第六章定积分的应用63259
第六章 定积分的应用

第六章 定积分的应用
2
一、问题的提出
究竟哪些量可用定积分来计算呢. 首先讨论这个问题. 结合曲边梯形面积的计算 及定积分的定义
可知, 用定积分计算的量 应具有如下两个特点:
3
(1) 所求量I 即与[a, b]有关; (2) I 在[a, b]上具有可加性.(即把[a, b]分成 许多部分区间, 则I 相应地分成许多部分量, 而I 等于所有部分量之和)
设曲边梯形由y f ( x)、直线x a、x b 与x轴 围 成.
8
在[a, b] 上任取一小区间
[ x, x + dx],这个小区间上所
对应的小曲边梯形面积 近似
地等于长为f(x)、宽为dx 的
y
小矩形面积,பைடு நூலகம்故有
f ( x)dx
dA f ( x)dx
得
b
A a f ( x)dx
Oa
面 积 元 素
方法 简化步骤
6
简化步骤
(1)在[a,b]上任取一小区间[ x, x + dx], 求出
[ x, x + dx]上所求量 I 的近似值( 也是它的
的微分) f ( x)dx,即 I f ( x)dx.
(2)
I
bf a
( x)dx
这种简化了的建立积分式的方法称为
元素法或微元法.
7
曲边梯形面积的积分式也可以用元素法 建立如下.
4
按定义建立积分式有四步曲:
“分割、取近似、求和、取极 得到
I
b
f ( x)dx
a
限lim”,n 0 i1
f (i )xi
(1)
有了N--L公式后, 这个复杂的极限运算问题得
同济大学高等数学上册第六章定积分的应用

同济大学高等数学上册第六章定积分的应用定积分作为高等数学中的一个重要概念,广泛应用于各个领域,其在实际生活中的应用也是非常广泛的。
本文将以同济大学高等数学上册第六章定积分的应用为题,从不同的角度来探讨定积分在实际问题中的应用。
第一节:定积分在物理学中的应用在物理学中,定积分的应用是非常广泛的。
比如,在力学中,我们可以通过定积分来求解物体的质心、转动惯量等问题;在热力学中,可以通过定积分来计算热力学过程中的功和热量等;在电磁学中,可以通过定积分来计算电荷分布下的电场强度等。
定积分在物理学中的应用,不仅帮助我们更好地理解物理定律,还帮助我们解决实际问题。
第二节:定积分在经济学中的应用经济学是一个与人们日常生活息息相关的学科,而定积分在经济学中的应用也是非常显著的。
比如,在计算人均收入时,可以通过定积分来计算人均消费的总和;在计算流动性时,可以通过定积分来计算资产的变化量。
通过使用定积分的方法,经济学家可以更加精确地分析经济问题,并作出合理的决策。
第三节:定积分在生物学中的应用生物学是一个研究生命现象和生命规律的学科,而定积分在生物学中的应用也是非常广泛的。
比如,在遗传学中,可以通过定积分来计算染色体的长度;在生态学中,可以通过定积分来计算种群的增长率。
通过使用定积分的方法,生物学家可以更加准确地研究生物现象,并深入理解生命的奥秘。
第四节:定积分在工程学中的应用工程学是一个应用数学知识解决实际问题的学科,而定积分在工程学中的应用也是非常重要的。
比如,在土木工程中,可以通过定积分来计算曲线的长度、曲面的面积等;在电气工程中,可以通过定积分来计算电路中的功率、电量等。
通过使用定积分的方法,工程师可以更好地设计和分析工程问题。
总结:通过对同济大学高等数学上册第六章定积分的应用进行探讨,我们发现定积分在物理学、经济学、生物学和工程学等领域中的应用非常广泛。
定积分作为数学中的一个重要概念,不仅可以帮助我们更好地理解各个学科,还能够解决实际问题。
吴赣昌版高数第六章定积分的应用

第六章定积分的应用课后习题全解习题6—2★ 1.求由曲线xy =与直线x y =所围图形的面积。
知识点:平面图形的面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2—1∵所围区域D 表达为X —型:⎩⎨⎧<<<<x y x x 10, (或D 表达为Y-型:⎩⎨⎧<<<<y x y y 210)∴⎰-=10)(dx x x S D61)2132(1223=-=x x (⎰=-=1261)(dy y y S D) ★ 2.求在区间[0,π/2]上,曲线x y sin =与直线0=x 、1=y 所围图形的面积知识点:平面图形面积思路:由于所围图形无论表达为X —型还是Y —型,解法都较简单,所以选其一做即可 解:见图6-2—2∵所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<1sin 20y x x π, (或D 表达为Y-型:⎩⎨⎧<<<<y x y arcsin 010) ∴12)cos ()sin 1(202-=+=-=⎰πππx x dx x S D( 12arcsin 1-==⎰πydy S D)★★3.求由曲线x y =2与42+-=x y 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为Y-型时解法较简单,所以用Y-型做 解:见图6-2—3∵两条曲线的交点:⎩⎨⎧±==⇒⎩⎨⎧+-==22422y x x y x y ,∴所围区域D 表达为Y-型:⎩⎨⎧-<<<<-22422yx y y ,∴2316)324()4(2232222=-=--=--⎰y y dy y y S D(由于图形关于X 轴对称,所以也可以解为:2316)324(2)4(223222=-=--=⎰y y dy y y S D )★★4.求由曲线2x y =、24x y =、及直线1=y 所围图形的面积知识点:平面图形面积思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4∵第一象限所围区域1D 表达为Y-型:⎩⎨⎧<<<<yx y y 210,∴34322)2(22102311=⨯=-==⎰y dy y y S S D D(若用X —型做,则第一象限内所围区域=1D b a D D ,其中a D :⎪⎩⎪⎨⎧<<<<22410x y x x ,b D :⎪⎩⎪⎨⎧<<<<14212y x x ;∴12212201422[()(1]443D D x x S S x dx dx ==-+-=⎰⎰) ★★5.求由曲线xy 1=与直线x y =及2=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型,解法较简单,所以用X —型做 解:见图6—2-5∵两条曲线xy =和x y =的交点为(1,1)、(—1,—1),又这两条线和2=x 分别交于)21,2(、2) ,2( ∴所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<x y xx 121,∴22211113((ln )ln 222DS x dx x x x =-=-=-⎰★★★6.抛物线x y 22=分圆822=+y x 的面积为两部分,求这两部分的面积知识点:平面图形面积思路:所围图形关于X 轴对称,而且在第一象限内的图形表达为Y —型时,解法较简单 解:见图6—2-6,设阴影部分的面积为1D S ,剩余面积为2D S∵两条曲线x y 22=、822=+y x 的交于(2,2)±(舍去4-=x 的解),∴所围区域1D 表达为Y-型:⎪⎩⎪⎨⎧-<<<<-228222y x y y ;又图形关于x 轴对称,∴342342(2)68(2)28(220320220221+=-+=--=--=⎰⎰ππy y dy y y S D(其中222cos 18cos 22cos 22844sin 2222+=+=⨯=-⎰⎰⎰=πππdt ttdt t dyy ty ) ∴34634282-=--=πππDS ★★★7.求由曲线x e y =、x e y -=与直线1=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X —型时,解法较简单,所以用X —型做解:见图6-2—7∵两条曲线x e y =和x e y -=的交点为(0,1),又这两条线和1=x 分别交于) ,1(e 和) ,1(1-e∴所围区域D 表达为X-型:⎩⎨⎧<<<<-x x ey e x 10,∴2)()(1101-+=+=-=---⎰e e e e dx e e S x x x x D★★★8.求由曲线x y ln =与直线a y ln =及b y ln =所围图形的面积)0(>>a b知识点:平面图形面积思路:由于所围图形表达为Y-型时,解法较简单,所以用Y-型做 解:见图6-2-8∵在x ln 的定义域范围内所围区域D :⎩⎨⎧<<<<ye x by a 0ln ln , ∴a b edy e S b ay bayD-===⎰ln ln ln ln★★★★9.求通过(0,0),(1,2)的抛物线,要求它具有以下性质:(1)它的对称轴平行于y轴,且向下弯;(2)它与x 轴所围图形面积最小知识点:平面图形面积和求最值思路:首先根据给出的条件建立含参变量的抛物线方程,再求最值时的参变量解:由于抛物线的对称轴平行于y 轴,又过(0,0),所以可设抛物线方程为bx ax y +=2,(由于下弯,所以0<a),将(1,2)代入bx ax y +=2,得到2=+b a ,因此x a ax y )2(2-+=该抛物线和X 轴的交点为0=x 和aa x 2-=, ∴所围区域D :2200(2)a x ay ax a x-⎧<<⎪⎨⎪<<+-⎩ ∴23223226)2()223(])2([a a x a x a dx x a ax S aa a a D-=-+=-+=--⎰)4()2(61)]2()2()2(3[61)(233322+-=-⨯-+-⨯='---a a a a a a a a S D得到唯一极值点:4-=a ,∴所求抛物线为:x x y 642+-=★★★★10.求位于曲线x e y =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积知识点:切线方程和平面图形面积思路:先求切线方程,再作出所求区域图形,然后根据图形特点,选择积分区域表达类型 解:xe y =⇒xe y =',∴在任一点0x x =处的切线方程为)(000x x e ey x x -=-而过(0,0)的切线方程就为:)1(-=-x e e y ,即ex y =所求图形区域为21D D D =,见图6—2—10X —型下的1D :⎩⎨⎧<<<<∞-x e y x 00,2D :⎩⎨⎧<<<<xey ex x 1∴222)(12110e e e x e edx ex e dx e S x x x D=-=-=-+=∞-∞-⎰⎰ ★★★11.求由曲线θcos 2a r =所围图形的面积知识点:平面图形面积思路:作图可知该曲线是半径为a 、圆心(0 ,a )的圆在极坐标系下的表达式,可直接求得面积为2a π,也可选择极坐标求面积的方法做。
高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
第六章 定积分的应用

d
0
2
2a
2
cos
2
2
0
2 a2(1 cos )2 a2 sin2 d 8a 0
24
四、变力沿直线段作功
恒力作功:W F s
设有一变力F(x)随位移x而变,求它把物体由 a 移动到 b 所作
的功。 F(x)
•
••
Oa
bX
取 x为积分变量,它的变化区间为[a, b],
于是变力F x所做的功为:
20
解 建立直角坐标系如图。
-R
则底圆的方程为:x2 y2 R2
过任意点 x R, R作垂直于 x 轴的
O
Y
截面,截面为一直角三角形,
x x2 y2 R2
它的两条直角边的长分别为 R2 x2 及
RX
R2 x2 tan , 因而截面积为 A( x) 1 (R2 x2 )tan
一、直角坐标系下平面图形的面积
y
1. 由 y f ( x) 0 ,
y f (x)
x a, x b, y 0
所围成的曲边梯形的面积为:
b
A a f ( x) dx
2. 由上、下两曲线 y 1x,
y 2x及 x a , x b
所围成的图形面积为:
o xa
y
xb x
y 2x
y 1x
x
1 x
dx
x2 2
ln
2 x
1
3 2
ln
2
2. y e x , y e x 与直线x 1.
解 如图所示, 所求面积为
A 1 e x e x dx 0
ex ex
1 0
e e1 2
y x
1,1
六章定积分应用ppt课件

WF(ba)
F
a
b
若F 为变力,力对
物体所作的功W=?
例1 带电量为q0与q1的正电荷分别放在空间两点, 求当q1沿a与b连线从a移到b时电场力所作的功。
解: 如图建立坐标系:在上述移动过程中,电场
对q1作用力是变化的。
(i)取r为积分变量,则 r[a,b] q0
q1
(ii)相应于[a,b]上任一小区间[r,r+dr] o a
br
的功元素
dW Fdrkq0q1dr
(iii)所求功
r2
W
b
k
a
qr0q21dr
kq0q1
(1) r
b a
kq0q1(1ab1)
例2 在底面积为S的圆柱形容器中盛有一定量的气体。在等 温条件下,由于气体膨胀,把容器中的一个活塞(面积为S) 从点a推移至b,计算在移动过程中气体压力所作的功。
解: 如图建立坐标系,活塞位置可用坐标x表示。
引力
问题的提出:从物理学知道,质量分别为m1、m2,相
距为r的两质点间的引力大小为
F Gmr1m2 2
其中G为引力系数,引力的方向沿着两质点的连线。
如何计算一根
细棒对一个质点的 引力F=?
r
o
m1
m2 x
例6 设有一长度为l、线密度为的均匀细棒,在
其中垂线上距棒a单位处有一质量为m 的质点M。
试计算该棒对质点M的引力。
x
问题的解决方法: 定积分元素法
以液面为y轴,x轴铅直向下。
设平板铅直位于液体中形状如图。
o
距离液面x、高为dx、宽为f(x) 的
矩形平板所受压力的近似值,即压力 元素为
a x x+dx
定积分及其应用

①.若a=b, 则
b
f (x)dx 0.
a
②.若a>b, 则
b
a
f(x)dx f(x)dx.
a
b
从而可消除对定积分上下限的大小限制.
四.定积分的几何意义
由定义1知, 当连续函数
f (x) 0 且a<b时, 定积分
b f ( x ) d x 表示一个在 x 轴上方的曲边梯形的面积; a
当 f (x) 0, 且 a < b时,
[a, b]的一个局部(小区间)来看, 它也是一个变量;
但因ƒ(x)连续, 从而当Δ x →0时, Δy→0,
故可将此区间的高近似看为一个常量,
从而此区间对应的小窄曲边梯形CEFH
y
y=ƒ(x)
A
C
B
Δy {
DH
的面积近似等于小窄矩形DEFH的面积.
oa
EF
x x+Δx b x
因而, 如果把区间[a, b]任意地划分为n个小区间, 并在每一
就有定积分的定义:
定义1.设ƒ(x)在[a, b]上有定义, 点 a x 0 x 1 x 2 x n 1 x n b
将区间[a, b]任意地划分为n个小区间; 每个小区间
[ xi1 , xi ]
的长度为 xi xi xi1(i1,2, ,n),在每个小区间 [ xi1 , xi ]
n
个区间上任取一点, 再以该点的高来近似代替该小区间上窄曲边 梯形的高, 从而每个窄曲边梯形就可近似地
视为一个小窄矩形, 而且全部窄矩形的面积之和也可作为曲边 梯形面积的近似值.
要想得精确值, 只需区间[a, b]的分法无限细密(即每个小区 间的长度Δ x →0)时, 全部窄矩形的面积之和的极限一定是曲边
定积分及其应用

下面我们将应用这一方法来讨论一些问题.
、平面图形的面积
根据围成平面图形的曲线的不同情况,我们分为以下两种情形
(1)由一条曲线 和直线x=a,x=b(a<b)及x轴围成的平面图形
O
(8,4)
-2
y
y+dy
4
A1
A2
(2,-2)
y2=2x
y=x-4
x
y
图6-11
O
x
a
b
xy=f(x)ຫໍສະໝຸດ 图 6-13( b) y x+dx
x
1
x
O
图6-14
x
图6-15
(a)
y
y+dy
2
1
y
O
(b)
O
a
A(x)
b
x
图 6-16
O B x a P Q
01
02
A
a
x
R
03
图6-17
y
当 在区间[a,b]上的值有正有负时,则由曲线 和直线x=a,x=b(a<b)及 x轴围成的曲边梯形的面积A是在x轴上方和下方的曲边梯形面积之差.
O
x
b
a
y=f ( x)
y=g( x)
图
图 6-9
x
y
O
x
x+dx
y
O
图6-10
y
a
b
x+dx
x
-a
本章的基本要求 理解定积分的概念,了解定积分的性质,知道函数连续是可积的充分条件,函数有界是可积的必要条件;理解变上限积分作为其上限的函数及其求导定理,熟练掌握牛顿―莱布尼茨公式;熟练掌握定积分的换元法与分部积分法;掌握用定积分表达一些几何量(如面积和体积)的方法;了解反常积分及其收敛、发散的概念等. 重点 定积分的概念和性质, 牛顿―莱布尼茨公式, 定积分换元法和分部积分法, 利用定积分计算平面图形的面积.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 定积分的应用第一节 定积分的元素法教学目的:理解和掌握用定积分去解决实际问题的思想方法即定积分的元素法 教学重点:元素法的思想 教学难点:元素法的正确运用 教学内容:一、 再论曲边梯形面积计算],[b a 上连续,且0)(≥x f ,底为],[b a1.化整为零用任意一组分点 b x x x x x an i i =<<<<<<=- 110将区间分成),,2,1(1n i x x x i i i =-=∆-并记 },,,m ax {21n x x x ∆∆∆= λ相应地,曲边梯形被划分成n个窄曲边梯形,第i个窄曲边梯形的面积记为ni A i ,,2,1, =∆。
于是 ∑=∆=ni iA A 12.以不变高代替变高,以矩形代替曲边梯形,给出“零”的近似值 ),,2,1(],[)(1n i x x x f A i i i i i i =∈∀∆≈∆-ξξ 3.积零为整,给出“整”的近似值 ∑=∆≈ni iixf A 1)(ξ4.取极限,使近似值向精确值转化⎰∑=∆==→bani iidx x f x f A )()(lim1ξλ上述做法蕴含有如下两个实质性的问题:(1)若将],[b a 分成部分区间),,2,1(],[1n i x x i i =-分量),,2,1(n i A i =∆,而∑=∆=ni i A A 1],[b a 具有可加性。
(2)用i i x f ∆)(ξ近似i A ∆,误差应是i x ∆的高阶无穷小。
只有这样,和式∑=∆ni iixf 1)(ξ))()(()(i i i i i i i x o x f A x f A ∆=∆-∆∆≈∆ξξ通过对求曲边梯形面积问题的回顾、分析、提炼, 我们可以给出用定积分计算某个量的条件与步骤。
二、元素法1.能用定积分计算的量U ,应满足下列三个条件(1) U ],[b a 有关;(2) U 对于区间],[b a 具有可加性;(3) U 部分量i U ∆可近似地表示成i i x f ∆⋅)(ξ。
2(1) 根据问题,选取一个变积分变量,并确定它的变化区间(2)dxxfU)(≈∆)dxxfdU)(=。
间,得⎰=b adx xfU)()()(bxadxxfdU≤≤=因此,也称此法为微元法。
小结:元素法的提出、思想、步骤(注意微元法的本质)作业:作业卡第二节 平面图形的面积教学目的:学会用元素法计算平面图形的面积 教学重点:直角坐标系下平面图形的面积计算 教学难点:面积元素的选取 教学内容:一、直角坐标的情形由曲线)0)(()(≥=x f x f y 及直线与与由曲线与及直线,⎰⎰⎰-=-=bababadxxgxfdxxgdxxfA])()([)()(其中:dxxgxf])()([-为面积元素。
例1 计算抛物线xy22=与直线4-=xy所围成的图形面积。
解:1、先画所围的图形简图解方程⎩⎨⎧-==422xyxy, 得交点:)2,2(-和)4,8(。
2. 选择积分变量并定区间3. 给出面积元素在20≤≤x 上,dxx dx x x dA 22])2(2[=--=在82≤≤x 上,dxx x dx x x dA )24(])4(2[-+=--=4. 列定积分表达式18213224324]24[22822232023822=⎥⎦⎤⎢⎣⎡-++=-++=⎰⎰x x x xdxx x dx x A42≤≤-ydy y y dA ]21)4([2-+= 18642)214(4232242=-+=-+=--⎰y y y dy y y A显然,解法二较简洁,这表明积分变量的选取有个合理性的问题。
例2 求椭圆12222=+by a x 所围成的面积 )0,0(>>b a 。
解:据椭圆图形的对称性,整个椭圆面积应为位于第一象限内面积的4倍。
a x ≤≤0, 221ax b y -=dx ax b ydx dA 221-==故 dx a x b ydx A aa ⎰⎰-==0220144( * )作变量替换 t a x cos = )20(π≤≤t则 t b ax b y sin 122=-=, tdt a dx sin -=⎰-=02)sin )(sin (4πdt t a t b A( * * )ab ab dt t ab πππ=⋅-⋅==⎰2!!2!)!12(4sin 422 二、极坐标情形设平面图形是由曲线 )(θϕ=r 及射线αθ=,βθ=所围成的曲边扇形。
取极角θ为积分变量,则 βθα≤≤,在平面图形中任意截取一典型的面积元素A ∆,它是极角变化区间为],[θθθd +的窄曲边扇形。
A ∆的面积可近似地用半径为)(θϕ=r , 中心角为θd 的窄圆边扇形的面积来代替,即θθϕd A 2])([21≈∆从而得到了曲边梯形的面积元素 θθϕd dA 2])([21=从而⎰=βαθθϕd A )(212例3解: 由于心脏线关于极轴对称,ππθθθθθθπθπππ2224220422022022232!!4!)!14(8cos 82cos42cos 2)cos 1(212a a tdt ad ad a d a A t =⋅-==⎪⎭⎫ ⎝⎛=+=⎰⎰⎰⎰=令小结: 求在直角坐标系下、极坐标系下平面图形的面积. 作业: 作业卡 P67~P68第三节 体积教学目的:掌握用定积分的元素法计算体积 教学重点:体积的计算 教学难点:体积元素的选取 教学内容:一、旋转体的体积旋转体是由一个平面图形绕该平面内一条定直线旋转一周而生成的立体,该定直线称为旋转轴。
],[b a x ∈,对于区间],[b a 上的任一区间],[dx x x +,它)(x f 为底半径,dx 为高的圆柱体体积。
即:体积元素为[]dx x f dV 2)(π=所求的旋转体的体积为[]dx x f V ba⎰=2)(π例 1 求由曲线x hry ⋅=及直线0=x ,)0(>=h h x 和x 轴所围成的三角形绕解:取x 为积分变量,则],0[h x ∈h r dx x h r dx x h r V hh20222023πππ=⋅=⎪⎭⎫⎝⎛=⎰⎰二、平行截面面积为已知的立体的体积( 截面法 )由旋转体体积的计算过程可以发现:如果知道该立体上垂直于一定轴的各个截面的面积,那么这个立体的体积也可以用定积分来计算。
取定轴为x 轴, 且设该立体在过点a x =,b x =且垂直于x 轴的两个平面之内, 以)(x A 表示过点x 且垂直于x 轴的截面面积。
取x 为积分变量,它的变化区间为],[b a 。
立体中相应于],[b a 上任一小区间],[dx x x +的一薄片的体积近似于底面积为)(x A ,高为dx 的扁圆柱体的体积。
即:体积元素为 dx x A dV )(=于是,该立体的体积为 dx x A V ba⎰=)(例2 计算椭圆12222=+by a x解:这个旋转体可看作是由上半个椭圆22x a aby -=及x 轴所围成的图形绕x 轴旋转所生成的立体。
在x 处)(a x a ≤≤-222)()(x a ab x A -⋅=π 2222234)()(ab dx x a a b dx x A V aa aaππ=-==⎰⎰-- 例3 计算摆线的一拱)20()cos 1()sin (π≤≤⎩⎨⎧-=-=t t a y t t a x 以及0=y 所围成的平面图形绕y 轴旋转而生成的立体的体积。
解:dy y xdy y x V aa)()(20212022⎰⎰⋅-⋅=ππ⎰⎰--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a⎰--=ππ2022sin )sin (tdt t t a336a π=请自行计算定积分 ⎰-π202sin )sin (tdt t t小结: 旋转体体积平行截面已知的立体的体积 作业: 作业卡 P69第四节 平面曲线的弧长教学目的:掌握用定积分元素法计算平面曲线的弧长, 教学重点:平面曲线弧长的计算 教学难点:弧长元素的选取 教学内容:一、直角坐标情形设函数)(x f 在区间],[b a 上具有一阶连续的导数,计算曲线)(x f y 的长度取x 为积分变量,则],[b a x ∈,在],[b a 上任取一小区间],[dx x x +,那么这一小区间所对应的曲线弧段的长度s ∆可以用它的弧微分ds 来近似。
于是,弧长元素为[]dx x f ds 2)(1'+=弧长为[]⎰'+=badx x f s 2)(1例1 计算曲线)(3223b x a x y ≤≤=的弧长。
解:dx x dx x ds +=+=1)(12])1()1[(32)1(321232323a b x dx x s baba+-+=+=+=⎰二、参数方程的情形若曲线由参数方程)()()(βαφϕ≤≤⎩⎨⎧==t t y t x给出,计算它的弧长时,只需要将弧微分写成[][]dt t t dy dx ds 2222)()()()(φϕ'+'=+=的形式,从而有[][]⎰'+'=βαφϕdt t t s 22)()(例2解: 圆的参数方程为 )20(sin cos π≤≤⎩⎨⎧==t tr y t r xrdt dt t r t r ds =+-=22)cos ()sin (r rdt s ππ220==⎰三、极坐标情形若曲线由极坐标方程)()(βθαθ≤≤=r r给出,要导出它的弧长计算公式,只需要将极坐标方程化成参数方程,再利用参数方程下的弧长计算公式即可。
曲线的参数方程为此时θ变成了参数,且弧长元素为θθθθθθθd r r d r r d r r dy dx ds 22222222)()cos sin ()()sin cos ()()('+=+'+-'=+= 从而有⎰'+=βαθd r r s 22例3解:θθθd a a ds 222)sin ()cos 1(-++=θθd a 2cos 2=ad d a d a d a s 8]cos cos [4cos 42cos22220=-+===⎰⎰⎰⎰πππππϕϕϕϕϕϕθθ小结: 平面曲线弧长的概念弧微分的概念求弧长的公式 直角坐标系下 参数方程 极坐标系下作业: 作业卡 P70第五节 功、水压力和引力教学目的:理解和掌握用定积分的元素法,解决物理上的实际问题 功,水压力和引力教学重点:如何将物理问题抽象成数学问题 教学难点:元素法的正确运用 教学内容:一、变力沿直线所作的功例 1 1 ,现将这球从水中取出,需作多少功? 解:建立如图所示的坐标系)(x F 为:浮F G x F -=)(其中:g r G ⋅⋅=1343π是球的重力,浮F 表示将球缺取出之后,仍浸在水中的另一部分球缺所受的浮力。