高数+第六章+定积分应用

合集下载

高数同济七版电子课本上册

高数同济七版电子课本上册

反常积分
反常积分的概念
反常积分是对于无穷区间上的积分,它分为两类:无穷限的反常积 分和瑕点的反常积分。
反常积分的性质
反常积分具有一些特殊的性质,例如:无穷限的反常积分的结果可 能为无穷大,瑕点的反常积分的结果可能为无穷小。
反常积分的计算方法
对于不同类型的反常积分,计算方法有所不同,常用的方法包括利 用极限理论、幂级数展开等。
法则。
基本公式
02 基本公式包括指数函数的导数、幂函数的导数、对数
函数的导数和三角函数的导数等。
常见函数的导数
03
常见函数的导数包括一次函数的导数、二次函数的导
数、反比例函数的导数和幂函数的导数等。
微分及其应用
01
02
03
微分的概念
微分是函数在某一点处的 近似值,即函数在该点的 切线截距。
微分的几何意义
柯西中值定理
进一步揭示了函数在某点处的导数与该点附近函数的平均值之间的关系,是微分学中的重要定理之一。
洛必达法则
洛必达法则基本内容
在一定条件下,当一个函数的极限为0时,可以 应用洛必达法则求其导数的极限。
洛必达法则的应用
适用于求一些复杂函数的极限,简化计算过程 。
洛必达法则的条件
只有在满足一定条件下才能使用洛必达法则,否则可能导致错误的结果。
反常积分的应用
• 总结词:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类问 题。反常积分的应用包括物理、工程、经济等领域。
• 详细描述:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类 问题。反常积分有两种类型:无穷区间上的反常积分和无界函数的反常积分。 无穷区间上的反常积分可以用来求解函数在无穷区间上的积分,而无界函数的 反常积分可以用来求解函数在有限区间上的瑕积分。反常积分的应用非常广泛 ,包括物理、工程、经济等领域。例如,在物理学中,反常积分可以用来求解 量子力学中的波函数问题、电动力学中的电磁场问题等;在工程学中,反常积 分可以用来求解流体动力学中的问题、热传导问题等;在经济领域,反常积分 可以用来求解贴现问题、投资组合问题等。

高数6—定积分应用

高数6—定积分应用

高数复习题6——定积分应用1. 从原点向曲线x y ln 1-=作切线,计算由切线、曲线和x 轴所围图形的面积. 2. 求曲线θcos 3=r 所围图形和曲线θcos 1+=r 所围图形的公共部分面积及边界曲线周长. 3. 摆线的一拱的方程为⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t ,(1)求摆线一拱的弧长;(2)求摆线一拱与x 轴所围图形的面积;(3)求摆线一拱与x 轴所围图形绕x 轴旋转一周所成立体的体积. 4.若曲线 )1(-=x x y 与 x 轴所围成平面图形的面积等于曲线 xy 1=与 x = 1, x = λ,x 轴所围成平面图形的面积,求λ。

5.求曲线x y sin =(π≤≤x 0)和x 轴所围图形绕y 轴旋转一周所成立体的体积. 6.设20π<<t (t 为参数),曲线x y sin =与三条直线0,2,===y t x t x 所围平面图形绕x 轴旋转一周所成的旋转体体积为)(t V ,求 t 的值使)(t V 取得最大值。

7.质点以速度 2sin )(t t t v =(米/秒)作直线运动,求质点从时间11=t 秒到时间π=2t秒内所经过的路程。

8.半圆形闸门半径为R (米),将其垂直放入水中,且直径与水面齐,设水密度1=ρ;设 坐标原点放在圆心,x 轴正向朝下,求闸门一侧所受的水压力。

9.一容器的边界曲面是由抛物线2x y =绕y 轴旋转而成的,其容积为π72)(3m ,容器中盛满水,问将水抽去π64)(3m 至少需作多少功.参考答案1. 从原点向曲线x y ln 1-=作切线,计算由切线、曲线和x 轴所围图形的面积. 解:设切点为),(00y x ,00001)(x y x x y =-=' 10-=y ,20e x = 所以切线方程为 x ee x e y 22211)(1-=---=,曲线与x 轴的交点为)0,(e面积22220111[(1ln )()]2ee e A x dx x x dx e e e e =-+---=-⎰⎰2. 求曲线θcos 3=r 所围图形和曲线θcos 1+=r 所围图形的公共部分面积及边界曲线周长.解:先求曲线的交点⎩⎨⎧+==θθcos 1cos 3r r 消r 得21cos =θ 所以3πθ±=面积2232031152[(1cos )(3cos )]224A d d πππθθθθπ=++=⎰⎰弧长2[]4l θθπ=+=+3. 摆线的一拱的方程为⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t ,(1)求摆线一拱的弧长;222002sin 82tl a a dt a πππ====⎰⎰⎰(2)求摆线一拱与x 轴所围图形的面积;222220(1cos )3aA ydx a t dt a πππ==-=⎰⎰(3)求摆线一拱与x 轴所围图形绕x 轴旋转一周所成立体的体积.22233230(1cos )5aV y dx a t dt a πππππ==-=⎰⎰4.若曲线 )1(-=x x y 与 x 轴所围成平面图形的面积等于曲线 xy 1=与 x = 1, x =λ,x 轴所围成平面图形的面积,求λ。

高等数学(同济大学第五版)第六章 定积分的应用

高等数学(同济大学第五版)第六章 定积分的应用

习题6−21. 求图6−21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]12[)(12231=−=−=x x dx x x A . 2300∫ 解法一x 轴上的投影区间为[0, 1]. 所求的面积为0 画斜线部分在y 轴上的区间为[1, e ]. 所求的面积为(2)画斜线部分在 1|)()(11=−=−=∫x x e ex dx e e A ,0 解法二投影 1)1(|ln ln =−−=−==∫∫e e dy y y ydy A e e e . 111(3)解 画斜线部分在x 轴上的投影区间为[−3, 1]. 所求的面积为332]2)3[(132=−−=∫−dx x x A . (4)解 [−1, 3]. 所求的面积为画斜线部分在x 轴上的投影区间为 332|)313()32(3132312=−+=−+=−−∫x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算); 解:388282)21222228(2020020221−−=−−=−−=∫∫∫∫dx x dx x dx x dx x x A 323cos 16402+=−=∫πtdt . 48π346)212−=−ππS . 2(2=A (2)xy =1与直线y =x 及x =2; 解:所求的面积为∫=A −=−202ln 23)1(dx x x . e x , y =e −x 与直线x =1;解:所求的 (3) y =面积为∫−+=−=−1021)(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba yb a y −===∫ln ln ln ln3. 求抛物线y =−x 2+4x −3及其在点(0, −3)和(3, 0)处的切线所围成的图形的面积. 解: 过点(0, −3)处的切线的斜率为4, 切线方程为y =4(x −3)., 切线方程为y =−2x +6.y ′=−2 x +4.过点(3, 0)处的切线的斜率为−2两切线的交点为)3 ,23(, 所求的面积为 49]34(62[)]34(34[2302332=−+−−+−+−+−−−=∫∫dx x x x x x x A . 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积. 解2y ⋅y ′=2p .在点处, 1),2(==′p p y p y ,),2(p p 法线的斜率k =−1, 法线的方程为)2(p x p y −−=−, 即y p x −=23.),2(p p 求得法线与抛物线的两个交点为和)3,29(p p −. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =−−=−−=−−∫. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为∫∫==2221πθθ −202cos 4)cos 2(2ππθθd a d a A =πa 2. a cos 3t , y =a sin 3t ;解2(2)x =所求的面积为∫∫∫===204220330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=−=∫∫.(3)ρ=2 解所求的面积为a (2+cos θ ) 2202220218)cos cos 44(2)]cos 2(221a d a d a A πθθθθθππ=++=+=∫∫. 6. 求由摆线x =a (t −sin t ), y =a (1−cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积. 解:所求的面积为∫∫∫−=−−==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++−=∫. 7. 求对数螺线ρ=ae θ(−π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为)(42)(2ππ−−∫∫e d e a d ae 11222222πππθπθθθ−−===e a . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为A)3,23(πA , )3,23(π−B . 由对称性, 所求的面积为 πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=∫∫d d A . (2)θρsin 2=及解θρ2cos 2=.6,22(π.曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M 所求的面积为 2316]2cos 21)sin 2(21[24602−+=+=∫∫πθθθθπππd d A .于曲线e x 下方, 9. 求位y =该曲线过原点的切线的左方以及x 轴上方之间的图形的面积. 解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有x y e y kx y x x 00)(0000, , y 0=e , k =e .所求面 ⎪⎩⎪⎨⎧==′==ke 求得x 0=1积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+−=−∫∫. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为10A A A +=. 显然当2πα=时1=0; 当, A 2πα1因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 <时, A >0. 20300383822a x a dx ax A a a ===∫. 1. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算得旋转体的体积.1所 解 所得旋转体的体积为20022224000x a axdx dx y V xx x πππ====∫ 00x a π∫. 12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得转所得旋转体的体积为两个旋转体的体积.解 绕x 轴旋πππ712871207206202====∫∫x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为∫∫−=−⋅⋅=803280223282dy y dy x V y ππππ ππ56453328035=−=y . 所围成的图形, 绕x 轴旋, 计算所得旋转体的体积. 解 由对称性, 所求旋转体的体积为13. 把星形线转3/23/23/2a y x =+ dx x a dx y V a a ∫=2222π∫−=0333)(2π 0 3024224210532)33(2a dx x x a x a a a π=−+−=∫.14. 用积分方法证明图中球缺的体积为)(2H R H V −=π.3证明 ∫∫−−−==R H R RH R dy y R dy y x V )()(222ππ)3()1(32y y R R H R =−=−ππ 32H R H −.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的体积:(1的旋转体)2x y =,2y x =, 绕y 轴; πππ)(22=−=∫∫dy y ydy V 解 103)5121(10521010=−y y . (2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ∫∫∫===102ch udu 302202 ch )(a x dx a x a dx x y V a aπππ令 au1022)()2(u u u du e e −=++=∫2231032122144u e u e a a −−+ππ )2sh 2(43+a π= . (3)216)5(2=−y , 绕x 轴.解 +x ∫∫−−−−−−+=44224422)165()165(dx x dx x Vππ 24021601640π∫=−=dx x .x =(t −sin t ),=a (1−cos t )的一拱, y =0, 绕直线y =2a . 解 a dy y a dx a V02202)2()2( 23237)8πππa t a a =+−=. 16. 求圆盘 (4)摆线a y a 2∫∫−−=ππππ∫−+−=πππ202223)sin (])cos 1([8t t da t a a 0sin cos 1(tdt a ∫232222a y x ≤+绕x =−b (b >a >0)旋转所成旋转体 解 的体积.∫∫−−−−−−+=a a a a dy y a b dy y a b V222222)()(ππ 2202228ππb a dy y a b a=−=∫.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴2a 、2b 和2A 、求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则 易得其长分别为2B , 平面与截锥体的截面为椭圆,长短半轴分别为y h a A A −−, y hb B B −−. 积为π)()(y 截面的面h h B B y a A A −⋅b −−−.于是截锥体的体积为])(2[61)()(b V h=∫0AB a h dy y h b B B y h a A A +++=−−⋅−−π.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角.x 且垂直于x () 件知, 它是边长为bA aB 18. 形的立体体积 解 设过点轴的截面面积为A x ,由已知条xR −2的等边三角形的面积, 其值为)(3)(22x R x A −=, 322334)(3R dx x R VR=−=∫R所以 − a.如图, 在x 处取一宽为dx 的边梯形, 小曲边梯形绕y 积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,y 轴旋转所成的旋转体的体积为==bab dx x xf dx x xf V)(2)(2ππ.用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 解.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为=bdx x xf V )(2π∫ 证明 小曲轴旋转所得的旋转体的体于是平面图形绕 ∫a∫ 20. 利2002)sin cos (2cos 2sin 2πππππππ=+−=−==∫∫x x x x xd xdx x V .y =ln x 上相应于83≤≤ 21. 计算曲线x 的一段弧的长度.解 ∫∫∫+=+=′+=82838x32321)1(1)(1dx x x dx dx x y s ,t 12−=t x ,x +21=, 即 则令23ln 211111113223232222322+=−+=t s −=−⋅−=∫∫∫∫dt t dt d t t dt t tt t .)3(x − 22. 计算曲线3弧的长度. x y =上相应于1≤x ≤3的一段 解x x x y 3−=, 1x y 2−=′,x 121x x y 4112+−=′, 214)(12x y +=′+,121x为所求弧长3432)232(21)1(213131−=+=+=∫x x x dx xx s .23. 计算半立方抛物线被抛物线32x y =32)1(32−=x y 截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=−=3)1( 32232x y x y 得两曲线的交点的坐标为36 ,2(, )36 ,2(−. 所求弧长为∫′+=21212dx y s .因为2y x y 2)1(−=′,)1(23)1()134−=−2)1(2−=′y y x ,32()1(242−−==′y x y 所以 x x x . ]1)25[(98)1)1−x 3(13232(231232121−=−=−+=∫∫d x dx x s . 抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长.24. 计算∫∫∫+=+=′+=y yydy sy p p dy p y dy y x 02202021)(1)(1 解y y p y p p 2222])2[+++=y p y 02ln(21+p 2y p y py p py 2222ln2++++=.25. 计算星形线t a x 3cos =, 的全长.解 用参数方程的弧长公式.t a y 3sin = dt t y t x s =∫′+′2022)()(4π∫⋅+−⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==∫π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y −=.计算这曲线上相应于t 从0变到π的一段弧的长度. 解 由参数方程弧长公式∫∫+=′+′=ππ022022)sin ()cos ()]([)]([dtt at t at dt t y t x s 0∫22ππa tdt a ==.cos t )上求分摆线第一拱成1: 3 解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 27. 在摆线x =a (t −sin t ), y =a (1−的点的坐标.∫∫+−=′+′=0220220]sin [)]cos 1([)]t ([)]([)(t t dt t a t a dt y t x t s)2cos 1(42sin 2000ta dt t a t −==∫.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a ta 22cos 1(40=−,32解得0π=t , 因而分点的坐标为:a a x )32()2sin 2(−=−=πππ, 横坐标23 纵坐标33a a y 23)32cos1(=−=π,故所求分点的坐标为)23 ,)2332((a a −π. ρθa e =相应于自θ=0到的一段弧长 28. 求对数螺线θ=ϕ. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d a a ∫∫+=′+=22022)()()()(s )1−θ(11202+=+=∫ϕθθa a e aa d e a .29线1相应于自 . 求曲ρθ=43=θ至34=θ.的一段弧长 极坐标公式可得所求的弧长 解 按∫∫−+=′+=344322234322)1()1()()(θθθθθρθρd d s23ln 1251134322+=+=∫θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ==2 ∫∫−++′+0222022)sin ()cos 1()()(2a d a 82∫cos 4==πθθ.习题6−31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为18216260===∫s k ksds W k(牛⋅厘米).2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻−马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=−⋅x x P , π−=80800)(x P .功元素为dx x P dW )()10(2⋅=π,所求功为 2ln 8008018000080800)10(400402πππππ=−=−⋅⋅=∫∫dx dx W(J).3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=,其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为dy ykMm dW 2=, 所求的功为 )(2h R R mMh k dy y kMm W hR R+⋅==∫+.(2)533324111075.910)6306370(106370106301098.51731067.6×=×+×××××⋅×=−W (kJ).4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cxt x v =′=, 阻力4229t kc kv f −=−=. 而32)(cx t =, 所以34323429)(9)(x kc cx kc x f −=−=. 功元素dW =−f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f Wa aa ===−=∫∫∫. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为 k kxdx W 21101==∫,击第二次作功为 )2(212112h h k kxdx W h+==∫+.因为, 所以有 21W W =)2(21212h h k k +=, 解得12−=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210−=, 功元素为dx x x dx r x dW 22)3210(−=⋅=ππ,所求功为 ∫−=1502)3210(dx x x Wπ∫+−=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力. 解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===∫x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+−y x .压力元素为dx x x dx x y x dP 22)43()43(38)(21−−⋅=⋅⋅=,所求压力为∫∫−⋅⋅+=−−⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x Pππ169cos 49202==∫tdx (吨)=17.3(kN). (提示: 积分中所作的变换为t x sin 4343=−)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.解 建立坐标系如图. 直线AB 的方程为x y 1015−=,压力元素为dx x x dx x y x dP )5110()(21−⋅=⋅⋅=,所求压力为1467)5110(200=−⋅=∫dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力. 解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=∫x x dx x x P (克)=1.65(牛).11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF r a dF x −=, dF rydF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +−=++−=+⋅−=∫∫μμμ,)11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +−=++=+⋅=∫∫μμμ. 12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=Rdsm G dF xθθμθθμd R Gm R Rd Gm cos cos )(2=⋅=,θθμϕϕd R Gm F x ∫−=2cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==∫. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足∫∫+=+300112111dt t dt t x.因为212]12[110−+=+=+∫x t dt t x x, 112[2111213030=+=+∫t dt t ,所以1212=−+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解∫++⋅=43222)sin (cos 21)2(21ππθθθπd a a S24322241)2sin 1(28a d a a −=++=∫πθθπππ.3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线与直线x =1, y =0所围图形的面积为c bx ax y ++=294,且使该图形绕x 轴旋转而成的旋转体的体积最小.y c bx ax +=+ 解 因为抛物线2y 通过点(0, 0), 所以c =0, 从而 bx ax +=2.bx ax y +=2与直线x =1, y =0所围图形的面积为抛物线23)(102b a dx bx ax S +=+=∫. 令9423=+b a , 得968a b −=. 该图形绕x 轴旋转而成的旋转体的体积为 )235()(221022ab b a dx bx ax V ++=+=∫ππ)]968(2)968(315[22a a a a −+−+=π. 令0)]128(181********[=−+−⋅+2=a a a ddV π, 得35−=a , 于是b =2. 4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ751272224027403=⋅=⋅=∫x dx x x V . 5. 求圆盘1)2(22≤+−y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312∫−−⋅⋅=dx x x Vπ 2224cos )sin 2(4 sin 2ππππ=+=−∫−tdt t t x 令.6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长. 解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(−, )1 ,2(, 于是所求的弧长为2022202])1ln(2112[212x x x x dx x s ++++=+=∫ )32ln(6++=.,解 建立坐标系如图. 将球从水中取出时, 球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x ,在水上上升的高度为r −x . 在水下对薄片所做的功为零,在水上对薄片所做的功为dx x r x r g dW ))((22−−=π,对球所做的功为g r x d x r x r g W rr 22234))((ππ=−−=∫−. 8. 边长为a 和b 的矩形薄板, 与液面成α 角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为 上端点与原点对应. 长边dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=∫. 9. 设星形线t a x 3cos =,t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力. 解 取弧微分ds 为质点, 则其质量为ds y x ds y x 322322)()(+=+, 其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323=′+′=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有∫+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, ∫+⋅++⋅⋅=22222322)()(1πds y x y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, 所以)53 ,53(22Ga Ga =F .。

高等数学(同济第六版)课件 第六章 6.3定积分物理应用

高等数学(同济第六版)课件  第六章 6.3定积分物理应用
第三节 定积分在物理学上的应用
一、变力沿直线所作的功
F a x
F
x+dx b
常力 F 沿直线对物体所作的功为:W=F · S 若力是变力: F F ( x )
dW F ( x )dx
W F ( x )dx
a
b
例1 一个带 +q 电量的点电荷放在 r 轴上坐标原点处, 产生一个电场. 若将一个单位正电荷从r 轴上r = a 处 沿 r 轴移动到 r = b处,求场力 F 所作的功. 解 取r为积分变量,
20 x 20 x dW2 (10 0.05)dx (10 )dx 4 80
x
功元素
1 20 x dW [ x (10 )]dx 10 80
20

W
0
1 20 x [ x (10 )]dx 10 80
=217.5(千克米) =2131.5(焦耳)
l l 解 取y为积分变量 y [ , ], 2 2 取任一小区间[ y , y+dy ] 小段的质量为 dy ,
小段与质点的距离为 r a y ,
2 2
m dx 引力 dF k 2 , 2 a y amdy dFx k 2 , 2 (a y )
3 2
l y 2 y dy
解 建立坐标系如图
面积元素 2(a x )dx ,
dP ( x 2a ) 2(a x )dx
2a
o
a
2a
7 3 P 2( x 2a )(a x )dx a . 0 3
a
x
三、 引力
质量分别为m1, m2相距为 r 的两个质点间的引力 大小:F k m1m2 , 其中k为引力系数, r2 引力的方向沿着两质点的连线方向. 例6 有一长度为l、线密度为 的均匀细棒, 在其中垂线上距棒 a 单位处有一质量为 m 的 质点M, 计算该棒对质点 M 的引力.

高数课件第六章定积分的应用:第二节定积分的几何应用

高数课件第六章定积分的应用:第二节定积分的几何应用

y
c
b O
x
bx
x
x x 1 sh dx ch dx c c b x xb s 2 ch dx 2c sh 0 c c 0 x b 1 x 2c sh ( c ch ) c sh c c c c
2
e e ch x 2 x x e e sh x 2 (ch x) sh x
Hale Waihona Puke 2 (t ) 2 (t ) d t
因此所求弧长
s


2 (t ) 2 (t ) d t
(3) 曲线弧由极坐标方程给出:
令 x r ( ) cos , y r ( ) sin , 则得
dx [r ( ) cos r ( ) sin ]d dy [r ( ) sin r ( ) cos ]d
2
选 x 为积分变量 (1) x [2, 0], dA1 ( x 3 6 x x 2 )dx 于是所求面积 A A1 A2
特别注意:
各积分区间 A ( x 3 6 x x 2 )dx 0 (x x 6 x)dx 上被积函数的 2 253 形式不同. . 12

0

3
2
3
x2 1 练习:1.求曲线 y , y 与直线 x 3 2 1 x 2
x 3 所围成的图形的面积。
2.求曲线 xy 1 与直线
x y 0 y 2
x y 2
P1
2
所围成的图形的面积。 2014考研题
提示:1
P2
y
1
32 1 0 2 1 1 3 x 1 x 1 1 s 2[ ( )d x ( ( 3 3 2) ) d x ] 2 0 1 x 1 3 2 2 1 x2

高等数学讲义第六章定积分及其应用

高等数学讲义第六章定积分及其应用
y
oa
x x i1 i i
b
x
编辑ppt
2
定义:设函数f (x)在[a,b]上有界,如果不任[a对 ,b]怎样
划分成n个小区间,也不任在 小各 区间[xi1, xi ](i 1,2,,n)
上点i 怎样取法,只要当0时( maxxi)和式
i
n
f (i )xi 趋于一个确定的极限I,值那么称此极限值为
a
编辑b ppt
a
4
3 abk(fx)dxkabf(x)d x k 为( 常数) 4 a b (f(x) g (x)d ) x a bf(x)d x a bg (x)dx
5设acb则
b
c
b
a f(x)dxa f(x)dxc f(x)dx
6 如果x[a,b]有 f (x) g(x)

b
存在一 ,使 点得 abf(x)dxf()(ba) (ab)
定积分中值定理的几何意义: 在[a,b]内至少有一点,使得以[a,b]为底,f ()为高的 矩形面积,等于以[a,b]为底的曲边梯形的面积。
y
o
a
b
x
编辑ppt
6
例1. 用定义计算定积分 12 xdx
例2.设f (x),g(x)在[a,b]连续,g(x)保号,证明:
在[a,b]上至少存在一 ,点 使得
b
a
f
(x)g(x)d
x
f
()abg(x)d
x
成立。
编辑ppt
7
§2. 微积分基本公式
由定积分的定义来计算定积分的值是很困难的, 是否存在更为简便的方法呢?
先引入变上限函数及其求导定理
设 f(x)在 [a,b]上连续 f(x)在 , [a,x]那 (x [a 么 ,b]上 )

同济七版NUAA高数课件 第六章 定积分的应用 第五节 功、水压力、引力

同济七版NUAA高数课件  第六章 定积分的应用 第五节    功、水压力、引力
设桶的底半径为R ,水的比重为 ,计算桶的一端面
上所受的压力.
解 在端面建立坐标系如图
取x为积分变量,x [0, R]
取任一小区间[ x, x dx]
小矩形片上各处的压强近
似相等 p x,
小矩形片的面积为 2 R2 x2dx.
o
x
x dx
x
小矩形片的压力元素为 dP 2x R2 x2dx
用积分元素法
解 建立坐标系如图
取x为积分变量, x [0,5]
取任一小区间[ x, x dx],
点击图片任意处播放\暂停
o
x x dx
5
x
这一薄层水的重力为 9.8 32 dx
功元素 : dw 88.2 x dx,

x x dx
5
x
5
w 0 88.2 x dx
88.2
x2 2
5 0
标原点处,它产生一个电场.这个电场对周围的电
荷有作用力.由物理学知道,如果一个单位正电荷
放在这个电场中距离原点为r 的地方,那么电场
对它的作用力的大小为
F
q k r2
(k
是常数),当
这个单位正电荷在电场中从 r a 处沿r 轴移动
到 r b 处时,计算电场力 F 对它所作的功.
解 取r 为积分变量, r [a,b],
2 y dy
yr
小段与质点的距离为 r a2 y2 , o a •M x
引力
F
k
mdy
a2 y2
,
l 2
水平方向的分力元素
amdy
dFx
k (a2
y
2
)
3 2
,
Fx
l 2

高等数学公式定理(全)

高等数学公式定理(全)

高等数学公式定理(全)·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tan β)tan(α-β)=(tanα-tanβ)/(1+tanα·tan β)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cos α·sinβ·cosγ+cosα·cosβ·sinγ-sin α·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cos α·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(x) x o a x x+dx b
我们用定积分微元法来计算变力F在[a,b]路程 段中所作的功。
在区间[a,b]上任取一小区间[x,x+dx],当物体从x 移动到x+dx时,变力F=f(x)所作的功近似地把变力 看作常力所作的功,从而得到功元素为: dw=f(x)dx
因此,变力在[a,b]路程段所作的功为
dx
y
20
x

如上图的直角坐标系中:
⑴ 取积分变量为x,积分区间为[3,30] ⑵ 在区间[3,30]上任取一小区间[x,x+dx],与它对应的 一薄层(圆柱)水的重量为9.8ρπ102dx(N). 其中水的密度为ρ=1×103 因这一薄层水抽出围囹所作的功近似于克服 这一薄层重量所作的功,所以功元素为: dw=9.8×105πxdx. ⑶ 于是在[3,30]上,抽尽水所作的功为:
Aa
2


0
3 1 ( 2 cos cos )d 2 2
2
3 1 A a( 2 sin sin 2 ) 0 2 4 3 2 a 2
微元法思想
如图
y y=f(x) ds=f(x)dx
求平面图形的面积,前面是根据定积分的几何意义,此 外还可根据定积分的定义,如上图,求曲边梯形的面积, “无限细分”,将[a,b]任意划分为 n个小区间,相应是 将曲边梯形划分成n个小曲边梯形,“以直代曲”,将任一 小曲边梯形([x,x+dx]上阴影部分)看成小矩形,则其面积 △s≈ds=f(x)dx于是面积就是这些小矩形在[a,b] 上的无限累 加的结果,即
a
b
7-1 定积分在几何上的应用
定积分求平面图形的方法步骤:
(1)求曲线交点并画草图;
(2)确定求哪块面积,进行“面积组合”; (即由定积分表示的曲边梯形来划分这块面积, 哪些该加,哪些该减,注意“曲边梯形”一定是 以x轴为一边,两 条竖直线为另两边); (3)以x的范围确定积分上下限; 用定积分表示这块面积; (4)求定积分。
回顾求曲边梯形面积的步骤S曲:分割区间 取近似值 作和 取极限
y y=f(x) dA=f(x)dx
(1)细分区间 [a, b] [ x0 , x1 ] [ xn1 , xn ]
将曲边梯形面积分成n个窄曲边梯形 S曲 Si曲
n
0
a
x x+dx
b
x
(2) 取近似值 Si曲 n f ( i ).xi S曲 f ( i ).xi (3)求和
记dA f ( x)dx 称为面积元素
b
最后在[a, b]上作定积分:A f ( x)dx 这种简化后的方法称为微元法 a
7-1 定积分在几何上的应用
一、 平面图形的面积
由定积分的几何意义“有号面积”,可 以直接得到求平面图形的面积公式:
S

b
a
f ( x) dx
例1 计算曲线y2=x,y=x2所围成的图形的 面积。 解一 2 先求两线的交点(右图) y 2
0

6a
定积分在物理上的应用
功的计算
由物理学知道,在一个常力的作用下,物体沿力
的方向作直线运动,当物体移动一段距离s时,F所 作的功为:W=F*S 但在实际问题中,物体所受的力经常是变化的, 这就需要寻求其它方法求变力作功的问题。设物体 在变力f(x)的作用下沿ox 轴从a移动到b(如图),变 力方向保持与x轴一致(如图)
W
例7

b
a
f ( x)dx
在弹性限度内,螺旋弹簧受压时,长度的改变与所受外 力成正比,已知弹簧被压缩0.02m时,需9.8N,当弹簧被压 缩3cm,试求压力所作的功。

所用压力为F=f(x) 时弹簧压缩x(单位为cm), 则F=f(x)=kx(其中k为比例系数) 故当x=0.02m时,f(x)=9.8N代入上式得 k=4.9×102 所以变力函数为:F=f(x)=4.9×102x
1 2 此区间上面积A .r ( )d 2
r
1 2 A r ( )d 2
例6 求心脏线r =a(1+cosθ)围成的图形面积(a>0)
解:图形关于极轴对称
1 2 2 A 2. r ( )d a (1 cos ) 2 d 0 2 0

( x(t )) 2 ( y(t )) 2 dt
x a cos3 t 例7 计算星形线 y a sin 3 t
a 0 的全长
解:星形线关于x轴,y轴对称, 只要计算第一象限的长度。
S 4 2 ( x(t )) 2 ( y(t )) 2 dt
0

S 12 a 2 sin t cos t dt
x 2 ln 2
ln 2
2
y=ex - 2 -2
0
4 ln 2 e e 4
2
2
ln2 2
x
例3
求 y2=2x与y=x-4所围成的图形的面积。
解 先求y2=2x与y=x-4的交点(2,-2),(8,4) (作图如右) 面积组合,以x=2为界划分为两块 面积,并由对应方程得
S 2 ( 2 x )dx
当这个单位正电荷在电场中从 r=q处沿r 轴移到 r=b(a<b)处时,计算电场力所作的功。
解 ⑴ 取积分变量为r,积分区间为[a,b];
kq ⑵ 在区间[a,b]上任取一小区间[r,r+dr],与它相对应的电场 dW 2 dr r 力F所作的功的近似值为功元素 ⑶ 于是,在[a,b]上,电场力所作的功为
x x+dx
同理,由曲线 x ( y) 与直线y=c,y=d 及oy轴围成的曲边梯形绕oy轴旋转成 的旋转体的体积为
0
a
b
x
绕x轴旋转 y
x2 y2 1 1 2
V

d
c
[ ( y)] 2 dy
例5求曲线 旋转而成的旋转体的体积 解 (如图)由公式得: 1
V
x2 y2 1 绕y轴 2
2 2 2
0.03
0.2205 J
7-2 定积分在物理上的应用
例8 把一个带 +q电量的点电荷放在r轴坐标原点 处,它产生一个电场,这个电场对周围的电荷产生 作用力,由物理学知道如果有一个单位下电荷放在 电路中距离原点o为r 的地方,那么电场对它的作用 力大小为: q
F k 2 为常数) (k r
y y0 y( x x0 ) ydx
0
a x0
x0+dx b
S ( x x0 ) 2 ( y y0 ) 2 1 ( y) 2 dx
S
b a
1 ( y) 2 dx
x (t ) 若 t [ , ]; y (t ) 则 S
第七章 定积分的应用
内容导航
微元法思想
定积分在几何上的应用 定积分在物理上的应用
定积分在经济上的应用
第七章 定积分的应用
前 言
在此前,学习了定积分的意义,涉及由定
积分求面积和路程;又讨论了通过不定积分 求定积分的各种方法。在本章中,我们将应 用定积分来解决几何、物理、经济中的各种 问题
定积分的微元法思想
2 2 0 1 0 1 1 2 1 2
1 2 y 2
1
1 2 (2 y y ) 0 2
1
2
(三)求平面曲线弧长
设y f ( x)在[a, b]可导,取子区间 x0 , x0 dx], [ 用切线长AB近似弧线长,弧长为S
A △S
B Y=f(x)
切线方程:
y x 0, ( 0),( , 11 ) 2 y x
y=x
x=y2 o 1 x
S

1
0
( x x 2 )dx
3 1 0
2 2 1 3 ( x x ) 3 3
1 3
解二 微元法思想,先求出两线的交点(0,
0),(1,1)
在[a,b]上任取子区间[x,x+dx]
设子区间上的面积为A x dx x dx ( x x )dx
以下主要介绍用定积分求以ox轴或oy轴为旋转 轴的旋转体体积的方法。
下面用微元法求旋转体的体积 例4求由区间[0,1]上曲线y=x2绕x轴旋转而成 的旋转体体积。(如图)
y
y=x2

取微元应有代表性: 一个微元可代表每个微元; 要有规律性,便于求出微元体积.
0

x
x x+dx
在x点(x∈(0,1))处,垂直于x轴取微元,其 厚度为dx,注意特点是截面都是圆,以小圆台近似 代替微元dV。
2
0
-1
2
x

1
(2 2 y )dy
2 1 0
4 (1 y 2 ) dy
8 3
例6 求由曲线y=x2与y=2-x2所围成的平面图形绕ox 轴和oy轴旋转所得旋转体的体积。 y 解 (如图)求曲线交点
y x2 1, ( 1 ),( , 11 ) 2 y 2 x
0
a
x x+dx
b
x
S dS f ( x)dx
a a
b
b
其中把dS称为S的微元,这种“无限细分取微元, 无限累加求积分”的方法叫微元法。
(二)旋转体的体积
旋转体 是一平面图形绕平面内一定直线旋转一 周而成的立体图形,定直线称为旋转轴。如圆柱、 圆锥、球体等可以分别看成是由矩形绕它的一条边、 直角三角形绕它的直角边、半圆绕它的直径旋转一 周而成的立体,所以它们都是旋转体,车床上切削 加工出来的工件,很多都是旋转体。
相关文档
最新文档