在成绩的级别是_ ▲,扇形统计图中,E组所对应的扇形圆心角的度数是_ ▲;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?【答案】(1)4,8(2)D 1080(3)800=528(人)答:该校九年级的学生中,体育综合测试成绩不少于80分的大约有528人【解析】略8.(11·钦州)(本题满分9分)某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?【答案】解:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2 000x+2 500(30-x)=68 000解得x=14∴30-x=16答:种植A种生姜14亩,那么种植B种生姜16亩.(2)由题意得,x≥ (30-x)解得x≥10………………5分设全部收购该基地生姜的年总收入为y元,则y=8×2 000x+7×2 500(30-x)=-1 500 x+525 000………………7分∵y随x的增大而减小,当x=10时,y有最大值此时,30-x=20,y的最大值为510 000元………………8分答:种植A种生姜10亩,那么种植B种生姜20亩,全部收购该基地生姜的年总收入最多为510 000元.………………9分【解析】略9.【答案】解:原式===当时,【解析】略10.(8分)如图,已知CA=CD,∠1=∠2.(1)请你添加一个条件,使得△ABC≌△DEC.你添加的条件是;(2)添加条件后证明:△ABC≌△DEC.【答案】(1)CB=CE(或∠B=∠E,∠A=∠D有一个即可)(2)证明:∵∠1=∠2 ∴∠ACB=∠DCE在△ACB和△DCE中,∵CA=CD,∠ACB=∠DCE,CB=CE∴△ACB≌△DCE【解析】略11.(8分)小华是某校八年级一班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.请你根据上面不完整的频率分布表,解答下列问题:(1)表中a和b所表示的数分别为a=,b=;(2)小华班上男生身高的极差是 cm;(3)身高的中位数落在哪个分组?;(4)若身高不低于165cm的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?【答案】解:(1)(2)24(3)(4)30%【解析】略12.(8分)如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx-2的图象经过点A、C,并与y轴交于点E,反比例函数的图象经过点A.(1)点E的坐标是;(2)求一次函数和反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.【答案】解:(1)点E的坐标为,(2)由题意得知AB∥OE,∴,∴∵嗲你C的坐标为(4,0),∴把嗲你C的坐标(4,0)代入得,,∴,∴所求一次函数为。
超全:广西省所有市2015年中考真题大全附解析打包下载

超全:广西省所有市2015年中考真题大全附解析打包下载超全:广西省所有市2015年中考真题大全附解析打包下载2015年广西北海市中考数学试卷一、选择题:2.(3分)(2015?北海)计算2﹣1+的结果是()4.(3分)(2015?北海)一个几何体的三视图如图所示,则这个几何体是()5.(3分)(2015?北海)某市户籍人口1694000人,则该市户籍人口数据用科学记数法可表7.(3分)(2015?北海)正比例函数y=kx的图象如图所示,则k的取值范围是()10.(3分)(2015?北海)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两B12.(3分)(2015?北海)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是(),),)二、填空题:13.(3分)(2015?北海)9的算术平方根是.14.(3分)(2015?北海)在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中10位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是.15.(3分)(2015?北海)已知点A(﹣,m)是反比例函数y=图象上的一点,则m的值为.16.(3分)(2015?北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=.17.(3分)(2015?北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.18.(3分)(2015?北海)如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.三、解答题:19.(2015?北海)解方程:.20.(2015?北海)解不等式组:.21.(2015?北海)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;(3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.22.(2015?北海)如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD 时,求证:四边形ABCD 是菱形.316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?24.(2015?北海)如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)25.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠B EP;(3)若⊙O的半径为5,CF=2EF,求PD的长.26.(2015?北海)如图1所示,已知抛物线y=﹣x2+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.(1)直接写出D点和E点的坐标;(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,S△HGF:S△BGF=5:6?(3)图2所示的抛物线是由y=﹣x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT 是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2015年广西北海市中考数学试卷参考答案与试题解析一、选择题:2.(3分)(2015?北海)计算2﹣1+的结果是()+4.(3分)(2015?北海)一个几何体的三视图如图所示,则这个几何体是()5.(3分)(2015?北海)某市户籍人口1694000人,则该市户籍人口数据用科学记数法可表7.(3分)(2015?北海)正比例函数y=kx的图象如图所示,则k的取值范围是()10.(3分)(2015?北海)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两B∴小明和小颖平局的概率为:=12.(3分)(2015?北海)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是(),),)==,即=,,EF=,+4=,=,,二、填空题:13.(3分)(2015?北海)9的算术平方根是3.14.(3分)(2015?北海)在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中10位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是9.5.15.(3分)(2015?北海)已知点A(﹣,m)是反比例函数y=图象上的一点,则m的值为﹣4.(﹣y=(﹣图象上的一点,m=84.16.(3分)(2015?北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=8.17.(3分)(2015?北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是2.=18.(3分)(2015?北海)如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.的横坐标为:,×(﹣=﹣的横坐标为:,(﹣的横坐标为:,()()=×(=×2014=.故答案为:.三、解答题:19.(2015?北海)解方程:.20.(2015?北海)解不等式组:.,21.(2015?北海)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;(3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.×=62522.(2015?北海)如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD 时,求证:四边形ABCD 是菱形.316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?,然后解此方程)根据题意得:,.24.(2015?北海)如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48),AEG=,25.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.=,求得,即可求得。
广西钦州市钦南区2015-2016学年八年级上学期期中考试数学试题解析(解析版)

一、选择题(每小题3分,共30分)1.下列实数中,属于有理数的是( ▲ ) A .8B .722C .2πD .23【答案】B 【解析】试题分析:因为整数和分数统称有理数,所以8 、2π、23是无理数,722是有理数,故选:B. 考点:有理数2.不等式353x x -<+的正整数解为( ▲ ) A .1个B .2个 C .3个D .4个 【答案】C 【解析】试题分析:因为353x x -<+,所以3x-x <3+5,所以x <4,所以x 取正整数解有1、2、3共3个,故选:C.考点:不等式的整数解.3.下列判断中,错误的有( ▲ ) ①0的绝对值是0;②31是无理数;③4的平方根是2;④1的倒数是1-. A .1个 B .2个 C .3个 D .4个 【答案】C考点:绝对值、无理数、平方根、倒数.4.下列四组数据中,“不能”作为直角三角形的三边长的是( ▲ )A .3,4,6B . 5,12,13C . 6,8,10D .,2 【答案】A【解析】试题分析:因为222346+≠,所以A 错误;因为22251213+= ,所以B 正确;因为 2226810+=,所以C正确;因为2222+= 所以D 正确;故选:A. 考点:勾股定理的逆定理. 5.若()0212=++-y x 则()2014y x +等于( ▲ )A .1-B .1C .20143D .20143- 【答案】B考点:非负数的性质.6.如图,已知正方形ABCD 的边长为2,如果将对角线BD 绕着点B 旋转后,点D 落在CB 延长线上的'D 处,那么'AD 的长为( ▲ )A .B .C .D'DCB A【答案】A 【解析】试题分析:在Rt △BCD 中,因为BC=CD=2,所以根据勾股定理得到:BD=,则BD ′=BD=,在Rt △ABD ′中根据勾股定理得到:,故选:A.考点:正方形的性质、勾股定理、图形旋转的性质. 7.已知⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=+15ay bx by ax 的解,则b a -的值是( ▲ )A .-1B .2C .3D .4【答案】D 【解析】试题分析:把⎩⎨⎧==12y x 代入方程组⎩⎨⎧=+=+15ay bx by ax 得,2521a b b a +=⎧⎨+=⎩,解得31a b =⎧⎨=-⎩,所以b a -=4,故选:D.考点:二元一次方程组.8.在平面直角坐标系中,若P (2x -,x )在第二象限,则x 的取值范围是( ▲ ) A .02x << B .2x <C .0x >D .2x >【答案】A 【解析】试题分析:因为第二象限内的点的坐标特点是(-,+),而P (2x -,x )在第二象限,所以002x x -⎧⎨⎩<>,解得02x <<,故选;A.考点:象限内的点的坐标特点、不等式组.9.的值为( ▲ ) AB. 3±C. D. 3 【答案】D 【解析】是同类二次根式,所以3a+8=12-a ,所以a=3,故选:D. 考点:同类二次根式.10.已知Rt△ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt△ABC 的面积是( ▲ ) A .24cm 2B .36cm 2C . 48cm 2D .60cm 2【答案】A考点:勾股定理、完全平方公式.二、填空题(每小题4分,共20分)11.如果二次根式x 23- 有意义,那么x 的取值范围是 ▲ .【答案】32x ≤ 【解析】试题分析:当3-2x 0≥时,二次根式x 23- 有意义,所以32x ≤.考点:二次根式12.已知x 为整数,且满足32≤≤x -,则x = ▲ .【答案】1-,0,1; 【解析】1.414 1.732≈≈,32≤≤x -,所以-1.414x 1.732≤≤,又x 为整数,所以x =1-,0,1.考点:二次根式.13.已知直角三角形的两直角边长分别为5cm 和12cm ,则斜边上的高为 ▲ cm . 【答案】6013【解析】试题分析:因为直角三角形的两直角边长分别为5cm 和12cm ,所以由勾股定理可得:斜边=13cm ,设斜边上的高为h ,所以11512=13h 22⨯⨯⨯,所以h=6013. 考点:勾股定理.14.如图,在直角坐标系中,已知点A (3-,1-),点B (2-,1),平移线段AB ,使点A 落在A 1(0,1-),点B 落在点B 1,则点B 1的坐标为 ▲ .xyOBA【答案】()11,;【解析】试题分析:因为点A (3-,1-)向右平移3个单位长度后得到点A 1(0,1-),所以点B (2-,1)向右平移3个单位长度后得到点()11,即为点B 1的坐标.考点:点的平移.15.如图,将长AB=5cm ,宽AD=3cm 的矩形纸片ABCD 折叠,使点A 与C 重合,折痕为EF ,则AE 长为 ▲ cm .(A')D'FE DC BA【答案】3.4 【解析】试题分析:设AE=x ,由折叠可得:AE=CE=x,因为 AB=5cm ,所以BE=5-x ,在Rt △BC E 中,由勾股定理可得:222CE BE BC =+,所以222x -x 3=+(5),解得x=3.4.考点:图形折叠的性质、勾股定理.三、计算题(每小题5分,共20分)16.(1)()36123320140--+-; (2)2)23()3223)(1218(---+ 【答案】(1)-2(2) 【解析】试题分析:(1)利用性质先将各式化简,然后合并即可;(2)先算乘法,然后合并同类二次根式即可. 试题解析:(1)解:原式=13+-…………………………3分2=-…………………………5分 (2)解:原式=()181232---+ …………………………3分=65-+ …………………………4分1=+…………………………5分考点:二次根式的计算.17.解不等式组: 2(3)433212x x x x +->⎧⎪⎨+>-⎪⎩①②,将其解集在数轴上表示出来,并求不等式组所有整数解的......和.. 【答案】-5 【解析】试题分析:先分别解两个不等式,确定出解集,然后确定不等式组的解集,然后可解. 试题解析:由①2x <…………………………1分由②4x >- …………………………2分 ∴42x -<<…………………………3分432101…………………………4分 所有整数和为321015---++=-…………………………5分考点:解不等式组.18.解方程组: ⎩⎨⎧-=+=-1373y x y x【答案】10 【解析】试题分析:用加减法解方程组或用代入法解方程组都可. 试题解析:①×3:9321x y -= ③…………………………1分②+③:1020x =…………………………2分 2x =代入①…………………………3分1y =-…………………………4分 ∴21x y =⎧⎨=-⎩…………………………5分考点:解二元一次方程组.四、作图题(每小问各2分,共6分):19.如图,方格纸中的每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,A (-1,5),B (-1,0),C (-4,3).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(其中A 1、B 1、C 1是A 、B 、C 的对应点,不写画法) (2)写出A 1、B 1、C 1的坐标; (3)求出△A 1B 1C 1的面积.【答案】(1)见解析(2)()115A ,,()110B ,,()143C ,.(3)7.5.【解析】试题分析:(1)利用轴对称的性质和网格的特点可分别确定出点A 1、B 1、C 1然后顺次连接即可;(2)根据坐标系和网格的特点可分别确定出点A 1、B 1、C 1的坐标;(3)因为A 1B 1=5,A 1B 1的高为3,所以利用三角形的面积公式计算即可. 试题解析:(1)如图O yxC 1B 1A 1C B A(2)()115A ,,()110B ,,()143C ,. (3)解:1111155322A B C S ∆=⨯⨯= 考点:轴对称、点的坐标.五、解答、证明题:20.(6分)已知:23+=a ,23-=b ,求代数式()()()2233b a b a +---的值.【答案】8 【解析】试题分析:先将所给的整式化简,用a+b 和ab 表示出,然后代入计算即可. 试题解析:原式=()()2392ab a b a b ab ⎡⎤-++-+-⎣⎦……………………………………3分又∵1a b =-,a b += ……………………………………4分∴原式=()19122---+ ……………………………………5分6=--……………………………………6分考点:化简求值.21.((8分)某服装店用6000元购进A ,B 两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价-进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A 中服装按标价的8折出售,B 中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?【答案】(1) 购A 型50件,B 型30件.(2) 2440元. 【解析】试题分析:(1) 设购A 型x 件,B 型y 件,然后列二元一次方程组解答即可;(2)根据()()()1005010.81601003010.7⨯⨯-+-⨯⨯-计算即可.试题解析:解:(1)设购A 型x 件,B 型y 件()()601006000100601601003800x y x y +=⎧⎪⎨-+-=⎪⎩……………………………………3分整理得3530023190x y x y +=⎧⎨+=⎩解得5030x y =⎧⎨=⎩……………………………………5分答:(2)()()()1005010.81601003010.7⨯⨯-+-⨯⨯- 100014402440=+=(元) ……………………………………7分 答:少收入2440元.……………………………………8分考点:二元一次方程组的应用.22.((10分)如图,在等边△ABC 中, M 为BC 边上的中点, D 是射线AM 上的一个动点,以CD 为一边且在CD 的下方作等边△CDE,连接BE .(1)填空:若D 与M 重合时(如图1)∠CB E= 度;(2)如图2,当点D 在线段AM 上时(点D 不与A 、M 重合),请判断(1)中结论是否成立?并说明理由; (3)在(2)的条件下,如图3,若点P 、Q 在BE 的延长线上,且CP=CQ=4,AB=6,试求PQ 的长.图3图2图1QP A BCEM DA BCEMD(D)MCE BA【答案】(1)30°(2)(1)中结论成立.理由见解析(3). 【解析】试题分析:(1)根据条件可证得:BM=ME=MC ,从而可证:2∠CB E =∠C ME=60°,从而得出结论;(2)根据条件可证△ACD ≌△BCE ,所以得出∠CAD =∠CBE ,而根据等边三角形的性质可得∠CAD =12∠BAC =30°;(3)作CF ⊥PQ 于F ,在Rt △BCF 中,求出CF =12BC =12AB =3 , 在 Rt △PCF 中,利用勾股定理得出PF =然后可得PQ =2PF=试题解析:(1)30……………………………………2分 (2)(1)中结论成立.……………………………………3分 证明:∵正△ABC 、正△CDE∴AC =BC ,EC =DC ,∠ACB =∠DCE =60°, ∴∠ACD =∠BCE ∴△ACD ≌△BCE∴∠CAD =∠CBE .……………………………………5分 又∵正△ABC 中,M 是BC 中点. ∴∠CAD =12∠BAC =30°. ∴∠CBE =30°……………………………………6分 (3)作CF ⊥PQ 于F ∵CP =CQ ∴PF =QF =12PQ ……………………………………7分 由(2)Rt △BCF 中,∠CBF =30° ∴CF =12BC =12AB =3……………………………………8分Rt △PCF 中,PF ==9分∴PQ =2PF =……………………………………10分 考点:等边三角形的性质、全等三角形的判定与性质、勾股定理.B 卷(共50分)一、填空题:(每小题4分共20分)21.已知a =的值为__________.【答案】2 【解析】试题分析:因为a =,1a =,所以1a a+=+=,2==.考点:二次根式.22.在平面直角坐标系中,若点A (2a +,4b -)、B (23b +,2a )是关于x 轴的对称点,则线段AB 的长为___________.【答案】12【解析】试题分析:因为关于x 轴的对称的两个点的坐标:横坐标不变,纵坐标互为相反数,而点A (2a +,4b -)、B (23b +,2a )是关于x 轴的对称点,所以22342a b b a +=+⎧⎨-=-⎩解得32a b =-⎧⎨=⎩,所以线段AB 的长=222612a ⨯=⨯-=.考点:关于x 轴的对称的点的坐标特点、二元一次方程组.23.已知x y -=,则代数式()()2122x x y y x +-+-的值为_____________.【答案】4【解析】试题分析:因为()()2122x x y y x +-+-=22222212221()1x x x y xy x xy y x y ++-+-=-++=-+,x y -=,所以原式=3+1=4.考点:二次根式、完全平方公式.24.(在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P'(1y -+,1x +)叫做点P 伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则A 3的坐标为___________,点A 2016的坐标为______________;若点A 1的坐标为(3,m ),对于任意的正整数n ,点A n 均在x 轴上方,则m 的取值范围是______________. 【答案】()31-,,()02-,,02m << 【解析】试题分析:∵A 1的坐标为(3,1),点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…, ∴A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),…,观察可得,每4个点为一个循环组依次循环, ∵2016÷4=504,∴点A 2016的坐标与A 4的坐标相同,为(0,-2);∵点A 1的坐标为(3,m ),∴A 2(-m+1,4),A 3(-3,-m+2),A 4(m-1,-2),A 5(3,m ),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n ,点A n 均在x 轴上方,∴200m m ⎨-⎩+⎧>>,解得0<m <2.考点:新定义、点的坐标、不等式组、探寻规律.25.如图,矩形ABOC 中,A 点的坐标为(-4,3),点D 是BO 边上一点,连接AD ,把△ABD 沿AD 折叠,使点B 落在点B ′处.当△ODB ′为直角三角形时,点D 的坐标为___________.【答案】502⎛⎫- ⎪⎝⎭,,()10-,(填对一个得2分,共4分). 【解析】试题分析:分两种情况讨论:(1)点B ′在边AC 上时,∠ODB ′=90°,此时BD=DB ′=AB=3,所以OD=1,所以点D 的坐标为(-1,0);(2)点B ′在对角线AO 上时,∠DB ′O =90°,由折叠可得:AB=AB ′=3,因为OB=4,所以由勾股定理可得:OA=5,所以OB ′=5-3=2,设OD=x ,则BD=DB ′=4-x ,在Rt △ODB ′中,由勾股定理可得:2'2'2OD B D OB =+,所以222(4)2x x =-+,解得x=52,所以点D 的坐标为(-52,0);所以点D 的坐标为502⎛⎫- ⎪⎝⎭,,或()10-,. 考点:图形折叠的性质、勾股定理、点的坐标. 二、解答题:26.( 8分)已知关于x 、y 的方程组2 232 4 x y m x y m -=⎧⎨+=+⎩①②的解满足不等式组3050x y x y +≤⎧⎨+>⎩,求满足条件的m 的整数值.【答案】3-,2-.【解析】试题分析:先解方程组,用含有m 的代数式表示出x 、y 的值,代入不等式组,解不等式组确定出m 的取值范围,从而可确定m 的整数值. 试题解析:解方程组得:8747x m y ⎧=+⎪⎪⎨⎪=⎪⎩(或33454x y m x y m +=+⎧⎨+=+⎩) ………………3分 由于方程组的解满足不等式组3050x y x y +≤⎧⎨+>⎩∴34040m m +≤⎧⎨+>⎩…………………………5分 ∴443m -<≤- …………………………7分∴满足条件的m 的整数值为3-,2-. …………………………8分考点:二元一次方程组、一元一次不等式组.27.(10分)如图,已知直线AB 分别交x 轴、y 轴于点A (-2,0),B (0,2),点C 是直线AB 上一点,且∠ACO=30°,求AC 的长及点C 的坐标.O ABxy【答案】AC =AC =,)11C +或()11C +, 【解析】试题分析:分两种情况讨论:(1)当C 在AB 延长线上时,(2)当C 在BA 延长线上时,利用勾股定理和直角三角形中30°角的性质可解决问题. 试题解析:解:∵()20A -,,()02B , ∴2OA OB ==AB =,作OD ⊥AB 于D ,∴OD =AD =BD…………………………2分 (1)当C 在AB 延长线上时,连结OC∵∠OCD =30°,∴2OC OD ==∴CD =∴AC CD AD =+=…………………………5分作CE ⊥x 轴于E ,D BCE OA∵∠CAE=45°∴1 AE CE===+;121OE AE OA=-=-=∴)1C-…………………………7分(2)当C在BA延长线上时,连结OC,作CE⊥x轴于E,…………………………8分1AE CE===-∴211OEOA AE=+=+-=∴()11C--+,…………………………10分考点:点的坐标、直角三角形的性质.28.(12分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别为AB、BC的中点,AE与CD相交于点H,CF⊥AE交AB于点F,垂足为G,连结EF、FH和DG.HGF ED B (1)求证:△ACH≌△CBF;(2)求证:AE=EF+FC;(3)若AC=6,求线段DG的长.【答案】(1)见解析(2)见解析(3.【解析】试题分析:(1)在△ACH和△CBF中有AC=BC,利用等腰直角三角形的性质可得∠CAB=∠B=45°,利用互余的关系可得∠CAH=∠BCF,然后根据ASA可证△ACH≌△CBF;(2)由(1)得CH=BF,∠HCE=∠B=45°,AH=CF,根据条件可证△HCE≌△FBE从而HE=FE,利用等量代换可得出结论;(3)作DM⊥DG交AE于M,根据条件可证△ADM≌△CDG,得出DM=DG,AM=CG,在Rt△ACE中利用勾股定理可求出AE的长=,从而利用△ACE的面积可求出CG的长,然后利用勾股定理和线段的和差关系可求出DG的长. 试题解析:(1)∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°.又∵D为AB中点,∴∠ACD=∠BCD=45°.∴∠ACH=∠B ………………………………2分∵CG⊥AE,∴∠CAH+∠ACG=90°又∠BCF+∠ACG=90°∴∠CAH=∠BCF∴△ACH≌△CBF ………………………………4分(2)由(1)得CH=BF,∠HCE=∠B=45°又E为BC中点,∴CE=BE∴△HCE≌△FBE∴HE=FE ………………………………6分由(1)得AH=CF∴AE =AH +HE∴AE =CF +EF ………………………………7分(3)作DM ⊥DG 交AE 于M4321MHG F E D C∴∠ADC =∠MDG =90°∴∠ADC -∠MDC =∠MDG -∠MDC ,即∠3=∠4又∠CAH =∠ACD =45°∴AD =CD由(1)得∠CAH =∠BCF ,∠CAD =∠BCD =45°∴∠1=∠2∴△ADM ≌△CDG∴DM =DG ,AM =CG………………………………9分 ∵BC =AC =6∴CE =12BC =3∴AE === 又1122ACE S AE CG AC CE ∆==∴AC CE CG AE=== ∴AM CG ==∵GE ==∴MG AE AM GE =--==∴DG DM ===. …………………………12分 考点:等腰直角三角形的性质、全等三角形的判定与性质、勾股定理.高考一轮复习:。
2015-2016年广西钦州市开发区中学初三上学期期末数学试卷及答案

2015-2016学年广西钦州市开发区中学初三上学期期末数学试卷一、选择题1.(3分)下列各式是最简二次根式的是()A.B.C.D.2.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23 3.(3分)已知一次函数y=kx+b的图象如图所示,则k、b的符号是()A.k<0,b<0B.k>0,b<0C.k<0,b>0D.k>0,b>04.(3分)连接对角线互相垂直的四边形的四边中点,所构成的四边形一定是()A.矩形B.菱形C.正方形D.梯形5.(3分)若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.36.(3分)下列说法正确的有()①4是x﹣3>1的解;②不等式x﹣2<0的解有无数个;③x>5是不等式x+2>3的解集;④x=3是不等式x+2>1的解;⑤不等式x+2<5有无数个正整数解.A.1个B.2个C.3个D.4个7.(3分)若a<b,则下列各式中一定成立的是()A.ac<bc B.﹣a<﹣b C.a﹣1<b﹣1D.8.(3分)如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的大小是()A.150°B.130°C.140°D.120°9.(3分)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.10.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x ≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥311.(3分)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B 型童装y套,依题意列方程组正确的是()A.B.C.D.12.(3分)如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围是()A.9≤m<12B.9<m<12C.m<12D.m≥9二、填空题13.(3分)使代数式有意义的x的取值范围是.14.(3分)请你写出同时具备下列两个条件的一次函数的表达式(写出一个即可).(1)y随x的增大而减小;(2)图象经过点(2,8)15.(3分)已知一次函数y=2x+1,则它的图象与坐标轴围成的三角形面积是.16.(3分)如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…A n B n C n C n 的顶点A1、A2、A3、…、A n均在直线y=kx+b上,顶点C1、C2、C3、…、C n ﹣1在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点B4的坐标为.17.(3分)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.三、计算题18.计算:4sin260°+tan45°﹣8cos230°.19.计算:.20.计算或化简:﹣12011﹣(1﹣0.5)××[3﹣(﹣3)2].21.解不等式组,并把不等式组的解集在数轴上表示出来.2015-2016学年广西钦州市开发区中学初三上学期期末数学试卷参考答案与试题解析一、选择题1.(3分)下列各式是最简二次根式的是()A.B.C.D.【解答】解:A、=3,故不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、=2,故不是最简二次根式,故C选项错误;D、=,故不是最简二次根式,故D选项错误;故选:B.2.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.3.(3分)已知一次函数y=kx+b的图象如图所示,则k、b的符号是()A.k<0,b<0B.k>0,b<0C.k<0,b>0D.k>0,b>0【解答】解:由一次函数y=kx+b的图象经过二、三、四象限,当k<0时,直线必经过二、四象限,故k<0,直线与y轴负半轴相交,故b<0.故选:A.4.(3分)连接对角线互相垂直的四边形的四边中点,所构成的四边形一定是()A.矩形B.菱形C.正方形D.梯形【解答】已知:AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.求证:四边形EFGH是矩形.证明:∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).故选:A.5.(3分)若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.3【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.6.(3分)下列说法正确的有()①4是x﹣3>1的解;②不等式x﹣2<0的解有无数个;③x>5是不等式x+2>3的解集;④x=3是不等式x+2>1的解;⑤不等式x+2<5有无数个正整数解.A.1个B.2个C.3个D.4个【解答】解:①x﹣3>1,解得:x>4,则4不是不等式的解,本选项错误;②不等式x﹣2<0,解得:x<2,则不等式的解有无数个,本选项正确;③不等式x+2>3,解得x>1,本选项错误;④不等式x+2>1,解得:x>﹣1,故x=3是不等式的解,本选项正确;⑤不等式x+2<5,解得:x<3,正整数解为1,2,本选项错误,则其中正确的个数为2个.故选:B.7.(3分)若a<b,则下列各式中一定成立的是()A.ac<bc B.﹣a<﹣b C.a﹣1<b﹣1D.【解答】解:A.如果a<b,那么ca>bc,根据等式性质得出,若c小于等于0不成立,故此选项错误;B.如果a<b,那么﹣a>﹣b,根据等式性质得出,故此选项错误;C.如果a<b,那么a﹣1<b﹣1,根据等式性质得出,故此选项正确;D.如果a<b,那么>,根据等式性质得出,不等式两边乘(或除以)同一个负数,不等号的方向改变.故此选项错误;故选:C.8.(3分)如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的大小是()A.150°B.130°C.140°D.120°【解答】解:过B作BE∥AM,∵AM∥CN,∴AM∥BE∥CN,∴∠A=∠1,∠2+∠C=180°,∵∠A=120°,∴∠1=120°,∵∠ABC=150°,∴∠2=150°﹣120°=30°,∴∠C=180°﹣30°=150°.故选:A.9.(3分)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.【解答】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,故选:A.10.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x ≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥3【解答】解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选:A.11.(3分)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B 型童装y套,依题意列方程组正确的是()A.B.C.D.【解答】解:设购买A型童装x套,B型童装y套,由题意得,.故选:B.12.(3分)如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围是()A.9≤m<12B.9<m<12C.m<12D.m≥9【解答】解:解不等式3x﹣m≤0得到:x≤,正整数解为1,2,3,则3≤<4,解得9≤m<12.故选:A.二、填空题13.(3分)使代数式有意义的x的取值范围是x≥且x≠3.【解答】解:根据题意得,2x﹣1≥0且3﹣x≠0,解得x≥且x≠3.故答案为:x≥且x≠3.14.(3分)请你写出同时具备下列两个条件的一次函数的表达式(写出一个即可)y=﹣x+10.(1)y随x的增大而减小;(2)图象经过点(2,8)【解答】解:设函数关系式是y=kx+b(k≠0)由y随着x的增大而减小,得k<0,可设k=﹣1,将(2,8)代入函数关系式,得b=10,因此一次函数表达式为y=﹣x+10.(此题答案不唯一)故答案为:y=﹣x+10.15.(3分)已知一次函数y=2x+1,则它的图象与坐标轴围成的三角形面积是.【解答】解:一次函数的关系式是y=2x+1,当x=0时,y=1;当y=0时,x=﹣,它的图象与坐标轴围成的三角形面积是:×1×|﹣|=.故答案是:.16.(3分)如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…A n B n C n C n 的顶点A1、A2、A3、…、A n均在直线y=kx+b上,顶点C1、C2、C3、…、C n ﹣1在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点B4的坐标为(15,8).【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得:,解得:,则直线A1A2的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21﹣1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22﹣1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23﹣1,∴B n的纵坐标是:2n﹣1,横坐标是:2n﹣1,则B n(2n﹣1,2n﹣1).∴B4的坐标是:(24﹣1,24﹣1),即(15,8).故答案为:(15,8).17.(3分)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是12cm.【解答】解:如图:设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D,∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°,=AC×BC=AB×CD,∵S△ACB∴AC×BC=AB×CD15×20=25CD,∴CD=12(cm);故答案为:12.三、计算题18.计算:4sin260°+tan45°﹣8cos230°.【解答】解:原式=4×()2+1﹣8×()2=4×+1﹣8×=3+1﹣6=﹣2.19.计算:.【解答】解:原式=3﹣5+3﹣=6﹣6.20.计算或化简:﹣12011﹣(1﹣0.5)××[3﹣(﹣3)2].【解答】解:﹣12011﹣(1﹣0.5)××[3﹣(﹣3)2]=﹣1﹣0.5××(3﹣9)=﹣1﹣0.5××(﹣6)=﹣1+1=0.21.解不等式组,并把不等式组的解集在数轴上表示出来.【解答】解:,由①得,x<﹣4,由②得,x≤15,在数轴上表示如下:所以,不等式组的解集是x<﹣4.。
★2015广西中考数学真题_广西中考数学真题

★2015广西中考数学真题_广西中考数学真题
站在新起点,迎接新挑ቤተ መጻሕፍቲ ባይዱ,创造新成绩。中考频道的小编会及时为广大考生提供2015年广西中考数学真题,有需要的考生可以在考题公布后刷新本页面(按ctrl+F5),希望对大家有所帮助。
2015广西数学中考真题发布入口
以下是广西2015年全部科目的试题发布入口:
广西
数学 数学 英语 化学 物理 历史 政治
数学 数学 英语 化学 物理 历史 政治
往年广西钦州市中考数学真题及答案

往年广西钦州市中考数学真题及答案一、选择题(共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项是符合题意的。
用2B 铅笔把答题卡上对应题目的答案标号涂黑)1.(3分)(2013•钦州)7的倒数是()A.﹣7 B.7 C.D.﹣考点:倒数.专题:计算题.分析:直接根据倒数的定义求解.解答:解:7的倒数为.故选D.点评:本题考查了倒数的定义:a (a≠0)的倒数为.2.(3分)(2013•钦州)随着交通网络的不断完善.旅游业持续升温,据统计,在今年“五一”期间,某风景区接待游客403000人,这个数据用科学记数法表示为()A.403×103B.40.3×104C.4.03×105D.0.403×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将403000用科学记数法表示为4.03×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2013•钦州)下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.考点:几何体的展开图.分析:根据三棱柱的展开图的特点进行解答即可.解答:A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误.故选B.点评:此题主要考查了几何体展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.4.(3分)(2013•钦州)在下列实数中,无理数是()A.0 B.C.D.6考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、B、D中0、、6都是有理数,C、是无理数.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.(3分)(2013•钦州)已知⊙O1与⊙O2的半径分别为2cm和3cm,若O1O2=5cm.则⊙O1与⊙O2的位置关系是()A.外离B.相交C.内切D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2cm和3cm,若O1O2=5cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出⊙O1和⊙O2的位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2cm和3cm,若O1O2=5cm,又∵2+3=5,∴⊙O1和⊙O2的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).6.(3分)(2013•钦州)下列运算正确的是()B.x2•x3=x6C.(a+b)2=a2+b2D.=A.5﹣1=考点:二次根式的加减法;同底数幂的乘法;完全平方公式;负整数指数幂.3718684分析:根据负整数指数幂、同底数幂的乘法、同类二次根式的合并及完全平方公式,分别进行各选项的判断即可得出答案.解答:解:A、5﹣1=,原式计算正确,故本选项正确;B、x2•x3=x5,原式计算错误,故本选项错误;C、(a+b)2=a2+2ab+b2,原式计算错误,故本选项错误;D、与不是同类二次根式,不能直接合并,原式计算错误,故本选项错误;故选A.点评:本题考查了二次根式的加减运算、同底数幂的乘法及完全平方公式,掌握各部分的运算法则是关键.7.(3分)(2013•钦州)关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3 B.m≤3C.m>3 D.m≥3考点:根的判别式.3718684专题:计算题.分析:根据判别式的意义得到△=(﹣6)2﹣4×3×m>0,然后解不等式即可.解答:解:根据题意得△=(﹣6)2﹣4×3×m>0,解得m<3.故选A.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2013•钦州)下列说法错误的是()A.打开电视机,正在播放广告这一事件是随机事件B.要了解小赵一家三口的身体健康状况,适合采用抽样调查C.方差越大,数据的波动越大D.样本中个体的数目称为样本容量考点:随机事件;全面调查与抽样调查;总体、个体、样本、样本容量;方差.3718684分析:根据随机事件的概念以及抽样调查和方差的意义和样本容量的定义分别分析得出即可.解答:解:A、打开电视机,正在播放广告这一事件是随机事件,根据随机事件的定义得出,此选项正确,不符合题意;B、要了解小赵一家三口的身体健康状况,适合采用全面调查,故此选项错误,符合题意;C、根据方差的定义得出,方差越大,数据的波动越大,此选项正确,不符合题意;D、样本中个体的数目称为样本容量,此选项正确,不符合题意.故选:B.点评:此题主要考查了随机事件以及样本容量和方差的定义等知识,熟练掌握相关的定理是解题关键.9.(3分)(2013•钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为()A.+=1 B.10+8+x=30 C.+8(+)=1D.(1﹣)+x=8考点:由实际问题抽象出分式方程.3718684分析:设乙工程队单独完成这项工程需要x天,由题意可得等量关系:甲10天的工作量+甲与乙8天的工作量=1,再根据等量关系可得方程10×+(+)×8=1即可.解答:解:设乙工程队单独完成这项工程需要x天,由题意得:10×+(+)×8=1.故选:C.点评:此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,找出题目中的等量关系,再列出方程,此题用到的公式是:工作效率×工作时间=工作量.10.(3分)(2013•钦州)等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°考点:等腰三角形的性质.3718684专题:分类讨论.分析:分80°角是顶角与底角两种情况讨论求解.解答:解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.点评:本题考查了等腰三角形两底角相等的性质,难点在于要分情况讨论求解.11.(3分)(2013•钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙考点:平行四边形的判定与性质.专题:应用题.分析:延长ED和BF交于C,如图2,延长AG和BK交于C,根据平行四边形的性质和判定求出即可.解答:解:图1中,甲走的路线长是AC+BC的长度;延长ED和BF交于C,如图2,∵∠DEA=∠B=60°,∴DE∥CF,同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;延长AG和BK交于C,如图3,与以上证明过程类似GH=CK,CG=HK,即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;即甲=乙=丙,故选D.点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.12.(3分)(2013•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5考点:点到直线的距离;坐标确定位置;平行线之间的距离.3718684专题:新定义.分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.解答:解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选C.点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上)13.(3分)(2013•钦州)比较大小:﹣1 <2(填“>”或“<”)考点:有理数大小比较.3718684分析:根据有理数的大小比较法则比较即可.解答:解:∵负数都小于正数,∴﹣1<2,故答案为:<.点评:本题考查了对有理数的大小比较法则的应用,注意:负数都小于正数.14.(3分)(2013•钦州)当x= 2 时,分式无意义.考点:分式有意义的条件.3718684分析:根据分式无意义的条件可得x﹣2=0,再解方程即可.解答:解:由题意得:x﹣2=0,解得:x=2,故答案为:2.点评:此题主要考查了分式无意义的条件,关键是掌握分式无意义的条件是分母等于零.15.(3分)(2013•钦州)请写出一个图形经过一、三象限的正比例函数的解析式y=x(答案不唯一)..考点:正比例函数的性质.3718684分析:先设出此正比例函数的解析式,再根据正比例函数的图象经过一、三象限确定出k的符号,再写出符合条件的正比例函数即可.解答:解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过一、三象限,∴k>0,∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).故答案为:y=x(答案不唯一).点评:本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时函数的图象经过一、三象限.16.(3分)(2013•钦州)如图,DE是△ABC的中位线,则△ADE与△ABC的面积的比是1:4 .考点:相似三角形的判定与性质;三角形中位线定理.3718684分析:由中位线可知DE∥BC,且DE=BC;可得△ADE∽△ABC,相似比为1:2;根据相似三角形的面积比是相似比的平方,即得结果.解答:解:∵DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,相似比为1:2,∵相似三角形的面积比是相似比的平方,∴△ADE与△ABC的面积的比为1:4(或).点评:本题要熟悉中位线的性质及相似三角形的判定及性质,牢记相似三角形的面积比是相似比的平方.17.(3分)(2013•钦州)不等式组的解集是3<x≤5.考点:解一元一次不等式组.3718684分析:首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.解答:解:,解①得:x≤5,解②得:x>3,故不等式组的解集为:3<x≤5,故答案为:3<x≤5.点评:此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(3分)(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE 的最小值是10 .考点:轴对称-最短路线问题;正方形的性质.3718684分析:由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC 于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.解答:解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵B E=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.点评:本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.三、解答题(本大题共8分,满分66分,请将答案写在答题卡上,解答应写出文字说明或演算步骤)19.(6分)(2013•钦州)计算:|﹣5|+(﹣1)2013+2sin30°﹣.考点:实数的运算;特殊角的三角函数值.3718684专题:计算题.分析:本题涉及绝对值、乘方、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=5﹣1+2×﹣5=﹣1+1=0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、乘方、特殊角的三角函数值、二次根式化简等考点的运算.20.(6分)(2013•钦州)如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD是等腰梯形.[考点:等腰梯形的判定.专题:证明题.分析:由AB∥DE,∠DEC=∠C,易证得∠B=∠C,又由同一底上两个角相等的梯形是等腰梯形,即可证得结论.解答:证明:∵AB∥DE,∴∠DEC=∠B,∵∠DEC=∠C,∴∠B=∠C,∴梯形ABCD是等腰梯形.点评:此题考查了等腰梯形的判定.此题比较简单,注意掌握同一底上两个角相等的梯形是等腰梯形定理的应用,注意数形结合思想的应用.21.(6分)(2013•钦州)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.考点:作图-旋转变换;作图-轴对称变换.3718684分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.解答:解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).点评:本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.22.(12分)(2013•钦州)(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是 4.4 ,众数是 5 ,极差是 6 :②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?考点:列表法与树状图法;用样本估计总体;条形统计图.3718684分析:(1)①根据平均数、众数、极差定义分别进行计算即可;②根据样本估计总体的方法,用800乘以调查的学生做好事不少于4次的人数所占百分比即可;(2)①根据题意画出树状图可直观的得到所有可能出现的结果;②根据①所列树状图,找出符合条件的情况,再利用概率公式进行计算即可.解答:解:(1)①平均数;(2×5+3×6+4×13+5×16+6×10)÷50=4.4;众数:5次;极差:6﹣2=4;②做好事不少于4次的人数:800×=624;(2)①如图所示:②一共出现6种情况,其中和为偶数的有3种情况,故概率为=.点评:此题主要考查了条形统计图、众数、平均数、极差、样本估计总体、以及画树状图和概率,关键是能从条形统计图中得到正确信息,正确画出树状图.23.(7分)(2013•钦州)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.(1)求这两个函数的解析式:(2)求△ADC的面积.考点:反比例函数与一次函数的交点问题.3718684分析:(1)因为反比例函数过A、B两点,所以可求其解析式和m的值,从而知A点坐标,进而求一次函数解析式;(2)先求出直线AB与与x轴的交点C的坐标,再根据三角形的面积公式求解即可.解答:解:(1)∵反比例函数y=的图象过B(4,﹣2)点,∴k=4×(﹣2)=﹣8,∴反比例函数的解析式为y=﹣;∵反比例函数y=的图象过点A(﹣2,m),∴m=﹣=4,即A(﹣2,4).∵一次函数y=ax+b的图象过A(﹣2,4),B(4,﹣2)两点,∴,解得∴一次函数的解析式为y=﹣x+2;(2)∵直线AB:y=﹣x+2交x轴于点C,∴C(2,0).∵AD⊥x轴于D,A(﹣2,4),∴CD=2﹣(﹣2)=4,AD=4,∴S△ADC=•CD•AD=×4×4=8.点评:本题主要考查对一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.24.(7分)(2013•钦州)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D 的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.3718684分析:(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.解答:解:(1)过B作BG⊥DE于G,Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.点评:此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.25.(10分)(2013•钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.考点:切线的判定与性质;扇形面积的计算.3718684专题:计算题.分析:(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值即可;(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积﹣扇形DOF的面积﹣扇形EOG的面积,求出即可.解答:解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AC为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形BOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.点评:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.26.(12分)(2013•钦州)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)求点A的坐标和∠AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC 和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.考点:二次函数综合题.3718684专题:探究型.分析:(1)由y=x2+2x得,y=(x﹣2)2﹣2,故可得出抛物线的顶点A的坐标,令x2+2x=0得出点B的坐标过点A作AD⊥x轴,垂足为D,由∠ADO=90°可知点D的坐标,故可得出OD=AD,由此即可得出结论;(2)由题意可知抛物线m的二次项系数为,由此可得抛物线m的解析式过点C作CE⊥x轴,垂足为E;过点A作AF⊥CE,垂足为F,与y轴交与点H,根据勾股定理可求出OC的长,同理可得AC的长,OC=AC,由翻折不变性的性质可知,OC=AC=OC′=AC′,由此即可得出结论;(3)过点C′作C′G⊥x轴,垂足为G,由于OC和OC′关于OA对称,∠AOB=∠AOH=45°,故可得出∠COH=∠C′OG,再根据CE∥OH可知∠OCE=∠C′OG,根据全等三角形的判定定理可知△CEO≌△C′GO,故可得出点C′的坐标把x=﹣4代入抛物线y=x2+2x进行检验即可得出结论;(4)由于点P为x轴上的一个动点,点Q在抛物线m上,故设Q(a,(a﹣2)2﹣4),由于OC为该四边形的一条边,故OP为对角线,由于点P在x轴上,根据中点坐标的定义即可得出a的值,故可得出结论.解答:解:(1)∵由y=x2+2x得,y=(x﹣2)2﹣2,∴抛物线的顶点A的坐标为(﹣2,﹣2),令x2+2x=0,解得x1=0,x2=﹣4,∴点B的坐标为(﹣4,0),过点A作AD⊥x轴,垂足为D,∴∠ADO=90°,∴点A的坐标为(﹣2,﹣2),点D的坐标为(﹣2,0),∴OD=AD=2,∴∠AOB=45°;(2)四边形ACOC′为菱形.由题意可知抛物线m的二次项系数为,且过顶点C的坐标是(2,﹣4),∴抛物线的解析式为:y=(x﹣2)2﹣4,即y=x2﹣2x﹣2,过点C作CE⊥x轴,垂足为E;过点A作AF⊥CE,垂足为F,与y轴交与点H, ∴OE=2,CE=4,AF=4,CF=CE﹣EF=2,∴OC===2,同理,AC=2,OC=AC,由反折不变性的性质可知,OC=AC=OC′=AC′,故四边形ACOC′为菱形.(3)如图1,点C′不在抛物线y=x2+2x上.理由如下:过点C′作C′G⊥x轴,垂足为G,∵OC和OC′关于OA对称,∠AOB=∠AOH=45°,∴∠COH=∠C′OG,∵CE∥OH,∴∠OCE=∠C′OG,又∵∠CEO=∠C′GO=90°,OC=OC′,∴△CEO≌△C′GO,∴OG=4,C′G=2,∴点C′的坐标为(﹣4,2),把x=﹣4代入抛物线y=x2+2x得y=0,∴点C′不在抛物线y=x2+2x上;(4)存在符合条件的点Q.∵点P为x轴上的一个动点,点Q在抛物线m上,∴设Q(a,(a﹣2)2﹣4),∵OC为该四边形的一条边,∴OP为对角线,∴=0,解得x1=6,x2=4,∴P(6,4)或(﹣2,4)(舍去),∴点Q的坐标为(6,4).点评:本题考查的是二次函数综合题,涉及到抛物线的性质、菱形的判定与性质、平行四边形的性质等知识,难度适中.。
广西自治区钦州市中考数学试题(含答案)

2022年中考往年真题练习: 广西钦州市中考数学试卷一、挑选题(共12小题, 每小题3分, 满分36分)1.(3分) (2021•钦州) 下列各数中, 是负数的是()A.﹣2 B.0C.0. 3 D.2.(3分) (2021•钦州) 下列四幅图案中, 既是轴对称图形又是中心对称图形的是() A.B.C.D.3.(3分) (2021•钦州) 下列说法错误的是()A .两点之间线段最短B.对顶角相等C.为了了解制作的一批炮弹的杀伤半径, 适宜采纳全面调查的方式D.“通常加热到100℃时, 水沸腾”这个事情属于必定事件4.(3分) (2021•钦州) 如图是由4个小正方体组成的立体图形, 它的主视图是()A.B.C.D.5.(3分) (2021•钦州) 黄岩岛是我国的固有领土, 这段时间, 中菲黄岩岛事件成了各大新闻网站的热点话题.某天, 小芳在“百度”搜索引擎中输入“黄岩岛事件最新进展”, 能搜索到相关结果约7050000个, 7050000这个数用科学记数法表示为()A.7. 05×105B.7. 05×106C.0. 705×106D.0. 705×1076.(3分) (2021•钦州) 估算+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分) (2021•钦州) 图中两个四边形是位似图形, 它们的位似中心是()A.点M B.点N C.点O D.点P8.(3分) (2021•钦州) 下列运算正确的是()A.2a2﹣a2=2 B.2a•3a=6a2C.(a﹣b) 2=a2﹣b2D.a6÷a2=a39.(3分) (2021•钦州) 不等式组的解集在数轴上表示正确的是() A.B.C.D.10.(3分) (2021•钦州) 如图所示, 把一张矩形纸片对折, 折痕为AB, 在把以AB的中点O为顶点的平角∠AOB三等分, 沿平角的三等分线折叠, 将折叠后的图形剪出一个以O为顶点的等腰三角形, 那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形11.(3分) (2021•钦州) 加入把的x与y都扩大10倍, 那么这个代数式的值() A.不变B.扩大50倍C.扩大10倍D.缩小到原来的12.(3分) (2021•钦州) 在平面直角坐标系中, 对于平面内任意一点(x, y) , 若规定以下两种变换:①f(x, y) =(y, x) .如f(2, 3) =(3, 2) ;②g(x, y) =(﹣x, ﹣y) , 如g(2, 3) =(﹣2, ﹣3) .按照以上变换有: f(g(2, 3) ) =f(﹣2, ﹣3) =(﹣3, ﹣2) , 那么g(f(﹣6, 7) ) 等于()A.(7, 6) B.(7, ﹣6) C.(﹣7, 6) D.(﹣7, ﹣6)二、填空题(共6小题, 每小题3分, 满分18分)13.(3分) (2021•钦州) 6的相反数是_________.14.(3分) (2021•海南) 分解因式: x2﹣4=_________.15.(3分) (2021•钦州) 已知等腰三角形的顶角为80°, 那么它的一个底角为_________.16.(3分) (2021•钦州) 某班共有50名同学, 其中有2名同学习惯用左手写字, 其余同学都习惯用右手写字, 老师随机请1名同学到黑板板演, 习惯用左手写字的同学被选中的概率是_________.17.(3分) (2021•钦州) 如图, 在等腰梯形ABCD中,AB∥CD, AC⊥BC, ∠B=60°, BC=8, 则等腰梯形ABCD的周长为_________.18.(3分) (2021•钦州) 如图, 直线y=﹣x+3与x轴、y轴分别交于A、B两点, 把△AOB绕点A旋转90°后得到△AO′B′, 则点B′的坐标是_________.三、解答题(本大题共8小题, 满分66分)19.(6分) (2021•钦州) 计算: 2﹣1+|﹣3|﹣+(π﹣3) 0.20.(6分) (2021•钦州) 如图, 点E, F在BC上, BE=CF, ∠A=∠D, ∠B=∠C, 求证: AB=DC.21.(8分) (2021•钦州) 如图, 已知正比例函数y=3x的图象与反比例函数y=的图象交于点A(1, m) 和点B.(1) 求m的值和反比例函数的解析式.(2) 观察图象, 直接写出使正比例函数的值大于反比例函数的值的自变量x的取值范围.22.(8分) (2021•钦州) 6月5日是世界环境日, 某校组织了一次环保知识比赛, 每班选25名同学参加比赛, 成绩分别为A、B、C、D四个等级, 其中相应等级的得分依次记为100分、90分、80分、70分, 学校将某年级的一班和二班的成绩整理并绘制成统计图:根据以上提供的信息解答下列问题:(1) 把一班比赛成绩统计图补充完整;(2) 写出下表中a、b、c的值:平均数(分) 中位数(分) 众数(分)一班 a b 90二班87. 6 80 c(3) 请从以下给出的三个方面中任选一个对这次比赛成绩的结果进行分析:①从平均数和中位数方面比较一班和二班的成绩;②从平均数和众数方面比较一班和二班的成绩;③从B级以上(包括B级) 的人数方面来比较一班和二班的成绩.23.(8分) (2021•钦州) 近年来, 某县为发展教育事业, 加大了对教育经费的投入, 2022年中考往年真题练习: 投入6000万元, 2022年中考往年真题练习: 投入8640万元.(1) 求2022年中考往年真题练习: 至2022年中考往年真题练习: 该县投入教育经费的年平均增长率;(2) 该县预计2022年中考往年真题练习: 投入教育经费不低于9500万元, 若继续保持前两年的平均增长率, 该目标能否实现?请通过计算说明理由.24.(8分) (2021•钦州) 如图所示, 小明在自家楼顶上的点A处测量建在与小明家楼房同一水平线上邻居的电梯的高度, 测得电梯楼顶部B处的仰角为45°, 底部C处的俯角为26°, 已知小明家楼房的高度AD=15米, 求电梯楼的高度BC(结果精确到0. 1米) (参考数据: sin26°≈0. 44, cos26°≈0. 90, tan26°≈0. 49) 25.(10分) (2021•钦州) 如图, AB是⊙O的直径, AC是弦, 直线EF经过点C, AD⊥EF于点D, ∠DAC=∠BAC.(1) 求证: EF是⊙O的切线;(2) 求证: AC2=AD•AB;(3) 若⊙O的半径为2, ∠ACD=30°, 求图中阴影部分的面积.26.(12分) (2021•钦州) 如图甲, 在平面直角坐标系中, A、B的坐标分别为(4, 0) 、(0, 3) , 抛物线y=x2+bx+c经过点B, 且对称轴是直线x=﹣.(1) 求抛物线对应的函数解析式;(2) 将图甲中△ABO沿x轴向左平移到△DCE(如图乙) , 当四边形ABCD是菱形时, 请说明点C和点D都在该抛物线上.(3) 在(2) 中, 若点M是抛物线上的一个动点(点M不与点C、D重合) , 经过点M 作MN∥y轴交直线CD于N, 设点M的横坐标为t, MN的长度为l, 求l与t之间的函数解析式, 并求当t为何值时, 以M、N、C、E为顶点的四边形是平行四边形.(参考公式: 抛物线y=ax2+bx+c(a≠0) 的顶点坐标为(﹣, ) , 对称轴是直线x=﹣.)2022年中考往年真题练习: 广西钦州市中考数学试卷参考答案与试题解析一、挑选题(共12小题, 每小题3分, 满分36分)1.(3分) (2021•钦州) 下列各数中, 是负数的是()A.﹣2 B.0C.0. 3 D.考点实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年广西钦州市中考数学试题一、选择题(每小题3分,共36分)1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列实数中,无理数是( )A .﹣1B .12C .5D 3.计算32()a 的结果是( )A .9a B .6a C .5a D .a 4.下列几何体中,主视图是圆的是( )A .B .C .D .5.国家统计局4月15日发布数据,初步核算,2015年一季度全国国内生产总值为140667亿元,其中数据140667用科学记数法表示为( )A .1.40667×105B .1.40667×106C .14.0667×104D .0.140667×106 6.如图,要使▱ABCD 成为菱形,则需添加的一个条件是( )A .AC =ADB .BA =BC C .∠ABC =90°D . AC =BD 7.用配方法解方程21090x x ++=,配方后可得( )A .2(5)16x += B .2(5)1x += C .2(10)91x += D .2(10)109x +=8.在平面直角坐标系中,将点A (x ,y )向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,2)重合,则点A 的坐标是( )A .(2,5)B .(﹣8,5)C .(﹣8,﹣1)D .(2,﹣1) 9.对于函数4y x=,下列说法错误的是( ) A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小10.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n 的值为( ) A .3 B .5 C .8 D .1011..如图,AD 是△ABC 的角平分线,则AB :AC 等于( )A .BD :CDB .AD :CDC .BC :AD D .BC :AC12..对于任意的正数m 、n 定义运算※为:m ※n=))m n m n ≥<,计算(3※2)×(8※12)的结果为( )A.2- B .2 C. D .20二、填空题(每小题3分,共18分)13.如图,直线AB 和OC 相交于点O ,∠AOC =100°,则∠1= 度.14.一组数据3,5,5,4,5,6的众数是 .15.一次函数y kx b =+(0k ≠)的图象经过A (1,0)和B (0,2)两点,则它的图象不经过第 象限.16.当m =2105时,计算:2422m m m -++= . 17.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB 绕点O 逆时针旋转90°得到△COD ,则旋转过程中形成的阴影部分的面积为 .18.如图,以O 为位似中心,将边长为256的正方形OABC 依次作位似变化,经第一次变化后得正方形OA 1B 1C 1,其边长OA 1缩小为OA 的12,经第二次变化后得正方形OA 2B 2C 2,其边长OA 2缩小为OA 1的12,经第三次变化后得正方形OA 3B 3C 3,其边长OA 3缩小为OA 2的12,......,按此规律,经第n 次变化后,所得正方形OA n B n C n的边长为正方形OABC 边长的倒数,则n = .三、解答题(8个小题,共66分)19.计算:0542(3)+--⨯-20.(6分)如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE =BF .21.抛物线243y x x =-+与x 轴交于A 、B 两点(点A 在点B 的左侧),点C 是此抛物线的顶点.(1)求点A、B、C的坐标;(2)点C在反比例函数kyx=(0k≠)的图象上,求反比例函数的解析式.22.某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?23.(10分)某校决定在6月8日“世界海洋日”开展系列海洋知识的宣传活动,活动有A.唱歌、B.舞蹈、C.绘画、D.演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次抽查的学生共人,a= ,并将条形统计图补充完整;(2)如果该校学生有1800人,请你估计该校喜欢“唱歌”这项宣传方式的学生约有多少人?(3)学校采用抽签方式让每班在A、B、C、D四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.24.如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,在船B的北偏西37°方向上,AP=30海里.(1)尺规作图:过点P作AB所在直线的垂线,垂足为E(要求:保留作图痕迹,不写作法);(2)求船P到海岸线MN的距离(即PE的长);(3)若船A、船B分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)25.如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是⊙O的切线;(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=12,AD=3,求直径AB的长.26.如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上的一个动点(点A与点B不重合).在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C.连接OC、CD,设点A的横坐标为t.(1)用含t的式子表示点E的坐标为_______;(2)当t为何值时,∠OCD=180°?(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.参考答案一、选择题(每小题3分,共36分)1..下列图形中,是轴对称图形的是( )A .B .C .D .考点: 轴对称图形.分析: 根据轴对称图形的概念对各图形分析判断即可得解. 解答: 解:A 、该图形不是轴对称图形,故本选项错误; B 、该图形是中心对称图形,故本选项错误; C 、该图形是轴对称图形,故本选项正确;D 、该图形既不是轴对称图形也不是中心对称图形,故本选项错误; 故选:C .点评: 本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2..下列实数中,无理数是( )A .﹣1B .12C .5D 考点: 无理数.分析: 根据无理数就是无限不循环小数即可判定选择项. 解答: 解:﹣1,,5是有理数,只有是无理数,故选D点评: 此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,如2π等;②开方开不尽的数,如等;③虽有规律但是无限不循环的数,如0.1010010001…,等. 3..计算32()a 的结果是( )A .9a B .6a C .5a D .a考点: 幂的乘方与积的乘方.分析: 根据幂的乘方法则:幂的乘方,底数不变指数相乘,即可求解.解答: 解:(a 3)2=a 3×2=a 6. 故选B .点评: 本题主要考查了幂的乘方法则,正确理解法则:幂的乘方,底数不变指数相乘,是解题关键. 4..下列几何体中,主视图是圆的是( )A .B .C .D .考点: 简单几何体的三视图.分析: 分别分析四个选项的主视图,从而得出主视图是圆的几何体. 解答: 解:A 、正方体的主视图是正方形,故本选项错误; B 、球的主视图是圆,故本选项正确.C 、三棱柱的几何体是矩形,故本选项错误;D 、圆锥的主视图是等腰三角形,故本选项错误. 故选B .点评: 本题考查了简单几何体的三视图,重点考查学生的思考能力和对几何体三种视图的空间想象能力.5..国家统计局4月15日发布数据,初步核算,2015年一季度全国国内生产总值为140667亿元,其中数据140667用科学记数法表示为( )A .1.40667×105B .1.40667×106C .14.0667×104D .0.140667×106考点: 科学记数法—表示较大的数.分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:140667用科学记数法表示为1.40667×105, 故选A点评: 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6..如图,要使▱ABCD 成为菱形,则需添加的一个条件是( )A .AC =ADB .BA =BC C .∠ABC =90°D . AC =BD 考点: 菱形的判定. 专题: 证明题.分析: 利用邻边相等的平行四边形为菱形即可得证.解答: 解:如图,要使▱ABCD 成为菱形,则需添加的一个条件是BA=BC , 故选B点评: 此题考查了菱形的判定,熟练掌握菱形的判定方法是解本题的关键. 7..用配方法解方程21090x x ++=,配方后可得( )A .2(5)16x += B .2(5)1x += C .2(10)91x += D .2(10)109x +=考点:解一元二次方程-配方法.专题:计算题.分析:方程移项,利用完全平方公式化简得到结果即可.解答:解:方程x2+10x+9=0,整理得:x2+10x=﹣9,配方得:x2+10x+25=16,即(x+5)2=16,故选A点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8..在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)考点:坐标与图形变化-平移.分析:逆向思考,把点(﹣3,2)先向右平移5个单位,再向下平移3个单位后可得到A点坐标.解答:解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选D.点评:本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9..对于函数4yx,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小考点:反比例函数的性质.分析:根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.解答:解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,故选:C.点评:本题考查的是反比例函数的性质,掌握对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大是解题的关键.10..在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.3B.5C.8D.10 考点:概率公式.分析:根据红球的概率结合概率公式列出关于n的方程,求出n的值即可.解答:解:∵摸到红球的概率为,∴P(摸到黄球)=1﹣=,∴=,解得n=8.故选:C.点评:本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11..如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC分析:先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.解答:解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB :AC=BD :CD .点评: 此题考查了角平分线的定义、相似三角形的判定和性质、平行线分线段成比例定理的推论.关键是作平行线.12..对于任意的正数m 、n 定义运算※为:m ※n=))m n m n ≥<,计算(3※2)×(8※12)的结果为( )A.2- B .2 C. D .20考点: 二次根式的混合运算.专题: 新定义.分析: 根据题目所给的运算法则进行求解.解答: 解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2(+),∴(3※2)×(8※12)=(﹣)×2(+)=2.故选B .点评: 本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.二、填空题(每小题3分,共18分)13..如图,直线AB 和OC 相交于点O ,∠AOC =100°,则∠1= 度.考点: 对顶角、邻补角.分析: 根据邻补角互补,可得答案.解答: 解:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为:80.点评: 本题考查了邻补角,利用了邻补角的定义.14..一组数据3,5,5,4,5,6的众数是 .考点: 众数.分析: 根据众数的定义:一组数据中出现次数最多的数据即可得出答案.解答: 解:这组数据中出现次数最多的数据为:5.故众数为5.故答案为:5.点评: 本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.15..一次函数y kx b =+(0k ≠)的图象经过A (1,0)和B (0,2)两点,则它的图象不经过第 象限. 考点: 一次函数图象与系数的关系.分析:将A(1,0)和B(0,2)分别代入一次函数解析式y=kx+b中,得到关于k与b的二元一次方程组,求出方程组的解得到k与b的值,确定出一次函数解析式,利用一次函数的性质即可得到一次函数图象不经过第三象限.解答:解:将A(1,0)和B(0,2)代入一次函数y=kx+b中得:,解得:,∴一次函数解析式为y=﹣2x+2不经过第三象限.故答案为:三.点评:此题考查了利用待定系数法求一次函数解析式,以及一次函数的性质,灵活运用待定系数法是解本题的关键.16..当m=2105时,计算:2422mm m-++= .考点:分式的化简求值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.解答:解:原式===m﹣2,当m=2015时,原式=2015﹣2=2013.故答案为:2013点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17..如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为.考点:旋转的性质;扇形面积的计算.分析:根据OA=3,再根据△OAB所扫过的面积=S扇形AOC+S△DOC﹣S△AOB=S扇形AOC求解即可.解答:解:将△AOB绕点O逆时针旋转90°得到△COD,所以S△DOC=S△AOB,可得:旋转过程中形成的阴影部分的面积=S扇形AOC+S△DOC﹣S△AOB=S扇形AOC=,故答案为:点评:本题考查了利用旋转变换作图,得出扇形的面积和熟练掌握网格结构准确找出对应点的位置是解题的关键.18..如图,以O为位似中心,将边长为256的正方形OABC依次作位似变化,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的12,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的12,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的12,......,按此规律,经第n次变化后,所得正方形OA n B n C n的边长为正方形OABC边长的倒数,则n= .考点:位似变换;正方形的性质.专题:规律型.分析:由图形的变化规律可知正方形OA n B n C n的边长为,据此即可求解.解答:解:由图形的变化规律可得=,解得n=8.故答案为:8.点评:本题主要考查了正方形的性质及位似变换,解题的关键是正确的找出图形的变化规律.三、解答题(8个小题,共66分)19.计算:0542(3)+--⨯-考点:实数的运算;零指数幂.分析:先算0指数幂,绝对值与乘法,再算加减,由此顺序计算即可.解答:解:原式=1+4+6=11.点评:本题考查实数的综合运算能力,掌握运算顺序与计算方法是解决问题的关键.20.(6分)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.考点:矩形的性质;全等三角形的判定.专题:证明题.分析: 根据矩形的性质和已知证明DF=BE ,AB ∥CD ,得到四边形DEBF 是平行四边形,根据平行四边形的性质得到答案.解答: 解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,又E 、F 分别是边AB 、CD 的中点,∴DF=BE ,又AB ∥CD ,∴四边形DEBF 是平行四边形,∴DE=BF .点评: 本题考查的是矩形的性质、平行四边形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.21.抛物线243y x x =-+与x 轴交于A 、B 两点(点A 在点B 的左侧),点C 是此抛物线的顶点.(1)求点A 、B 、C 的坐标;(2)点C 在反比例函数k y x=(0k ≠)的图象上,求反比例函数的解析式. 考点: 抛物线与x 轴的交点;待定系数法求反比例函数解析式.分析: (1)令抛物线解析式中y=0得到关于x 的方程,求出方程的解得到x 的值,确定出A 与B 坐标即可;配方后求出C 坐标即可;(2)将求得的点C 的坐标代入反比例函数的解析式即可求得k 值.解答: 解:(1)令y=0,得到x 2﹣4x+3=0,即(x ﹣1)(x ﹣3)=0,解得:x=1或3,则A (1,0),B (3,0),∵y=x 2﹣4x+3=(x ﹣2)2﹣1,∴顶点C 的坐标为(2,﹣1);(2)∵点C (2,﹣1)在反比例函数y=(k≠0)的图象上,∴k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;点评: 此题考查了抛物线与x 轴的交点,二次函数的图象与性质,待定系数法求反比例函数的解析式等知识,熟练掌握二次函数的图象与性质是解本题的关键.22.某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?考点: 一元一次不等式组的应用;二元一次方程组的应用.分析: (1)设每个气排球的价格是x 元,每个篮球的价格是y 元,根据购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元列方程组求解即可;(2)设购买气排球x 个,则购买篮球(50﹣x )个,根据总费用不超过3200元,且购买气排球的个数少于30个确定出x 的范围,从而可计算出最低费用.解答: 解:(1)设每个气排球的价格是x 元,每个篮球的价格是y 元. 根据题意得:解得:所以每个气排球的价格是50元,每个篮球的价格是80元.(2)设购买气排球x个,则购买篮球(50﹣x)个.根据题意得:50x+80(50﹣x)≤3200解得x≥26,又∵排球得个数小于30个,∴当够买排球29个,篮球21个时,费用最低.29×50+21×80=1450+1680=3130元.点评:本题主要考查的是二元一次方程组和一元一次不等式的应用,根据题意列出方程组和不等式是解题的关键.23.(10分)某校决定在6月8日“世界海洋日”开展系列海洋知识的宣传活动,活动有A.唱歌、B.舞蹈、C.绘画、D.演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次抽查的学生共人,a= ,并将条形统计图补充完整;(2)如果该校学生有1800人,请你估计该校喜欢“唱歌”这项宣传方式的学生约有多少人?(3)学校采用抽签方式让每班在A、B、C、D四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.考点:列表法与树状图法;用样本估计总体;条形统计图.专题:计算题.分析:(1)用D类学生数除以它所占的百分比即可得到总人数,再用1分别减去A、C、D类的百分比即可得到a的值,然后用a乘以总人数得到B类人数,再补全条形统计图;(2)估计样本估计总体,用1800乘以A类的百分比即可;(3)先画树状图展示所有12种等可能的结果数,再找出含A和B的结果数,然后根据概率公式求解.解答:解:(1)本次抽查的学生数=30÷10%=300(人),a=1﹣35%﹣25%﹣10%=30%;300×30%=90,即D类学生人数为90人,如图,故答案为300,30%;(2)1800×35%=630(人),所以可估计该校喜欢“唱歌”这项宣传方式的学生约有630人;(3)画树状图为:共有12种等可能的结果数,其中含A和B的结果数为2,所以某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率==.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了样本估计总体和条形统计图.24.如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,在船B的北偏西37°方向上,AP=30海里.(1)尺规作图:过点P作AB所在直线的垂线,垂足为E(要求:保留作图痕迹,不写作法);(2)求船P到海岸线MN的距离(即PE的长);(3)若船A、船B分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)考点:解直角三角形的应用-方向角问题.分析:(1)利用直角三角板中90°的直角直接过点P作AB所在直线的垂线即可;(2)解Rt△APE求出PE即可;(3)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断.解答:解:(1)如图所示:(2)由题意得,∠PAE=30°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin30°=15海里;(3)在Rt△PBE中,PE=15海里,∠PBE=53°,则BP==海里,A船需要的时间为:=1.5小时,B船需要的时间为:=1.25小时,∵1.5>1.25,∴B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.25.如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是⊙O的切线;(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=12,AD=3,求直径AB的长.考点:切线的判定.分析:(1)由AB为⊙O的直径,可得∠D=90°,继而可得∠ABD+∠A=90°,又由∠DBC=∠A,即可得∠DBC+∠ABD=90°,则可证得BC是⊙O的切线;(2)根据点O是AB的中点,点E时BD的中点可知OE是△ABD的中位线,故AD∥OE,则∠A=∠BOC,再由(1)∠D=∠OBC=90°,故∠C=∠ABD,由tanC=可知tan∠ABD==,由此可得出结论.解答:(1)证明:∵AB为⊙O的直径,∴∠D=90°,∴∠ABD+∠A=90°,∵∠DBC=∠A,∴∠DBC+∠ABD=90°,即AB⊥BC,∴BC是⊙O的切线;(2)∵点O是AB的中点,点E时BD的中点,∴OE是△ABD的中位线,∴AD∥OE,∴∠A=∠BOC.、∵由(1)∠D=∠OBC=90°,∴∠C=∠ABD,∵tanC=,∴tan∠ABD===,解得BD=6,∴AB===3.点评:本题考查的是切线的判定,熟知经过半径的外端且垂直于这条半径的直线是圆的切线是解答此题的关键.26.如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上的一个动点(点A与点B不重合).在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C.连接OC、CD,设点A的横坐标为t.(1)用含t的式子表示点E的坐标为_______;(2)当t为何值时,∠OCD=180°?(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.考点:一次函数综合题;相似三角形的判定与性质.分析:(1)由点B坐标为(0,8),可知OB=8,根据线段垂直平分线的定义可知:AE=4,从而求得:BE=t+4,故此点E的坐标为(t+4,8);(2)过点D作DH⊥OF,垂足为H.先证明△OBA∽△AEC,由相似三角形的性质可知,可求得EC=,从而得到点C的坐标为(t+4,8﹣),因为∠OCD=180°,CF∥DH,可知,即从而可解得t的值;(3)三角形OCF的面积=,从而可得S与t的函数关系式.解答:解:(1)∵点B坐标为(0,8),∴OB=8.∵AD=OB,EF垂直平分AD,∴AE=4.∴BE=t+4.∴点E的坐标为(t+4,8);(2)如图所示;过点D作DH⊥OF,垂足为H.∵AC⊥OA,∴∠OAC=90°.∴∠BAO+∠EAC=90°.又∵∠BOA+∠BAO=90°,∴∠EAC=∠BOA.又∵∠OBA=∠AEC,∴△OBA∽△AEC.∴,即.∴EC=.∴点C的坐标为(t+4,8﹣)∵∠OCD=180°,∴点C在OD上.∵CF∥DH,∴,即解得:,(舍去).所以当t=4﹣4时,∠OCD=180°.(3)三角形OCF的面积=×OF•FC=(t+4)(8t)=,∴s与t的函数关系式为s=.点评:本题主要考查的是相似三角形的性质和判定,用含字母t的式子表示点C的坐标是解题的关键.。