有理数——初一数学竞赛系列讲座(11)
七年级数学上册教学课件《有理数》

巩固练习
归纳总结
1.2 有理数
小学里学过的数除0外都是正数;正数前面添上“-” 号的数是负数;0既不是正数,也不是负数,它表示正 数、负数的界限.
有理数的分类方法不是唯一的,可以按整数和分数分成 两大类,也可以按正有理数、零、负有理数分成三大类.
探究新知
1.2 有理数
素养考点 2 把有理数按要求分类
拓广探索题
某中学对九年级男生进行引体向上的测试,以能做10个为标 准,超过的次数用正数表示,不足的次数用负数表示,其中 8名男生的成绩如下:+2,-5,0,-2,+4,-1,-1,+3.
(1)达到标准的男生占百分之几?
(2)他们共做了多少个引体向上? 解:(1)48 100%=50% ,达到标准的男生占50%.
课堂检测
1.2 有理数
2. 下列各数:
-2,5,
1 3
,0.63,0,7,-0.05,-6,9,
11 5
,
5 4
.
其中正数有_6___个,负数有__4__个,正分数有__3__个,
负分数有__2__个,自然数有__4__个,整数有__6__个.
课堂检测
3. 判 断: (1)0是整数.( √ ) (2)自然数一定是整数.( √ ) (3)0一定是正整数.( × ) (4)整数一定是自然数.( × )
C.12
D.1
2. 四个数-3, 0, 1, 2,其中负数是( A )
A. -3
B. 0
C. 1
D. 2
课堂检测
基础巩固题
1. 下列说法中,正确的是( B ) A. 正整数、负整数统称为整数 B. 正分数、负分数统称为分数 C. 零既可以是正整数,也可以是负整数 D. 一个有理数不是正数就是负数
(完整版)七年级上专题讲座有理数及其运算绝对值篇

第二讲 有理数及其运算②——再探绝对值绝对值,不仅仅是有理数中的一个重要的概念,也是初中数学中一个异常活跃且举足轻重的元素。
它不但描述了有理数与数轴的密切联系,而且是有理数运算的基本工具,可以说深刻理解了绝对值概念,是学好初中数学的第一个关品。
一 知识点精讲1、定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,记作:| a |。
2、去绝对值符号的法则。
0000a a a a a a >⎛⎫ ⎪== ⎪ ⎪<⎝⎭- 00a a a a a ≥⎛⎫ ⎪= ⎪ ⎪≤⎝⎭- 3、性质:| a | ≥0,即数a 的绝对值具有非负性。
4、技能构建。
(1)数轴上,右边的数比左边的数大,如图a -b<0,b -a>0,a +b<0(2)多项式的相反数,用去括号法则理解为:括号前是负号,把括号和负号一起去掉,括号内每项都要变号,也可以直接理解为每项都变号。
如a -b 的相反数是:-(a -b )=-a +b(3)|a -b|表示数a 到数b 的两点间的距离。
(4)若|a|=b ,且b ≥0,则有a =±b(5)|ab|=|a|·|b|a ab b=(b ≠0) |a| 2 =|a 2 |=a 2(6)充分利用“数轴”这个工具来进行“数形结合”的思考,这是一种很重要的数学方法,本专题也要用到“分类讨论思想”。
它必须遵循两条原则:①每一次分类要按照同一标准进行;②不重复,不遗漏。
二 典型例题讲解及思维拓展:例1:已知,|a|=1,|b|=2,则a +b 的值是_________。
例2:a 是任意有理数,则|-a|-a 的值是等于___________。
例3:如图,化简|a|-|a +b|+|c -a|-|a -|a||例4:已知,x<y<0,设M=|x|,N=|y|,p= ,则M 、N 、p 的大小关系是___________。
例5:(湖北省选拔赛题)若|a|=5,|b|=3,且|a-b|=b -a ,那么|a+b|=___。
七年级超难数学竞赛题带解析

七年级超难数学竞赛题带解析一、代数部分。
1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。
- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。
- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。
- 那么a^b = 3^-2=(1)/(9)。
2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。
- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。
- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。
- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。
3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。
- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。
4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。
- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。
人教版七年级数学上册第一章《有理数》(大单元教学设计)

5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。
初中数学北师大版七年级上册第二单元第11课《有理数的混和运算》优质课公开课教案教师资格证面试试讲教案

初中数学北师大版七年级上册第二单元第11课《有理数的混和运算》优质课公开课教案教师资格证面试试讲教案
1重点难点
1、理解掌握有理数混合运算的法则,用运算律对算式进行简便运算.让学生独立发现提出自己的计算方法。
2、混合运算要能够把各种运算在混合中分离出来,并先乘方运算,后乘除,再加减运算.如有括号要先算括号内部的。
3、如何将实际问题归纳抽象为数学模型并加以计算和解决。
2教学过程
2.1第一学时
2.1.1教学目标
知识目标: 掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算(以三步为主)。
能力目标: 学生在运算过程中通过观察、分析、交流能合理使用运算律简化运算。
情感目标:学生能主动参与、勇与发现、学会合作探索交流的学习方式。
2.1.2学时重点
理解掌握有理数混合运算的法则,用运算律对算式进行简便运算.让学生独立发现提出自己的计算方法。
2.1.3学时难点
1、混合运算要能够把各种运算在混合中分离出来,并先乘方运算,后乘除,再加减运算.如有括号要先算括号内部的。
2、如何将实际问题归纳抽象为数学模型并加以计算和解决。
2.1.4教学活动
活动1【导入】有理数的混合运算教学过程
第一环节:复习回顾,引入新课。
初中数学竞赛辅导资料(初一用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除。
0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y=6。
∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x =8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。
初中数学(初一)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)

初一数学竞赛讲义重难点有效突破知识点梳理及重点题型举一反三练习专题01 质数那些事阅读与思考一个大于1的自然数如果只能被1和本身整除,就叫作质数(也叫素数);如果能被1和本身以外的自然数整除,就叫作合数;自然数1既不是质数,也不是合数,叫作单位数.这样,我们可以按约数个数将正整数分为三类:关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4.2.1既不是质数,也不是合数;2是唯一的偶质数.3.若质数|,则必有|或|.4.算术基本定理:任意一个大于1的整数N能唯一地分解成个质因数的乘积(不考虑质因数之间的顺序关系):N=,其中,为质数,为非负数(=1,2,3,…,).正整数N的正约数的个数为(1+)(1+)…(1+),所有正约数的和为(1++…+)(1++…+)…(1++…+).例题与求解【例1】已知三个质数,,满足+++=99,那么的值等于_________________.(江苏省竞赛试题) 解题思想:运用质数性质,结合奇偶性分析,推出,,的值.【例2】若为质数,+5仍为质数,则+7为( )A.质数B.可为质数,也可为合数C.合数D.既不是质数,也不是合数(湖北省黄冈市竞赛试题) 解题思想:从简单情形入手,实验、归纳与猜想.【例3】求这样的质数,当它加上10和14时,仍为质数.(上海市竞赛试题) 解题思想:由于质数的分布不规则,不妨从最小的质数开始进行实验,另外,需考虑这样的质数是否唯一,按剩余类加以深入讨论.【例4】⑴将1,2,…,2 004这2 004个数随意排成一行,得到一个数,求证:一定是合数.⑵若是大于2的正整数,求证:-1与+1中至多有一个质数.⑶求360的所有正约数的倒数和.(江苏省竞赛试题) 解题思想:⑴将1到2 004随意排成一行,由于中间的数很多,不可能一一排出,不妨找出无论怎样排,所得数都有非1和本身的约数;⑵只需说明-1与+1中必有一个是合数,不能同为质数即可;⑶逐个求解正约数太麻烦,考虑整体求解.【例5】设和是正整数,≠,是奇质数,并且,求+的值.解题思想:由题意变形得出整除或,不妨设.由质数的定义得到2-1=1或2-1=.由≠及2-1为质数即可得出结论.【例6】若一个质数的各位数码经任意排列后仍然是质数,则称它是一个“绝对质数”[如2,3,5,7,11,13(31),17(71),37(73),79(97),113(131,311),199(919,991),337(373,733),…都是质数].求证:绝对质数的各位数码不能同时出现数码1,3,7,9.(青少年国际城市邀请赛试题) 解题思想:一个绝对质数如果同时含有数字1,3,7,9,则在这个质数的十进制表示中,不可能含有数字0,2,4,5,6,8,否则,进行适当排列后,这个数能被2或5整除.能力训练A级1.若,,,为整数,=1997,则=________.2.在1,2,3,…,这个自然数中,已知共有个质数,个合数,个奇数,个偶数,则(-)+(-)=__________.3.设,为自然数,满足1176=,则的最小值为__________.(“希望杯”邀请赛试题) 4.已知是质数,并且+3也是质数,则-48的值为____________.(北京市竞赛试题) 5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是( )A.4B.8C.12D.06.在2 005,2 007,2 009这三个数中,质数有( )A.0个B.1个C.2个D.3个(“希望杯”邀请赛试题) 7.一个两位数的个位数字和十位数字变换位置后,所得的数比原来的数大9,这样的两位中,质数有()A.1个B.3 个C.5个D.6 个(“希望杯”邀请赛试题) 8.设,,都是质数,并且+=,<.求.9.写出十个连续的自然数,使得个个都是合数.(上海市竞赛试题)10.在黑板上写出下面的数2,3,4,…,1 994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由.(五城市联赛试题)11.用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为cm规格的地砖,恰用块,若选用边长为cm规格的地砖,则要比前一种刚好多用124块,已知,,都是正整数,且(,)=1,试问这块地有多少平方米?(湖北省荆州市竞赛试题)B级1.若质数,满足5+7=129,则+的值为__________.2.已知,均为质数,并且存在两个正整数,,使得=+,=×,则的值为__________.3.自然数,,,,都大于1,其乘积=2 000,则其和++++的最大值为__________,最小值为____________.(“五羊杯”竞赛试题) 4.机器人对自然数从1开始由小到大按如下的规则染色:凡能表示为两个合数之和的自然数都染成红色,不合上述要求的自然数都染成黄色,若被染成红色的数由小到大数下去,则第1 992个数是_______________.(北京市“迎春杯”竞赛试题) 5.若,均为质数,且满足+=2 089,则49-=_________.A.0B.2 007C.2 008D.2 010(“五羊杯”竞赛试题) 6.设为质数,并且7+8和8+7也都为质数,记=77+8,=88+7,则在以下情形中,必定成立的是()A.,都是质数B.,都是合数C.,一个是质数,一个是合数 D.对不同的,以上皆可能出现(江西省竞赛试题) 7.设,,,是自然数,并且,求证:+++一定是合数.(北京市竞赛试题)8.请同时取六个互异的自然数,使它们同时满足:⑴6个数中任意两个都互质;⑵6个数任取2个,3个,4个,5个,6个数之和都是合数,并简述选择的数符合条件的理由.9.已知正整数,都是质数,并且7+与+11也都是质数,试求的值.(湖北省荆州市竞赛试题)10. 41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(l) 能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2) 能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举出一例;若不能办到,请说明理由.专题01 质数那些事例1 34例2 C例3 3符合要求提示:当p=3k+1时,p+10=3k+11,p+14=3(k+5),显然p+14是合数,当p=3k+2时,p+10=3(k+4)是合数,当p=3k时,只有k=1才符合题意.例4 (1)因1+2+…+2004=×2004×(1+2004)=1002×2005为3的倍数,故无论怎样交换这2004个数的顺序,所得数都有3这个约数.(2)因n是大于2的正整数,则-1≥7,-1、、+1是不小于7的三个连续的正整数,其中必有一个被3整除,但3不整除,故-1与+1中至多有一个数是质数.(3)设正整数a的所有正约数之和为b,,,,…,为a的正约数从小到大的排列,于是=1,=a.由于中各分数分母的最小公倍数=a,故S===,而a=360=,故b=(1+2++)×(1+3+)×(1+5)=1170.==.例5 由=,得x+y==k.(k为正整数),可得2xy=kp,所以p整除2xy且p为奇质数,故p整除x或y,不放设x=tp,则tp+y=2ty,得y=为整数.又t与2t-1互质,故2t-1整除p,p为质数,所以2t-1=1或2t-1=p.若2t-1=,得t=1,x=y=p,与x≠y矛盾;若2t-1=p,则=,2xy=p(x+y).∵p是奇质数,则x +y为偶数,x、y同奇偶性,只能同为xy=必有某数含因数p.令x=ap,ay=,2ay=ap+y.∴y=,故a,2a-1互质,2a-1整除p,又p是质数,则2a-1=p,a=,故x==,∴x+y=+=。
初中数学竞赛辅导系列

例1 化简分式:
例2 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求
15
15
此时, x 105
若a 3,b 7,则100 c 150 ,此时无解
21
21
综上,x 102,104,105,110,114,128,130,135,136,138
余数问题
在整数除法运算中,除了前面说过的“能整除”情形 外,更多的是不能整除的情形.
被除数=除数×商+余数. 通常把这一算式称为带余除式,它使我们容易从“余
例2 有四个学生,他们的年龄恰好是一个比一个大1岁, 而他们的年龄的乘积是5040,那么,他们的年龄各是多少 ?
解:设他们的年龄分别是x-1, x , x+1 , x+2
(x 1)x(x 1)(x 2) 5040
(x2 x)(x2 x 2) 5040
(x2 x)2 2(x2 x) 5040 0
(4)能被4(或25)整除的数的特征:如果一个整数的末 两位数能被4(或25)整除,那么它必能被4(或25)整除.
(5)能被8(或125)整除的数的特征:如果一个整数的 末三位数能被8(或125)整除,那么它必能被8(或125) 整除.
(6)能被11整除的数的特征:如果一个整数的奇数位数 字之和与偶数位数字之和的差(大减小)能被11整除,那 么它必能被11整除.
质数中只有一个偶数,就是2,其他质数都是奇数.但 是奇数不一定是质数,例如,15,33,….
一个整数的因数中,为质数的因数叫做这个整数的质 因数,例如,2,3,7,都是42的质因数,6,14也是42的 因数,但不是质因数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
—
2 ~3
4
—
3 4 ~1
—
1 — 2 3 4
—
3 —4 1
—
4 O
2
O ~2
O 一4 1
2 O Байду номын сангаас
2
3 —2 ~ 1
1 —4 3
3 2
—
1 4 —3
维普资讯
0 , 以±1 ”所 必须填在一组对角上, 只能填在另一 组 ±3
了这些发现 , 填起幻方来就方便快捷 了.
1 解答 填写方案如图 4 .
—
1
2
3
4
4 O
评注
根 据 图形 的 对称 知 识 , 方 既 是 “ 幻 中
维普资讯
有 理 数
— —
初 一数学竞赛 系列讲座 ( 1 1)
江苏省 盐城 中学 张顺和
问题 I小明家有 1 袋小麦要到市场出售 , 0 爸爸让小明算一下 小麦的总重量 , 现称得 1 袋小麦的重量分别为 9 g 9 g8 ,6 , 0 7 ,5 ,6 9 k k
八组, 仔细观察这八组数 , 发现 0 重复用 了四次 ; , ±1 ±3 各用了三次 ; ±2 ±4 , 只分别用了两次 , 而横 、 斜对角 4 竖、 次经过中心, 以, 所 有且只
有0 应当填在幻方的中心空格 ; 竖、 横、 斜对 角三组数过一个角上的角 ,
所以四个角上的空格只能分别填上±1 ±3又 由于“ , , 互为相反数的和为
图9
图 1 0
图 1 1
图 1 2
例 3 小明、 小华、 小丽的家都与超市在 同一条东西 向的公路
边, 一辆货 车从 超 市 出发 , 向东走 了 3k 到 达小 华 家, 续 走 了15 m m 继 . k
到达 小 明家 , 然后 向西走 9 5 m, . k 到达小 丽 家 , 后 回到超 市. 最
‘‘
例 2 填写 三 阶幻方
将 一4 ,一3 ,一2 ,一1 ,1 , , ,0 ,2 3 4这 9个 数 字
分别填 入 图 3方 阵( 幻方 ) 9个 空格 中, 得横 、 、 的 使 竖 斜 对 角所 有三个 数相 加 的和 为“ ” 0. 图3
分析
怎样才能填得又快又准, 且不漏不重呢?这就要通过
9 , , , ,8 ,1 g爸爸刚把每袋小麦的重量报完, 4 9 3 8 7 8 8 9 9 k . 小 明口算立即报出了结果为 95 g你能知道小明为什么算得这么快? 2 , k 问题 Ⅱ 小丽的姨妈定居美国纽约, 国庆节期间姨妈要 回来 , 小丽想
请姨妈把手提电脑带回, 某天下午 5 点钟 , 小丽想打电话告诉姨妈 , 你觉 得 小丽 此时打 电话 合适 吗 ? ( 北京 与纽约 的时 差是 +1 小 时 ) 3
图5
3 —2 ~ 1
~
图6
1 —4 3
图7
3 2
4
—
图8
1
1 4 —3
—
—
4 O
4
~
2
O ~2
O ~4
—
2 O
2
1
2 —3
3 4 ~1
1 — 2 3
3 —4 1
1 .整数和分数统称 为有理数 , 由于整数都可 以写成分母为 1 的分
数, 所以有理数总可以表示成姜的形式( q ,为整数, ≠ 0 且 , 互 , q
质 )常用有理数的这种表达形式说明或判断一个数是否为有理数. . 2 .一个数的绝对值就是数轴上表示这个数的点到原点的距离, 显
推敲题意 , 仔细观察 , 认真分析 , 以发现规律. 题中要求“ 使得横 、 斜对 竖、 角的所有 3 个数相加的和 为 0 , ”则横三组 , 竖三组 , 斜对角两组 , 共有八
组, 再分析给定的 9个数可以组成 3 个数和为 0的有 : , , ; , 1 2 一3 一1
一
2 3 1 ,一4 一1 一 3 4 1 一1 0 3 一3 0 4 一4 0 正巧 也是 , ; ,3 ; , , ;, , ;, , ;, , ,
然, 任何数的绝对值都是非 负数 , J ≥ 0 数轴的直观性为我们解决 即 日J . 绝对值问题提供 了方便 , 对于含绝对值的式子的化简常常用分类讨论的
数学 思想 .
3 .有理数 的四则运算具有封 闭性, 即两个 有理数 的和 、 、 商 差 积、 ( 除数不为零) 仍是有理数, 有理数的运算满足交换律 、 结合律 、 分配律.
维普资讯
0
A
C
图2
< 0< a< c或 b< a<
又由 a b c , , 之和与其中之 相 反数 , 以原 点只 能 在 点 所 B, A之间且是线段 B 的中点( A 如图 2 , )其中 b=- a c 3 , - , 一 a 所求比
‘‘
例 l 如图 1在数轴上( , 未标 出原点及单位长度) 点 A是线 ,
段 B 的 中点 , C 已知 点 A, C对应 的 三个数 日 , B, ,b c之积 是负 数 , 三 这 数 之和 与其 中一数相 等 , 户为 日 b c三数 中两数 的比值 , 设 ,, 求 的最 大
的最大值为 一3 最小值为 手 一塑 一 . , 一3
.
解答 评注
略. 研 究 有 理 数 的性 质 和 问题 , 充 分利 用 数 轴 的直 观 应
性, 这有 利 于把 抽 象的数 形 象化 , 而 便 于理 解 , 时 , 要 善 于把 形 中 从 同 也
的信 息转化 为数 的结论 .
3 —2 — 1
心 对称 图形” 又是“ 对称 图形” 当找 到 一种 填 法后 , 轴 , 只 要 绕 着幻方 的 中心 旋 转 9 。 得 到 了第 二 种 填 法 ( 4 O就 共 种 )再根 据 轴对称 的知 识把 这 四 种填 法对 折 , , 就得 到 另外 四种填 法 ( 图