2019年中考备考:中考模拟卷三角形压轴题精选含精品解析
2019年山西省中考数学复习模拟卷压轴【几何模型问题】解析

2019年山西省中考数学复习模拟卷压轴【几何模型问题】精选解析模型一、一线三等角型基本经验图形1.如图, 折痕EF,D 是等边△ABC 边AB 上的一点,且A 。
: BD=1: 2,现将如也(7折叠,.使点C 与D 重合, 点E 、F 分别在AC 和BC 上,则CE: CF=( )563A. 一44B.—5 c.6D.一7【答案]B【解析】...三角形ABC 为等边三角形,.•.ZA=£B=,C=60°,又•折叠△ABC,使得点C 恰好与边AB 上的点D 重合,折痕为EF, :. ZEDF=ZC=60°, CE=CE,CF=CF,二 /ADE+/FDB=120°, :. ZAED =ZFDB,・.・ 4AEDs/\BDF,AD DEfiF _ FD .AE * BD设等边△ABC 边长为 6 个单位,CE=x, CF=y, AE=6 - x, BF=6 - y,6—x2x147----=-----=—,解得x=—,y=—,x:y=4:5,故选择B.4 6-y y5-272.如图,在ZSABC中,AB=AC=LO,点D是边BC±一动点(不与B,C重合),ZADE=ZB=a,DE交AC于点E,且cosa=—.下列结论:①△ADEs^ACD;②当BD=6时,AABD与Z\DCE全等;5③左DCE为直角三角形时,BD为8或类;©0<CE<6.4.其中正确的结论是.(把你认2为正确结论的序号都填上)[答案]①②③④【解析】VAB=AC,.,.ZB=ZC,又V ZADE=ZB.\ZADE=ZC,AAADE^AACD故①正确;作4AG J_BC于G,AB=AC=10,/ADE=NB=a,cosa=—,BG=ABcosB,.•.BC=2BG=2ABcosB=2xl0xy=16,VBD=6,.,.DC=10,.,.AB=DC,AAABD^ADCE(ASA).故②正确;当ZAED=90°时,由①可知:AADE^AACD,A ZADC=ZAED,V ZAED=90°,4.•.ZADC=90°,即AD_LBC,VAB=AC,.-.BD=CD,A ZADE=ZB=a且cosa=—,AB=10,BD=8.当ZCDE=90。
(名师整理)最新数学中考专题冲刺《三角形》压轴真题训练(含答案)

冲刺中考《三角形》压轴真题训练1.(2019•鄂州)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E、F分别为DB、BC 的中点,连接AE、EF、AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系式.2.(2019•江西)在图1,2,3中,已知▱ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.(1)如图1,当点E与点B重合时,∠CEF=°;(2)如图2,连接AF.①填空:∠FAD∠EAB(填“>”,“<“,“=”);②求证:点F在∠ABC的平分线上;1(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求的值.3.(2019•扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB 在直线l2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.请依据上述定义解决如下问题:(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=;(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)═9,求△ABC的面积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD),24.(2019•枣庄)在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.5.(2019•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.6.(2019•呼和浩特)如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;3(3)若=,求证:△ABC是直角三角形.7.(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:△AGE≌△CHF;(2)连接AC,线段GH与AC是否互相平分?请说明理由.8.(2019•北京)已知∠AOB=30°,H为射线OA上一定点,OH =+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.49.(2019•河北)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /510.(2019•赤峰)【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;【拓展引申】(3)如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD 上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.611.(2019•长春)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G ,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF 的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为.712.(2019•鸡西)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若∠ABC=30°,求证:DF+BH =BD;(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.13.(2019•铁岭)如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC =180°.(1)如图1,当∠B=45°时,线段AG和CF 的数量关系是.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.814.(2019•阜新)如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD =CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.15.(2019•锦州)已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.9(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.10参考答案1.(1)证明:点E、F分别为DB、BC的中点,∴EF =CD,∵∠DAB=90°,∴AE =BD,∵DB=DC,∴AE=EF;(2)解:∵AF=AE,AE=EF,∴△AEF是等边三角形,∴∠AEF=60°,∵∠DAB=90°,点E、F分别为DB、BC的中点,∴AE=DE,EF∥CD,∴∠ADE=∠DAE,∠BEF=∠BDC=β,∴∠AEB=2∠ADE=2α,∴∠AEF=∠AEB+∠FEB=2α+β=60°,∴α,β之间的数量关系式为2α+β=60°.2.解:(1)∵四边形AEFG是菱形,∴∠AEF=180°﹣∠EAG=60°,∴∠CEF=∠AEC﹣∠AEF=60°,11故答案为:60°;(2)①∵四边形ABCD是平行四边形,∴∠DAB=180°﹣∠ABC=60°,∵四边形AEFG是菱形,∠EAG=120°,∴∠FAE=60°,∴∠FAD=∠EAB,故答案为:=;②当BA<BE时,如图2,作FM⊥BC于M,FN⊥BA交BA的延长线于N,则∠FNB=∠FMB=90°,∴∠NFM=60°,又∠AFE=60°,∴∠AFN=∠EFM,∵EF=EA,∠FAE=60°,∴△AEF为等边三角形,∴FA=FE,在△AFN和△EFM中,,∴△AFN≌△EFM(AAS)∴FN=FM,又FM⊥BC,FN⊥BA,∴点F在∠ABC的平分线上,当BA=BE时,如图4,12∵BA=BE,∠ABC=120°,∴∠BAE=∠BEA=30°,∵∠EAG=120°,四边形AEFG为菱形,∴∠EAF=60°,又EA=EF,∴△AEF为等边三角形,∴∠FEA=60°,FA=FE,则∠FAB=∠FEB=90°,又FA=FE,∴点F在∠ABC的平分线上,当BA>BE时,同理可证,点F在∠ABC的平分线上,综上所述,点F在∠ABC的平分线上;(3)∵四边形AEFG是菱形,∠EAG=120°,∴∠AGF=60°,∴∠FGE=∠AGE=30°,∵四边形AEGH为平行四边形,∴GE∥AH,∴∠GAH=∠AGE=30°,∠H=∠FGE=30°,∴∠GAN=90°,又∠AGE=30°,∴GN=2AN,∵∠DAB=60°,∠H=30°,∴∠ADH=30°,∴AD=AH=GE,13∵四边形ABCD为平行四边形,∴BC=AD,∴BC=GE,∵∠HAE=∠EAB=30°,∴平行四边形ABEN为菱形,∴AB=AN=NE,∴GE=3AB,∴=3.3.解:(1)如图1中,作CH⊥AB.14∵T(AC,AB)=3,∴AH=3,∵AB=5,∴BH=5﹣3=2,∴T(BC,AB)=BH=2,故答案为2.(2)如图2中,作CH⊥AB于H.∵T(AC,AB)=4,T(BC,AB)═9,∴AH=4,BH=9,∵∠ACB=∠CHA=∠CHB=90°,∴∠A+∠ACH=90°,∠ACH+∠BCH=90°,∴∠A=∠BCH,∴△ACH∽△CBH,15∴=,∴=,∴CH=6,∴S△ABC =•AB•CH =×13×6=39.(3)如图3中,作CH⊥AD于H,BK⊥CD于K.∵∠ACD=90°,T(AD,AC)=2,∴AC=2,∵∠A=60°,∴∠ADC=∠BDK=30°,∴CD =AC=2,AD=2AC=4,AH =AC=1,DH=AD﹣AH=3,∵T(BC,AB)=6,CH⊥AB,∴BH=6,∴DB=BH﹣DH=3,在Rt△BDK中,∵∠K=90°,BD=3,∠BDK=30°,∴DK=BD•cos30°=,16∴CK=CD+DK=2+=,∴T(BC,CD)=CK =.4.(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC =,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2=()2,解得,DM =,∴AM=AD﹣DM =﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA)∴BE=AF;17(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE =AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在△BME和△NMA中,,∴△BME≌△NMA(ASA),∴BE=AN,∴AB+AN=AB+BE=AE =AM.5.解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;18(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.6.解:(1)∵在△ABC中,a=6,b=8,c=12,∴∠A+∠B<∠C;(2)如图,过点B作MN∥AC,∵MN∥AC,∴∠MBA=∠A,∠NBC=∠C(两直线平行,内错角相等),∵∠MBA+∠ABC+∠NBC=180°(平角的定义),∴∠A+∠ABC+∠C=180°(等量代换),即:三角形三个内角的和等于180°;(3)∵=,∴ac =(a+b+c)(a﹣b+c )=[(a2+2ac+c2)﹣b2],∴2ac=a2+2ac+c2﹣b2,∴a2+c2=b2,19∴△ABC是直角三角形.7.(1)证明:∵AG⊥EF,CH⊥EF,∴∠G=∠H=90°,AG∥CH,∵AD∥BC,∴∠DEF=∠BFE,∵∠AEG=∠DEF,∠CFH=∠BFE,∴∠AEG=∠CFH,在△AGE和△CHF 中,,∴△AGE≌△CHF(AAS);(2)解:线段GH与AC互相平分,理由如下:连接AH、CG,如图所示:由(1)得:△AGE≌△CHF,∴AG=CH,∵AG∥CH,∴四边形AHCG是平行四边形,∴线段GH与AC互相平分.208.解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°21∵∠AOB=30°,OP=2∴PD =OP=1∴OD =∵OH =+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中22∴△OCN≌△QDP(SAS)∴ON=QP9.解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=17;当n2﹣1=35时,n2+1=37.故答案为:17;3710.证明:【探究发现】(1)∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP【数学思考】23(2)∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴BD=DP【拓展引申】(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ24∵∠ACB=90°,AC=BC=4,∴AB=4,AC﹣AH=BC﹣BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ =∴AM=2时,BQ有最大值为2.11.教材呈现:证明:如图①,连结ED.∵在△ABC中,D,E分别是边BC,AB的中点,∴DE∥AC,DE =AC,25∴△DEG∽△ACG,∴===2,∴==3,∴==;结论应用:(1)解:如图②.∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,∴AD∥BC,BE =BC =AD,BO =BD,∴△BEF∽△DAF,∴==,∴BF =DF,∴BF =BD,∵BO =BD,∴OF=OB﹣BF =BD ﹣BD =BD,∵正方形ABCD中,AB=6,∴BD=6,∴OF =.26故答案为;(2)解:如图③,连接OE.由(1)知,BF =BD,OF =BD,∴=2.∵△BEF与△OEF的高相同,∴△BEF与△OEF 的面积比==2,同理,△CEG与△OEG的面积比=2,∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,∴△BOC 的面积=,∴▱ABCD的面积=4×=6.故答案为6.12.(1)证明:连接CF,如图①所示:∵AD⊥BC,BE⊥AC,∴CF⊥AB,27∵BH⊥AB,∴CF∥BH,∴∠CBH=∠BCF,∵点M是BC的中点,∴BM=MC,在△BMH和△CMF 中,,∴△BMH≌△CMF(ASA),∴BH=CF,∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,∴BH=AF,∴AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=30°,∴AD =BD,∴DF+BH =BD;(2)解:图②猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=45°,28∴AD=BD,∴DF+BH=BD;图③猜想结论:DF+BH =BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=60°,∴AD =BD,∴DF+BH =BD.13.解:(1)相等,理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∴AE⊥BC,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,29∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为:AG=CF;(2)AG =CF,理由:如图2,连接AE,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=90°,∠BAE=∠C,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=180°,∵∠CFE+∠AFE=180°,∴∠AGE=∠CFE,∴△AGE∽△CFE,30∴,在Rt△ACE中,∵∠C=30°,∴=sin C =,∴=,∴AG =CF;(3)①当G在DA上时,如图3,连接AE,∵DE垂直平分AB,∴AD=BD=3,AE=BE,∵cos B =,∴BE ===4,∴AE=BE=4,∴∠BAE=∠B,∵AB=AC,∴∠B=∠C,∴∠C=∠BAE,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,31∴∠CFE=∠AGE,∴△CFE∽△AGE,∴=,过A作AH⊥BC于点H,∵cos B =,cos45°=,∵>,∴∠B<45°,∴E在H的左侧,∵cos B =,∴BH =AB =×6=,∵AB=AC,∴BC=2BH=9,∵BE=4,∴CE=9﹣4=5,∵AG=AD﹣DG=3﹣1=2,∴=,∴CF=2.5;②当点G在BD上,如图4,同(1)可得,△CFE∽△AGE,∴=,32∵AG=AD+DG=3+1=4,∴=,∴CF=5,综上所述,CF的长为2.5或5.14.(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,33∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE是等腰直角三角形,∴DE =CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD =CD;(2)解:AD﹣BD =CD;理由:如图2,在AD上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°﹣∠BAD﹣∠ABC=90°﹣∠BAD﹣45°=45°﹣∠BAD,∵∠CAE=∠BAC﹣∠BAD=45°﹣∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),34∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE ===CD,∵DE=AD﹣AE=AD﹣BD,∴AD﹣BD =CD.15.(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,,35∴△ACD≌△DHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH﹣CD=CB﹣CD,即HG=BD,∴BD=EF;(2)BD=EF,理由如下:作FG⊥BC交BC的延长线于G,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴△ACD∽△DGF,∴===2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.3637。
冲刺2019届中考2019年全国各地中考模拟卷《相似三角形》压轴题集锦(含答案与解析)

(△S ABD =( ) ((冲刺 2019 届中考:2019 年全国各地中考模拟卷《相似三角形》压轴题集锦(含答案与解析)一.选择题1. 2019△?萧山区模拟)如图,已知在 ABC 中,点 D 为 BC 边上一点(不与点 B ,点 C 重合),连结 AD ,点 E 、点 F 分别为 AB 、AC 上的点,且 EF ∥BC ,交 AD 于点 G ,连结 BG ,并延长BG 交 AC 于点 H .已知=2,①若 AD 为 BC 边上的中线, 的值为 ;②若 BH ⊥AC ,当 BC >2CD 时,<2sin ∠DAC .则( )A .①正确;②不正确C .①不正确;②正确B .①正确;②正确D .①不正确;②正确2. 2019 春△?北碚区校级月考)如图, ABC 中,点 D 为边 BC 的中点,点 E 、F 分别是边 AB 、AC 上两点,且 EF ∥BC ,若 AE :EB =2:1,则: △S AEFA .2:1B .4:9C .2:3D .8:9 3. 2019•云南模拟)如图,点 D 、E 分别在△ABC 的边 AB 、AC 上,且 AB =9,AC =6,AD =3,若使△ADE 与△ABC 相似,则 AE 的长为()A .2B .C .2 或D .3 或(△S BDF ;4.(2019•郑州模拟)在平面直角坐标系中,已知两点 A (7,5),B (4,3),先将线段 AB向右平移 1 个单位,再向上平移 1 个单位,然后以原点 O 为位似中心,将其缩小为原来的 ,得到线段 CD ,则点 A 的对应点 C 的坐标为()A .(4,3)C .(﹣4,﹣3)B .(4,3)或(﹣4,﹣3)D .(3,2)或(﹣3,﹣2)5.(2019•平房区一模)如图,在矩形 ABCD 中,点 F 在 AD 上,射线 BF 交 AC 于点 G ,交 CD的延长线于点 E ,则下列等式正确的为()A .B .C . =D . =6. 2019•成华区模拟)如图,在平面直角坐标系中,已知点 A (4,2),过点 A 作 AB ⊥x 轴,垂足为点 △B ,将 AOB 以坐标原点 O 为位似中心缩小为原图形的 ,得到△COD ,则 OC 的长度是( )A .1B .2C .D .7.(2019•铁西区三模)如图,在 △R tABC 中,∠ABC =90°,AB =BC ,点 D 是线段 AB 上的一点,连结 CD .过点 B 作 BG ⊥CD ,分别交 CD 、CA 于点 E 、F ,与过点 A 且垂直于 AB 的直线相交于点 G ,连结 DF ,给出以下四个结论:①②若 AF =;AB ,则点 D 是 AB 的中点;③若△S ABC=1,则 =9④当 B 、C 、F 、D 四点在同一个圆上时,DF =DB ;其中正确的结论序号是()FA.①②B.①②④C.①②③D.①②③④8.(2019•杭州模拟)如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6B.8C.10D.12 9.(2019•宣州区一模)如图示,用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,分别在边AB,BC上,三角形①的边GD在边AD上,则的值是()A.B.C.D.10.(2019△?中原区校级模拟)如图,在ABC中,∠ACB=90°,CD⊥AB于点D,AC<BC,则下列结论中错误的是()A.CD2=AD•DBC.AD•BC=AC•CDB.AC•DB=BC•ADD.BC2=BD•AB11.(2019△?香坊区一模)如图,ABC中,G、E分别为AB、AC边上的点,GE∥BC,BD∥(CE交EG延长线于D,BE与CD相交于点F,则下列结论一定正确的是()A.=B.=C.=D.=二.填空题12.(2019△?沈阳模拟)如图,在ABC中,AB:AC=5:4,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在线段AF上,FG=FD,连接EG交AC于点H,若点H是AC的中点,AG=8,则线段DF的长是.13.2019•拱墅区校级模拟)如图,AC⊥BC,CD⊥AB,且AB=5,BC=3,则的值为.14.(2019△?福田区校级模拟)如图,分别以ABC中BC和AC为腰向外作等腰直角△EBC和等腰直角△DAC,连结DE,且DE∥BC,EB=BC=6,四边形EBCD的面积为24,则AB的长为.15.(2019•昆明模拟)如图所示,在ABCD中,点E在边DC上,DE:EC=7:2,连接AE交BD于点△F,则DEF的面积与△BAF的面积之比为.16.(2019•道外区一模)如图,AD为△ABC的角平分线,AC=BC,E在AC延长线上,且AD =DE,若AB=6,CE=2,则BD的长为.17.(2019春•和平区校级月考)如图,点A在线段BD上,在BD的同侧做等腰△R t ABC和等腰△R t ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是18.(2019•邗江区校级一模)如图,矩形ABCD中,AB=6,BC=8,E为AB的中点,P为BC上一动点,作PQ⊥EP交直线CD于点Q,设点P每秒以1个单位长度的速度从点B运动到点C停止,在此时间段内,点Q运动的平均速度为每秒个单位.19.(2019•咸宁模拟)如图,▱ABCD中,点E是边BC上一点,AE交BD于点F,若BE=2,EC=△3,BEF的面积是1,则▱ABCD的面积为.20.(2019•简阳市模拟)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A,作正方形A B C C;延长C B111111交x轴于点A,作正方形A B C C…按这样的规律进行下去,第1个正方形的面积为;22221第4个正方形的面积为.三.解答题21.(2019•徐汇区二模)如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(△1)求证:ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.22.(2019青山区模拟)(1)如图1,AH⊥CG,EG⊥CG,点D在CG上,AD⊥CE于点F,求证:;(△2)在ABC中,记tan B=m,点D在直线BC上,点E在边AB上①如图2,m=3,点D在线段BC上,且AD⊥CE于点F,若AD=3CE,则=;②如图3,m==2AC,CD=,点D在线段BC的延长线上,连接DE交AC于M,∠CMD=60°,DE ,求BE的长.23.2019闵行区二模)如图1,点P为∠MAN的内部一点.过点P分别作PB⊥AM、PC⊥AN,(垂足分别为点B、C.过点B作BD⊥CP,与CP的延长线相交于点D.BE⊥AP,垂足为点E.(1)求证:∠BPD=∠MAN;(2)如果sin,AB=2,BE=BD,求BD的长;(3)如图2,设点Q是线段BP的中点.联结QC、CE,QC交AP于点F.如果∠MAN=45°,且BE∥QC,求的值.24.(2019•合肥二模)如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE 并延长交AD于点F,交CD的延长线于点G,连接DE.(△1)求证:ABE≌△ADE;(2)求证:EB2=EF•EG;(3)若菱形ABCD的边长为4,∠ABC=60°,AE:EC=1:3,求BG的长.25.(2019•安徽一模)如图,四边形ABCD内一点E满足EB=EC,EA=ED,∠BEC=∠AED=90°,AC交DE于点F,交BD于点G.(1)∠AGB的度数为.(2)若四边形AECD是平行四边形.①求证:AC=AB;②若AE=2,求AF•CG的值.26.(2019宣州区一模)将△ABC绕点A逆时针旋转α得到△ADE,ED的延长线与BC相交于点F,连接AF、EC.(1)如图1,若∠BAC=α=60°.①证明:AB∥EC;②证明:△DAF∽△DEC;(2)如图2,若∠BAC<α,EF交AC于G点,图中有相似三角形吗?如果有,请直接写出所有相似三角形.11/5727.(2019郊区一模)(1)问题发现如图(△1),在OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=36°,连接AC,BD 交于点M.①的值为;②∠AMB的度数为;(2)类比探究如图(△2),在OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数.(3)拓展延伸在(△2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M.若OD=1,OB=,请直接写出当点C与点M重合时AC的长.12/5728.(2019都江堰市模拟)如图,在△ABC中,∠ACB=90°,tan A=,AC=6,以BC 为斜边向右侧作等腰直角△EBC,P是BE延长线上一点,连接PC,以PC为直角边向下方作等腰直角△PCD,CD交线段BE于点F,连接BD.(1)求证:PC:CD=CE:BC;(2)若PE=n(0<n≤△4),求BDP的面积;(用含n的代数式表示)(△3)当BDF为等腰三角形时,请直接写出线段PE的长度.13/5729.(2019曹县一模)如图1,ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(△1)求证:ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG,交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,求的值.14/5730.(2019春江岸区校级月考)如图(1),AB⊥BC,CD⊥BC,点E在线段BC上,AE⊥ED,求证:=.(△2)在ABC中,记tan B=m,点E在边AB上,点D在直线BC上.①如图(2),m=2,点D在线段BC上且AD⊥EC,垂足为F,若AD=2EC,求;②如图(3),m==2AC,若CD=3,点D在线段BC的延长线上,ED交AC于点H,∠CHD=60°,ED,BC=4△,直接写出BED的面积.15/5731.(2019春包河区校级月考)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,GF⊥CD.(1)①求证:四边形CEGF是正方形;②推断:的值为:(2)将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系;(3)正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,求正方形CEGF和正方形ABCD的边长.16/57(答案与解析一.选择题1.2019萧山区模拟)如图,已知在△ABC中,点D为BC边上一点(不与点B,点C重合),连结AD,点E、点F分别为AB、AC上的点,且EF∥BC,交AD于点G,连结BG,并延长BG交AC于点H.已知=2,①若AD为BC边上的中线,的值为;②若BH⊥AC,当BC>2CD时,<2sin∠DAC.则()A.①正确;②不正确C.①不正确;②正确B.①正确;②正确D.①不正确;②正确解:①过点B作BM∥AC,与AD的延长线相交于点M,∴∠C=∠MBD,在△ACD和△MBD中,,∴△ACD≌△MBD(ASA),∴AD=MD,∵EF∥BC,,∴∴,,∵BM∥AC,∴△MBG∽△AHG,∴∴,,17/57△S ABD =( ) (故①正确;(2)过点 D 作 DN ⊥AC 于点 N ,则 DN =AD sin ∠DAC ,∵BH ⊥AC ,DN ⊥AC ,∴BH ∥DN ,∴,即 ,∵BC >2CD ,∴∴,.故②错误;故选:A .2. 2019 春 北碚区校级月考)如图,△ABC 中,点 D 为边 BC 的中点,点 E 、F 分别是边 AB 、AC 上两点,且 EF ∥BC ,若 AE :EB =2:1,则: △S AEFA .2:1B .4:9C .2:318 / 57D .8:9△S ABC , (解:∵AE :EB =2:1,∴AE :AB =2:3,∵EF ∥BC ,∴△AEF ∽△ABC ,∴ =( )2=( )2= ,∵D 为 BC 的中点,∴BD =CD ,△S ABD∴ =∴= ,故选:D . 3. 2019•云南模拟)如图,点 D 、E 分别在△ABC 的边 AB 、AC 上,且 AB =9,AC =6,AD =3,若使△ADE 与△ABC 相似,则 AE 的长为()A .2B .C .2 或D .3 或解:①若∠AED 对应∠B 时,解得 AE = ;= ,即= ,②当∠ADE 对应∠B 时,= ,即 = ,解得 AE =2.故选:C .4.(2019•郑州模拟)在平面直角坐标系中,已知两点 A (7,5),B (4,3),先将线段 AB向右平移 1 个单位,再向上平移 1 个单位,然后以原点 O 为位似中心,将其缩小为原来的 ,得到线段 CD ,则点 A 的对应点 C 的坐标为()A .(4,3)B .(4,3)或(﹣4,﹣3)19 / 57C.(﹣4,﹣3)D.(3,2)或(﹣3,﹣2)解:∵点A(7,5),B(4,3),先将线段AB向右平移1个单位,再向上平移1个单位,∴点A,B平移后的对应点的坐标为A′(8,6),B(5,4),∵以原点O为位似中心,将其缩小为原来的,得到线段CD,∴则点A′的对应点C的坐标为:(4,3)或(﹣4,﹣3).故选:B.5.(2019平房区一模)如图,在矩形ABCD中,点F在AD上,射线BF交AC于点G,交CD 的延长线于点E,则下列等式正确的为()A.B.C.=D.=解:∵四边形ABCD为矩形,∴AD∥BC,AB∥CD,∴△ABF∽△DEF,△AFG∽△CBG,△EFD∽△EBC,△ABG∽△CEG,∵△ABF∽△DEF,∴=,故A错误;∵△AFG∽△CBG,△ABG∽△CEG,∴∴==,=,,故B正确;∵△AFG∽△CBG,∴=,故C错误;∵△EFD∽△EBC,∴=,故D错误;故选:B.20/57(△S BDF ;6. 2019•成华区模拟)如图,在平面直角坐标系中,已知点 A (4,2),过点 A 作 AB ⊥x 轴,垂足为点 △B ,将 AOB 以坐标原点 O 为位似中心缩小为原图形的 ,得到△COD ,则 OC 的长度是( )A .1B .2C .D .解:∵点 A (4,2),过点 A 作 AB ⊥x 轴于点 △B .将 AOB 以坐标原点 O 为位似中心缩小为原图形的 ,得到△COD ,∴C (2,1),则 OC 的长度=.故选:C .7.(2019•铁西区三模)如图,在 △R tABC 中,∠ABC =90°,AB =BC ,点 D 是线段 AB 上的一点,连结 CD .过点 B 作 BG ⊥CD ,分别交 CD 、CA 于点 E 、F ,与过点 A 且垂直于 AB 的直线相交于点 G ,连结 DF ,给出以下四个结论:①;②若 AF =AB ,则点 D 是 AB 的中点;③若△S ABC=1,则 =9④当 B 、C 、F 、D 四点在同一个圆上时,DF =DB ;其中正确的结论序号是()A .①②B .①②④C .①②③D .①②③④解:依题意可得 BC ∥AG ,∴△AFG ∽△BFC ,∴ = ,又AB=BC,∴=.故结论①正确;如右图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG与△BCD中,∴△ABG≌△BCD(ASA),∴AG=BD,又BD=AD,∴AG=AD,在△AFG与△AFD中,∴△AFG≌△AFD(SAS),∵△ABC为等腰直角三角形,,,∴AC=AB;∵△AFG≌△A FD,∴AG=AD=AB=BC;∵△AFG∽△BFC,∴=,∴FC=2AF,∴AF=AC=AB.故结论②正确;当B、C、F、D四点在同一个圆上时,∴∠2=∠ACB∵∠ABC=90°,AB=BC,∴∠ACB=∠CAB=45°,∴∠2=45°,∴∠CFD=∠AFD=90°,△S ABC ;△S ABF ,△S BDF =△S BDF . ∴CD 是 B 、C 、F 、D 四点所在圆的直径,∵BG ⊥CD ,∴= ,∴DF =DB ,故③正确;∵∴= ,∵AG =BD , = ,= ,∴ = ,AF = AC ,△S ABF ∴ =△S BDF ∴ =△S ABC △S ABC ∴,即 =12故结论④错误.故选:B .8.(2019 杭州模拟)如图,在正方形 ABCD 中,G 为 CD 边中点,连接 AG 并延长,分别交对角线 BD 于点 F ,交 BC 边延长线于点 E .若 FG =2,则 AE 的长度为()A .6解:∵AB ∥DG ,∴△ABF ∽△GDF .∴=2.B .8C .10D .1223/57F,∴AG=6.在△ADG和△ECG中,∴△ADG≌△ECG(AAS).∴AG=EG.∴AE=2AG=12.故选:D.9.(2019•宣州区一模)如图示,用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,分别在边AB BC上,三角形①的边GD在边AD上,则的值是()A.B.C.D.解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,∴==.故选:C.10.(2019△?中原区校级模拟)如图,在ABC中,∠ACB=90°,CD⊥AB于点D,AC<BC,则下列结论中错误的是()A.CD2=AD•DB B.AC•DB=BC•ADC.AD•BC=AC•CD解:∵∠ACB=90°,CD⊥AB∴CD2=AD•DB,BC2=BD•AB,故A、D选项正确;∵△ACD∽△CBD,∴==,∴AC•DB=BC•CD,故B选项错误;AD•BC=AC•CD,故C选项正确;故选:B.D.BC2=BD•AB11.(2019△?香坊区一模)如图,ABC中,G、E分别为A B、AC边上的点,GE∥BC,BD∥CE 交EG延长线于D,BE与CD相交于点F,则下列结论一定正确的是()A.=B.=C.=D.=解:如图,设AB交CD于点O.∵DG∥BC,∴△DOG∽△COB,∴=,∵BD∥AC,∴△DOB∽△COA,∴=,∵BD∥AC,DE∥BC,∴四边形DECB是平行四边形,∴BD=EC,∵GE∥BC,∴∴==,,故选:D.二.填空题(共9小题)12.(2019沈阳模拟)如图,在△ABC中,AB:AC=5:4,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在线段AF上,FG=FD,连接EG交AC于点H,若点H是AC的中点,AG=8,则线段DF的长是6.解:∵点H是AC的中点,∴AC=2AH∵FG=FD,EF⊥AD,∴EF为DG的中垂线∴GE=DE∴∠EDG=∠EGD∴∠AGH=∠ADB∵AD平分∠BAC(∴∠BAD=∠CAD,且∠AGH=∠ADB∴△AGH∽△ADB∴∴===,且AB:AC=5:4,∴AD=AG=20∴DG=AD﹣AG=12,∴DF=DG=×12=6故答案为:613.2019•拱墅区校级模拟)如图,AC⊥BC,CD⊥AB,且AB=5,BC=3,则的值为.解:∵AC⊥BC,∴∠ACB=90°,∴,∵CD⊥AB,∴∠ADC=∠ACB=90°,∵∠CAD=∠BAC∴△ACD∽△ABC,∴.故答案为:.14.(2019△?福田区校级模拟)如图,分别以ABC中BC和AC为腰向外作等腰直角△EBC和等腰直角△DAC,连结DE,且DE∥BC,EB=BC=6,四边形EBCD的面积为24,则AB的长为.△S DEC=24﹣18=6 △S ABC = =3解:∵ = BC ×BE =18,四边形 EBCD 的面积为 24,△S BEC ∴∵△EBC 与△DAC 是等腰直角三角形∴BE =BC =6,AC =DA ,∠EBC =∠DAC =90°,∠ECB =45°=∠DCA ,∴EC =∵BC ,DC = AC ,∠BCA =∠DCE ,,且∠BCA =∠DCE ,∴△ABC ∽△DEC∴∠DEC =∠ABC ,∴∵DE ∥BC∴∠DEC =∠ECB =45°∴∠ABC =45°如图,过点 A 作 AM ⊥BC 于 M∵ = ×BC ×AM =3△S ABC∴AM =1∵∠ABC =45°,AM ⊥BC∴BM=AM=1,∴AB=故答案为:15.(2019•昆明模拟)如图所示,在ABCD中,点E在边DC上,DE:EC=7:2,连接AE交BD于点△F,则DEF的面积与△BAF的面积之比为49:81.解:∵=,∴=,∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∴∠FDE=∠FBA,∠FED=∠FAB,=,∴△DFE∽△BFA,∴=()2=,故答案为:49:81.μ16.(2019•道外区一模)如图,AD为△ABC的角平分线,AC=BC,E在AC延长线上,且AD =DE,若AB=6,CE=2,则BD的长为2+.解:过D点作DF∥AB,∴∠1=∠4,∵∠1=∠3,∴∠3=∠4,∴AF=DF,∵AC=BC,∴∠B=∠BAC,∴∠FDE=∠2=∠B ∴CD=CF,∴BD=AF,∵AD=AF,∴∠3=∠E,∴∠E=∠1,在△ABD和EFD中,,△ABD≌△EFD(AAS)∴EF=AB=6,∵CE=2,∴CF=4,∵DF∥AB,∴△ABC∽FDC∴,∴,解得,(舍去)故答案为:2+.17.(2019春•和平区校级月考)如图,点A在线段BD上,在BD的同侧做等腰△R t ABC和等腰△R t ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是①②③解:∵△ABC是等腰直角三角形,∴=,∠BAC=45°,同理,=,∠EAD=45°,∴=,∠BAE=∠CAD,∴△BAE∽△CAD,①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,又∠PME=∠AMD,∴△PME∽△AMD,∴=,∴MP•MD=MA•ME,②正确;∵∠BEA=∠CDA,∴P、E、D、A四点共圆,∴∠APM=∠AED=90°,∵∠BAC=∠EAD=45°,∴∠CAM=90°,∴△CAP∽△CMA,∴=,∴AC2=CP•CM,∵AC2=2CB2,∴2CB2=CP•CM,③正确,故答案为:①②③.18.(2019•邗江区校级一模)如图,矩形ABCD中,AB=6,BC=8,E为AB的中点,P为BC 上一动点,作PQ⊥EP交直线CD于点Q,设点P每秒以1个单位长度的速度从点B运动到点C停止,在此时间段内,点Q运动的平均速度为每秒个单位.解:∵四边形ABCD是矩形∴AB=CD=6,∠B=∠C=90°,∴∠BEP+∠BPE=90°∵E为AB的中点,∴BE=3∵PQ⊥EP∴∠BPE+∠CPQ=90°,∴∠BEP=∠CPQ,且∠B=∠C=90°∴△BEP∽△CPQ∴∴CQ=∴CQ的最大值为=∴点Q路程=2×=∴点Q运动的平均速度=÷(8÷1)=故答案为:19.(2019•咸宁模拟)如图,▱ABCD中,点E是边BC上一点,AE交BD于点F,若BE=2,EC=△3,BEF的面积是1,则▱ABCD的面积为.△S DFA=△S BAF=△S AFD=+=解:▱ABCD中,BE∥AD,∴△BFE∽△DFA而△BEF的面积是1,∴又∵△BFE∽△DFA∴利用=,即可知△S ABD△S BAF△S DFA而=+∴∴▱ABCD的面积=×2=故答案为.20.(2019简阳市模拟)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A,作正方形A B C C;延长C B111111交x轴于点A,作正方形A B C C…按这样的规律进行下去,第1个正方形的面积为5;22221第4个正方形的面积为()3×5.解:∵点A的坐标为(1,0),点D的坐标为(0,2).在△R t AOD中,AD=∴正方形ABCD的面积为:(=,)2=5;∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=∠ABA=90°=∠DOA,1∴∠ADO+∠DAO=90°,∠DAO+∠BAA=90°,1∴∠ADO=∠BAA,1∵∠DOA=∠ABA,1∴△DOA∽△ABA,1∴=,即=,解得:A B=1,∴A C=A B+BC=11,∴正方形A B C C的面积为:(111)2=;∵第1个正方形ABCD的面积为:5;第2个正方形A B C C的面积为:=×5;111同理可得:第3个正方形A B C C的面积为:××5=()2×5;2221∴第4个正方形A B C C的面积为:()3×5.3332故答案为:5,()3×5.三.解答题(共11小题)21.(2019•徐汇区二模)如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(△1)求证:ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.证明:(1)∵AD∥BC,∴∠DAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠DAF=∠B,∵∠AEC=∠AED+∠DEC=∠B+∠BAE,∠AED=∠CAD=∠ACB,∴∠DEC=∠BAE,∵AD∥BC,∴∠DEC=∠ADF,∴∠BAE=∠ADF,∴△ABE∽△DAF.(2)∵AC•FC=AE•EC,AC=AB,∴AB•FC=AE•EC,∴=,∵∠B=∠FCE,∠BAE=∠FEC,∴△BAE∽△CEF,∴=,∴=,∴FC=EF,∴∠FEC=∠FCE,∵∠FCE=∠B,∴∠B=∠FEC,∴AB∥DE,∵AD∥BE,∴四边形ADEB是平行四边形,∴AD=BE.22.(2019青山区模拟)(1)如图1,AH⊥CG,EG⊥CG,点D在CG上,AD⊥CE于点F,求证:;(△2)在ABC中,记tan B=m,点D在直线BC上,点E在边AB上①如图2,m=3,点D在线段BC上,且AD⊥CE于点F,若AD=3CE,则=;②如图3,m==2AC,CD=,点D在线段BC的延长线上,连接DE交AC于M,∠CMD=60°,DE,求BE的长.(1)证明:∵AH⊥CG,EG⊥CG,AD⊥CE,∴∠AHD=∠G=∠AFC=90°,∴∠A+∠ADC=∠C+∠CDF=90°,∴∠A=∠C,∴△ADH∽△CEG,∴;(2)解:如图2,过点A作AM⊥BC于点M,过点E作EH⊥BC于点H,∵tan B=m=2==,∴设EH=2x,BH=x,AM=2BM∴BE==x,∵AF⊥EC,AM⊥CD∴∠ADC+∠DCE=90°,∠ADC+∠DAM=90°,∴∠DAM=∠DCE,且∠AMD=∠EHC=90°∴△EHC∽△DMA,且AD=2EC,∴===2,∴DM=2EH=4x,AM=2HC,∵AM=2HC,AM=2BM∴HC=BM∴HC﹣HM=BM﹣HM∴BH=MC=x∴DC=DM+MC=5x∴==,故答案为:;(3)解:如图3,作∠BCF=∠B,交AB于点F,过点D作GD⊥BD交BA的延长线于点G,过点F作FH⊥BC于点H,∵tan B=m=,∴∠B=30°,∵∠BCF=∠B=30°,∴BF=FC,且FH⊥BC,BC=4,∴BH=HC=2,且∠B=30°,FH⊥BC∴FH=2,BF=FC=4,∵CD=3∴BD=7,BC=4,,又∵∠BCF=∠B=30°,GD⊥BD,∴∠G=60°,∠AFC=60°,GD=7,BG=2DG=14,∵∠BCA=∠BDE+∠CMD=∠BDE+60°=∠BCF+∠ACF=30°+∠ACF,∴∠ACF=30°+∠BDE,且∠AEM=∠B+∠BDE=30°+∠BDE,∴∠ACF=∠AEM,且∠G=∠AFC=60°∴△GED∽△FCA(∴==,且DE=2AC,∴GD=2AF,EG=2FC=8,∴AF=,∴BE=BG﹣EG=14﹣8=6.23.2019闵行区二模)如图1,点P为∠MAN的内部一点.过点P分别作PB⊥AM、PC⊥AN,垂足分别为点B、C.过点B作BD⊥CP,与CP的延长线相交于点D.BE⊥AP,垂足为点E.(1)求证:∠BPD=∠MAN;(2)如果sin,AB=2,BE=BD,求BD的长;(3)如图2,设点Q是线段BP的中点.联结QC、CE,QC交AP于点F.如果∠MAN=45°,且BE∥QC,求的值.(1)证明:∵PB⊥AM,PC⊥AN,∴∠PBA=∠PCA=90°,∵∠BAC+∠PCA+∠BPC+∠PBA=360°,∴∠BAC+∠BPC=180°,∵∠BPD+∠BPC=180°,∴∠MAN=∠BPD;(2)解:∵BE⊥AP,∠D=90°,BE=BD,∴∠BPD=∠BPE.∴∠BPE=∠BAC,在△R t ABP中,由∠ABP=90°,BE⊥AP,∴∠APB=∠ABE,∴∠BAC=∠ABE,∴sin∠BAC=sin∠ABE==,,∵AB=2∴AE=6,∴BE==2,∴BD=BE=2;(3)解:过点B作BG⊥AC,垂足为点G.过点Q作QH∥BD,设BD=2a,PC=2b,∵∠BPD=∠MAN=45°,∴DP=BD=2a,∴CD=2a+2b,在△R t ABG和△R t BDP中,∠BAC=∠BPD=45°,∴BG=AG,DP=BD,∵QH∥BD,点Q为BP的中点,∴PH=PD=a.QH=BD=a,∴CH=PH+PC=a+2b,∵BD∥AC,CD⊥AC,BG⊥AC,∴BG=DC=2a+2b.∴AC=4a+2b,∵BE∥QC,BE⊥AP,∴∠CFP=∠BEP=90°,又∠ACP=90°,∴∠QCH=∠PAC,∴△ACP∽△QCH,∴=,即=,解得,a=b,∴CH=3a.由勾股定理得,CQ==a,∵∠QHC=∠PFC=90°,∠QCH=∠PCF,∴△QCH∽△PFC,∴=,即=,解得,FC=a,∴QF=QC﹣FC=a,∵BE∥QC,Q是PB的中点,∴PE=EF,∴△PQF与△CEF面积之比等于高之比,∴==.24.(2019•合肥二模)如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE 并延长交AD于点F,交CD的延长线于点G,连接DE.(△1)求证:ABE≌△ADE;(2)求证:EB2=EF•EG;(3)若菱形ABCD的边长为4,∠ABC=60°,AE:EC=1:3,求BG的长.解:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,又AE=AE,∴△ABE≌△ADE(SAS);(2)∵AB∥CG,∴∠ABG=∠EGD,由(△1)得ABE≌△ADE,∴ED=EB,∠ABG=∠ADE,∴∠EGD=∠ADE,∵∠FED=∠DEG,∴△EDF∽△EGD,∴,所以ED2=EF•EG;∴EB2=EF•EG;(3)∵AB=BC,∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=4.连接BD交AC于O,则AC⊥BD,OA=OC=2,OB=2,∵AE:EC=1:3,∴AE=OE=1..∴BE=∵AD∥BC,∴,∴EF=BE=.由(2)得EB2=EF•EG,∴EG=,∴BG=BE+EG=4.25.(2019•安徽一模)如图,四边形ABCD内一点E满足EB=EC,EA=ED,∠BEC=∠AED=90°,AC交DE于点F,交BD于点G.(1)∠AGB的度数为90°.(2)若四边形AECD是平行四边形.①求证:AC=AB;②若AE=2,求AF•CG的值.解:(△1)在DEB和△AEC中,,∴△DEB≌△AEC(SAS).∴∠EDB=∠EAC.∵∠EFA+∠EAF=90°,∠EFA=∠DFG,∴∠DFG+∠FDG=90°,∴∠AGB=90°.故答案为90°;(2)①∵四边形AECD是平行四边形,∴∠AED=∠EDC=90°,AE=AD.∵△ADE是等腰三角形,∴AE=ED.∴ED=EC,∠CED=45°.∴∠BED=90°+45°=135°.∵∠AED=∠BEC=90°,∴∠AEB=360°﹣90°﹣90°﹣45°=135°.又EB=EB,ED=EA,∴△BAE≌△BDE(SAS),∴DB=AB;∵∠BEC=∠AED=90°,∴∠BED=∠CEA.∵EB=EC,EA=ED,∴△BED≌△CEA(SAS),∴BD=CA,∴AC=AB.②∵△BAE≌△BDE,∴△CAE≌△BAE.∴∠BAE=∠CAE=∠BDE.∵∠EAF+∠AFE=90°,∴∠AFE+∠BAE=90°.∵∠GFD=∠AFE,∠EDB=∠EAB,∴∠EDB+∠GFD=90°,即∠CGD=90°.∵∠FAE=90°,∠GCD=∠AEF,∴△CGD∽△AEF,∴,∴AF•CG=CD•AE=4.故答案为90°.26.(2019△?宣州区一模)将ABC绕点A逆时针旋转α得到△ADE,ED的延长线与BC相交于点F,连接AF、EC.(1)如图1,若∠BAC=α=60°.①证明:AB∥EC;②证明:△DAF∽△DEC;(2)如图2,若∠BAC<α,EF交AC于G点,图中有相似三角形吗?如果有,请直接写出所有相似三角形.解:(△1)①∵ABC绕点A逆时针旋转α得到△ADE,∴△ABC≌△ADE,∴AC=AE,∵∠EAC=α=60°.∴△AEC为等边三角形,∴∠ACE=∠BAC=60°,∴AB∥EC;②∵△ABC≌△ADE,∴∠AED=∠ACB,又∵∠ADE=∠FDC,∴△ADE∽△FDC,∴=,∴=,又∵∠ADF=∠EDC,∴△DAF∽△DEC;(△2)①∵ABC≌△ADE,∴∠AED=∠ACB,又∵∠AGE=∠FGC,∴△AGE∽△F G C;②∵△AGE∽△FGC,∴∴==,,又∵∠AGF=∠EGC,△AGF∽△EGC;综上所述,△AGE∽△FGC,△AGF∽△EGC;27.(2019郊区一模)(1)问题发现如图(△1),在OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=36°,连接AC,BD 交于点M.①的值为1;②∠AMB的度数为36°;(2)类比探究如图(△2),在OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数.(3)拓展延伸在(△2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M.若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解:(1)①∵∠AOB=∠COD=36°,∴∠AOB+∠DOA=∠COD+∠DOA,∴∠COA=∠DOB,又∵OA=OB,OC=OD,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,故答案为:1;②设AO与BD交于点E,由①知,△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB+∠DBO=∠DEO,∠AMB+∠CAO=∠DEO,∴∠AOB=∠AMB=36°,故答案为:36°;(△2)在OAB和△OCD中,∵∠AOB=∠COD=90°,∠OAB=∠OCD=30°,∴tan30°===,∵∠AOB+∠DOA=∠COD+∠DOA,即∠DOB=∠COA,∴△DOB∽△COA,∴==,∠DBO=∠CAO,∵∠DBO+∠OEB=90°,∠OEB=∠MEA,∴∠CAO+∠MEA=90°,∴∠AMB=90°,∴=,∠AMB=90°;(3)①如图3﹣1,当点M在直线OB左侧时,在△R t OCD中,∠OCD=30°,OD=1,∴CD=2,在△R t OAB中,∠OAB=30°,OB=∴AB=2,,由(2)知,∠AMB=90°,且=,∴设BD=x,则AC=AM=在△R t AMB中,AM2+MB2=AB2,x,∴(x)2+(x+2)2=(2)2,解得,x=3,x=﹣4(舍去),12∴AC=AM=3;②如图3﹣2,当点M在直线OB右侧时,在△R t AMB中,AM2+MB2=AB2,∴(x)2+(x﹣2)2=(2)2,解得,x=4,x=﹣3(舍去),12∴AC=AM=4,综上所述,AC的长为3或4.28.(2019都江堰市模拟)如图,在△ABC中,∠ACB=90°,tan A=,AC=6,以BC 为斜边向右侧作等腰直角△EBC,P是BE延长线上一点,连接PC,以PC为直角边向下方作等腰直角△PCD,CD交线段BE于点F,连接BD.(1)求证:PC:CD=CE:BC;(2)若PE=n(0<n≤△4),求BDP的面积;(用含n的代数式表示)(△3)当BDF为等腰三角形时,请直接写出线段PE的长度.(△1)证明:∵PCD,△EBC都是等腰直角三角形,∴CD=PC,BC=CE,∴∴===,==,(2)解:如图1中,作PH⊥BD于H,∵△PCD,△EBC都是等腰直角三角形,∴∠PCD=∠BCE=45°,∠PBC=∠PDC=45°,∴B、C、P、D四点共圆,∴∠DBP=∠PCD=45°,∴∠CBD=∠DBP+∠PBC=45°+45°=△90°,PBH是等腰直角三角形,∵∠BCE=∠DCP=45°,∴∠BCD=∠ECP,∵∠CEP=∠CBD=90°,∴△CBD∽△CEP,∴==,∵PE=n,∴BD=∵tan A=∴BC=4n,=,AC=6,,∴EC=BE=4,∴PB=4+n,PH=BH=(4+n),。
2019年数学中考备考:中考模拟卷三角形压轴题精选含解答

2019年中考备考:中考模拟卷三角形压轴题精选1.(2019广东省深圳市福田二模)如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.己知A、B两地相距2400米.(1)求农户c到公路B的距离;(参考数据:sin22°≈,cos22°≈,tan22°≈(2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米?【分析】(1)农户C到公路的距离,也就是求C到AB的距离.要构造直角三角形,再解直角三角形;(2)设原计划x天完成,则由等量关系“原工作效率×(1+25%)=提前完成时的工作效率”列方程求解.【解答】解:(1)如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=68°,∠FBC=45°,则∠CAH=22°,∠CBA=45°.在Rt△BCH中,BH=CH=x,在Rt△HBC中,tan∠HBC=,∴HB==,∵AH+HB=AB,∴x+x=2400,解得x=(米),∴农户C到公路的距离米.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y﹣4)天.根据题意得:=(1+20%)×,解得:y=24.经检验知:y=24是原方程的根,2400÷24=100(米).答:原计划该工程队毎天修路100米.【点评】考查了构造直角三角形解斜三角形的方法和分式方程的应用.2.(2019浙江省南通市一模)如图,已知△ABC中,AB=8,BC=10,AC=12,D是AC边上一点,且AB2=AD•AC,连接BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点G.(1)求:BD的长;(2)求证:△BGE∽△CEF;(3)连接FG,当△GEF是等腰三角形时,直接写出BE的所有可能的长度.【分析】(1)证明△ADB∽△ABC,可得,由此即可解决问题.(2)想办法证明∠BEA=∠EFC,∠DBC=∠C即可解决问题.(3)分三种情形构建方程组解决问题即可.【解答】解:(1)∵AB=8,AC=12,又∵AB2=AD•AC∴∵AB2=AD•AC,∴,又∵∠BAC是公共角∴△ADB∽△ABC,∴∴=∴.(2)∵AC=12,,∴,∴BD=CD,∴∠DBC=∠C,∵△ADB∽△ABC∴∠ABD=∠C,∴∠ABD=∠DBC,∵∠BEF=∠C+∠EFC,即∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE.(3)如图1中,过点A作AH∥BC,交BD的延长线于点H,设BE=x,CF=y,∵AH∥BC,∴====,∵BD=CD=,AH=8,∴AD=DH=,∴BH=12,∵AH∥BC,∴=,∴=,∴BG=,∵∠BEF=∠C+∠EFC,∴∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE,∴=,∴=,∴y=;当△GEF是等腰三角形时,存在以下三种情况:①若GE=GF,如图2中,则∠GEF=∠GFE=∠C=∠DBC,∴△GEF∽△DBC,∵BC=10,DB=DC=,∴==,又∵△BEG∽△CFE,∴==,即=,又∵y=,∴x=BE=4;②若EG=EF,如图3中,则△BEG与△CFE全等,∴BE=CF,即x=y,又∵y=,∴x=BE=﹣5+;③若FG=FE,如图4中,则同理可得==,由△BEG∽△CFE,可得==,即=,又∵y=,∴x=BE=﹣3+.【点评】本题属于相似形综合题,主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、解一元二次方程等知识的综合运用.解题的难点是正确寻找相似三角形解决问题,运用分类思想是解决第(3)小题的关键.3.(2019江苏省无锡市一模)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,GM=3,P为MN中点,求MQ的长度.【分析】(1)证明FC=FB,利用等腰三角形的三线合一的性质即可解决问题.(2)①作点P关于GN的对称点P′,连P′M交GN于Q,连接PQ,点Q即为所求.②想办法证明GQ=GN即可.【解答】(1)证明:如图1中,∵FK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连P′M交GN于Q,连接PQ,点Q即为所求.理由:∵GN垂直平分PP′,∴QP′=QP,∠KQP′=∠KQP,∵∠GQM=∠KQP′,∴∠GQM=∠PQK,∴点P即为所求.②∵P,P′关于GN对称,∴GN⊥PP′,PK=KP′,∴∠PKN=90°,∵∠N=30°,∴∠PNK=60°,∴PN=2KP=PP′,∵PM=PN,∴PM=PP′,∵∠NPK=∠PMP′+∠P′,∴∠PMP′=∠P′=30°,∴∠QMN=∠N=30°,∴MQ=NQ,∵∠G=∠QMG=60°,∴QG=QM,∴MQ=QG=NQ,∵GM=3,∠N=30°,∠NMG=90°,∴GN=2GM=6,∴MQ=3.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(2019江苏省扬州市一模)有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.(1)在Rt△ABC中,∠ACB=90°,若∠A为智慧角,则∠B的度数为;(2)如图①,在△ABC中,∠A=45°,∠B=30°,求证:△ABC是智慧三角形;(3)如图②,△ABC是智慧三角形,BC为智慧边,∠B为智慧角,A(3,0),点B,C在函数y=(x>0)的图象上,点C在点B的上方,且点B的纵坐标为.当△ABC 是直角三角形时,求k的值.【分析】(1)利用智慧角的意义和勾股定理即可得出结论;(2)构造出两个直角三角形,即可得出结论;(3)分两种情况:①先判断出△BCF∽△ABE,进而得出B(3+a,),C(1+a,+a),最后代入反比例函数解析式中即可得出结论;②先判断出△MAC≌△NBA(AAS).进而AM=BN=,进而得出B(3+b,),C(3﹣,b),最后代入反比例函数解析式中即可得出结论.【解答】解:(1)如图1,在Rt△ABC中,∠ACB=90°,∠A是智慧角,∴AB=AC,根据根据勾股定理得,BC=AC,∴∠B=∠A=45°,故答案为45°;(2)如图2,过点C作CD⊥AB于点D.在Rt△ACD中,∠A=45°,∴AC=DC.在Rt△BCD中,∠B=30°,∴BC=2DC.∴=.∴△ABC是智慧三角形.(3)由题意可知∠ABC=90°或∠BAC=90°.①当∠ABC=90°时,如图3,过点B作BE⊥x轴于点E,过点C作CF⊥EB交EB延长线于点F,过点C作CG⊥x轴于点G,则∠AEB=∠F=∠ABC=90°.∴∠BCF+∠CBF=∠ABE+∠CBF=90°.∴∠BCF=∠ABE.∴△BCF∽△ABE.∴===.设AE=a,则BF=a.∵BE=,∴CF=2.∵OG=OA+AE﹣GE=3+a﹣2=1+a,CG=EF=+a,∴B(3+a,),C(1+a,+a).∵点B,C在函数y=(x>0)的图象上,∴(3+a)=(1+a)(+a)=k.解得:a1=1,a2=﹣2(舍去).∴k=.②当∠BAC=90°时,如图4,过点C作CM⊥x轴于点M,过点B作BN⊥x轴于点N.则∠CMA=∠CAB=∠ANB=90°.∴∠MCA+∠CAM=∠BAN+∠CAM=90°.∴∠MCA=∠BAN.由(1)知∠B=45°.∴△ABC是等腰直角三角形.∴AC=AB.由①知△MAC∽△NBA.∴△MAC≌△NBA(AAS).∴AM=BN=.设CM=AN=b,则ON=3+b.∴B(3+b,),C(3﹣,b).∵点B,C在函数y=(x>0)的图象上,∴(3+b)=(3﹣)b=k.解得:b=9+12.∴k=18+15.综上所述,k=4或18+15.【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,构造直角三角形和相似三角形是解本题的关键.5.(2019辽宁省沈阳市一模)如图在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,M 为AC的中点.D是射线CB上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接MN.(1)如图1,∠BCE=,NM与AC的位置关系是;(2)如图2,判断(1)中NM与AC的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当CD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.【分析】(1)如图1中,连接AN,CN.证明△BAD≌△CAE(SAS),推出∠ABD=∠ACE =45°,再利用直角三角形斜边中线的性质以及等腰三角形的性质即可解决问题.(2)如图2中,结论不变.证明方法类似(1).(3)根据垂线段最短即可解决问题.【解答】解:(1)如图1中,连接AN,CN.∵△ABC,△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠B=∠ACB=45°∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠ECB=45°+45°=90°,∵DN=EN,∴CN =DE ,同法AN =DE ,∴NA =NC ,∵AM =MC ,∴NM ⊥AC ,故答案为90°,MN ⊥AC .(2)如图2中,结论不变.理由:连接AN ,CN .∵△ABC ,△ADE 都是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∠B =∠ACB =45°∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴∠ABD =∠ACE ,∵∠ABC =∠ACB =45°,∴∠ABD =∠ACE =135°,∴∠DCB =90°,∵DN =EN ,∴CN =DE ,同法AN =DE ,∴NA =NC ,∵AM =MC ,∴NM ⊥AC .(3)如图3中,由(1)可知∠ECB=90°,∴CE⊥BC,∴当ME⊥EC时,ME的值最小,在Rt△ABC中,∵AB=AC=2,∴BC=4,∵AM=MC=,在Rt△CME中,∵∠ECM=∠CME=45°,∴EC=EM=1,由(1)可知:△BAD≌△CAE,∴BD=EC=1,∴CD=4﹣1=3.∴当CD=3时,EM的值最小,最小值为1.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,直角三角形斜边中线的性质,垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.6.(2019辽宁省营口市一模)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.(1)求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);(2)甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?【分析】(1)过点P作PE⊥MN,垂足为E.构造直角三角形APE和BPE,利用直角三角形中特殊角所对应的边角关系,求出AP、BP.(2)设乙船的速度是x海里/时,根据甲船比乙船晚到小岛24分钟,列出方程,求解方程即可.【解答】解:(1)过点P作PE⊥MN,垂足为E.由题意,得∠PAB=90°﹣60°=30°,∠PBA=90°﹣45°=45°.∵PE=30海里,∴AP=60海里.∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里.在Rt△PEB中,BP==30≈42(海里).故AP=60(海里),BP=42(海里).(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得﹣=,解得x=20经检验,x=20是原方程的解.∴甲船的速度为1.2x=1.2×20=24.答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点评】本题考查了解直角三角形的应用和列分式方程解应用题.解决(1)的关键是构造直角三角形,利用特殊角的边角关系;解决(2)的关键是根据题意,找到等量关系列出分式方程.7.(2019浙江省温州市龙湾区一模)如图,在8×8的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出∠ADC,使得∠ADC=∠ABC,且点D为格点.(2)在图2中画出∠CEB,使得∠CEB=2∠CAB,且点E为格点.【分析】(1)构造全等三角形解决问题即可.(2)利用圆周角定理解决问题即可.【解答】解:(1)如图点D,D′,D″即为所求.(2)如图点E,E′即为所求.【点评】本题考查作图﹣应用与设计,全等三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2019浙江省台州市一模)直角三角形有一个非常重要的性质质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=AB.请你利用该定理和以前学过的知识解决下列问题:在△ABC中,直线a绕顶点A旋转.(1)如图2,若点P为BC边的中点,点B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN.求证:PM=PN;(2)如图3,若点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图4,∠BAC=90°,直线a旋转到与BC垂直的位置,E为AB上一点且AE=AC,EN⊥a于N,连接EC,取EC中点P,连接PM、PN,求证:PM⊥PN.【分析】(1)如图2中,延长NP交BM的延长线于G.只要证明△PNC≌△PGB,推出PN=PG,再根据直角三角形斜边中线定理即可证明.(2)结论:PM=PN.延长NP交BM于G,证明方法类似(1).(3)如图4中,延长NP交BM于G.先证明△EAN≌△CAM,推出EN=AM,AN=CM,再证明△ENP≌△CGP,推出EN=CG=AM,PN=PG,因为AN=CM,所以MG=MN,即可证明PM⊥PN.【解答】(1)证明:如图2中,延长NP交BM的延长线于G.∵BM⊥AM,CN⊥AM,∴BG∥CN,∴∠PCN=∠PBG,在△PNC和△PGB中,,∴△PNC≌△PGB,∴PN=PG,∵∠NMG=90°,∴PM=PN=PG.(2)结论:PM=PN.如图3中,延长NP交BM于G.∵BM⊥AM,CN⊥AM,∴BM∥CN,∴∠PCN=∠PBG,在△PNC和△PGB中,,∴△PNC≌△PGB,∴PN=PG,∵∠NMG=90°,∴PM=PN=PG.(3)如图4中,延长NP交BM于G.∵∠EAN+∠CAM=90°,∠CAM+∠ACM=90°,∴∠EAN=∠ACM,在△EAN和△CAM中,,∴△EAN≌△CAM,∴EN=AM,AN=CM,∵EN∥CG,∴∠ENP=∠CGP,在△ENP和△CGP中,,∴△ENP≌△CGP,∴EN=CG=AM,PN=PG,∵AN=CM,∴MG=MN,∴PM⊥PN.【点评】本题考查几何变换综合题、直角三角形斜边中线性质、全等三角形的判定和性质、平行线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.(2019安徽省淮南市一模)如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC上,且满足∠AFE=∠A,DM∥EF交AC于点M.(1)证明:DM=DA;(2)如图2,点G在BE上,且∠BDG=∠C,求证:△DEG∽△ECF;(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=3,求EH的长.【分析】(1)想办法证明∠AMD=∠A即可.(2)根据两角相等的两个三角形相似即可证明.(3)理由相似三角形以及平行四边形的性质证明BG=EH即可解决问题.【解答】(1)证明:如图1所示,∵DM∥EF,∴∠AMD=∠AFE,∵∠AFE=∠A,∴∠AMD=∠A,∴DM=DA.(其他解法酌情给分)(2)证明:如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF.(3)如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=3.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,平行四边形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用相似三角形的性质证明线段线段,属于中考压轴题.10.(2019安徽省淮南市二模)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)先过点A作AH⊥PO,根据斜坡AP的坡度为1:2.4,得出=,设AH =5k,则PH=12k,AP=13k,求出k的值即可.(2)先延长BC交PO于点D,根据BC⊥AC,AC∥PO,得出BD⊥PO,四边形AHDC 是矩形,再根据∠BPD=45°,得出PD=BD,然后设BC=x,得出AC=DH=x﹣14,最后根据在Rt△ABC中,tan76°=,列出方程,求出x的值即可.【解答】解:(1)过点A作AH⊥PO,垂足为点H,∵斜坡AP的坡度为1:2.4,设AH=5k,则PH=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AH=10,答:坡顶A到地面PO的距离为10米.(2)延长BC交PO于点D,∵BC⊥AC,AC∥PO,∴BD⊥PO,∴四边形AHDC是矩形,CD=AH=10,AC=DH,∵∠BPD=45°,∴PD=BD,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.01.解得x≈19.答:古塔BC的高度约为19米.【点评】此题考查了解直角三角形,用到的知识点是勾股定理、锐角三角函数、坡角与坡角等,关键是做出辅助线,构造直角三角形.11.(2019安徽省庐江县一模)已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.【分析】(1)结论:FD=FC,DF⊥CF.理由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【解答】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.12.(2019北京市汇文中学一模)阅读理解:如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是;(2)当图③中的∠BCD=120°时,∠AEB′=°;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有个(包含四边形ABCD).拓展提升:当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.【分析】(1)由平行四边形、矩形、菱形、正方形的性质和“完美筝形”的定义容易得出结论;(2)先证出∠AEB′=∠BCB′,再求出∠BCE=∠ECF=40°,即可得出结果;(3)由折叠的性质得出BE=B′E,BC=B′C,∠B=∠CB′E=90°,CD=CD′,FD=FD′,∠D=∠CD′F=90°,即可得出四边形EBCB′、四边形FDCD′是“完美筝形”;由题意得出∠OD′E=∠OB′F=90°,CD′=CB′,由菱形的性质得出AE=AF,CE =CF,再证明△OED′≌△OFB′,得出OD′=OB′,OE=OF,证出∠AEB′=∠AFD′=90°,即可得出四边形CD′OB′、四边形AEOF是“完美筝形”;即可得出结论;当图③中的∠BCD=90°时,四边形ABCD是正方形,证明A、E、B′、F四点共圆,得出,由圆周角定理即可得出∠AB′E的度数.【解答】解:(1)①∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C≠90°,∠B=∠D≠90°,∴AB≠AD,BC≠CD,∴平行四边形不一定为“完美筝形”;②∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,∴AB≠AD,BC≠CD,∴矩形不一定为“完美筝形”;③∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C≠90°,∠B=∠D≠90°,∴菱形不一定为“完美筝形”;④∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∴正方形一定为“完美筝形”;∴在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是正方形;故答案为:正方形;(2)根据题意得:∠B′=∠B=90°,∴在四边形CBEB′中,∠BEB′+∠BCB′=180°,∵∠AEB′+∠BEB′=180°,∴∠AEB′=∠BCB′,∵∠BCE=∠ECF=∠FCD,∠BCD=120°,∴∠BCE=∠ECF=40°,∴∠AEB′=∠BCB′=40°+40°=80°;故答案为:80;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有5个;理由如下;根据题意得:BE=B′E,BC=B′C,∠B=∠CB′E=90°,CD=CD′,FD=FD′,∠D=∠CD′F=90°,∴四边形EBCB′、四边形FDCD′是“完美筝形”;∵四边形ABCD是“完美筝形”,∴AB=AD,CB=CD,∠B=∠D=90°,∴CD′=CB′,∠CD′O=∠CB′O=90°,∴∠OD′E=∠OB′F=90°,∵四边形AECF为菱形,∴AE=AF,CE=CF,AE∥CF,AF∥CE,∴D′E=B′F,∠AEB′=∠CB′E=90°,∠AFD′=∠CD′F=90°,在△OED′和△OFB′中,,∴△OED′≌△OFB′(AAS),∴OD′=OB′,OE=OF,∴四边形CD′OB′、四边形AEOF是“完美筝形”;∴包含四边形ABCD,对应图③中的“完美筝形”有5个;故答案为:5;当图③中的∠BCD=90°时,如图所示:四边形ABCD是正方形,∴∠BAD=90°,∵∠EB′F=90°,∴∠BAD+∠EB′F=180°,∴A、E、B′、F四点共圆,∵AE=AF,∴,∴∠AB′E=∠AB′F=∠EB′F=45°.【点评】本题是四边形综合题目,考查了平行四边形、矩形、菱形、正方形的性质、“完美筝形”的判定与性质、全等三角形的判定与性质、四点共圆、圆周角定理等知识;本题难度较大,综合性强,熟练掌握“完美筝形”的定义,并能进行推理论证与计算是解决问题的关键.13.(2019北京市大兴区一模)在平面直角坐标系xOy中,已知点A的坐标为(0,﹣1),点C(m,0)是x轴上的一个动点.(1)如图1,点B在第四象限,△AOB和△BCD都是等边三角形,点D在BC的上方,当点C在x轴上运动到如图所示的位置时,连接AD,请证明△ABD≌△OBC;(2)如图2,点B在x轴的正半轴上,△ABO和△ACD都是等腰直角三角形,点D在AC的上方,∠D=90°,当点C在x轴上运动(m>1)时,设点D的坐标为(x,y),请探求y与x之间的函数表达式;(3)如图3,四边形ACEF是菱形,且∠ACE=90°,点E在AC的上方,当点C在x 轴上运动(m>1)时,设点E的坐标为(x,y),请探求y与x之间的函数表达式.【分析】(1)由等边三角形的性质得到AB=OB,BD=BC,∠ABO=∠DBC=60°,从而判断出∠ABD=∠OBC即可;(2)过点D作DH⊥y轴,垂足为H,延长HD,过点C作CG⊥HD,垂足为G,由△ABO和△ACD都是等腰直角三角形,得出∠ADC=90°,AD=CD,∠CDG=∠DAH,从而得到△AHD≌△DGC(AAS),根据DH=CG=OH,点D的坐标为(x,y),得出y与x之间的关系是y=x;(3)过点E作EM⊥x轴,垂足为M,则∠EMC=∠COA=90°,再利用正方形的性质即可得出△EMC≌△COA(AAS),得到MC=OA=1,EM=OC,EM=OC=x+1,进而得出y与x之间的关系是y=x+1.【解答】解:(1)∵△AOB和△BCD都是等边三角形,∴AB=OB,BD=BC,∠ABO=∠DBC=60°,∴∠ABD=∠OBC,在△ABD和△OBC中,,∴△ABD和△OBC;(2)如图,过点D作DH⊥y轴,垂足为H,延长HD,过点C作CG⊥HD,垂足为G.∴∠AHD=∠CGD=90°,∵△ABO和△ACD都是等腰直角三角形,∴∠ADC=90°,AD=CD,∴∠ADH+∠CDG=90°,∵∠ADH+∠DAH=90°,∴∠CDG=∠DAH,∵在△AHD和△DGC中,,∴△AHD≌△DGC(AAS),∴DH=CG=OH,∵点D的坐标为(x,y),∴y与x之间的关系是y=x;(3)过点E作EM⊥x轴,垂足为M,则∠EMC=∠COA=90°,∵四边形ACEF是菱形,且∠ACE=90°,∴AC=CE,∠ACO+∠ECO=90°,∵∠ACO+∠CAO=90°,∴∠ECO=∠CAO,在△EMC和△COA中,,∴△EMC≌△COA(AAS),∴MC=OA=1,EM=OC,∵点E的坐标为(x,y),∴EM=OC=x+1,∴y与x之间的关系是y=x+1.【点评】此题是四边形综合题,主要考查了等边三角形,等腰直角三角形的性质,全等三角形的性质和判定的综合应用,解本题的关键是判定三角形全等,根据全等三角形的对应边相等进行推导.本题也可以运用相似三角形的性质进行求解.14.(2019北京市丰台区一模)如图1,两个全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中点B和点D重合,点F在BC上,将△DEF沿射线BC平移,设平移的距离为x,平移后的图形与△ABC重合部分的面积为y,y关于x的函数图象如图2所示(其中0≤x≤m,m<x≤3,3<x≤4时,函数的解析式不同)(1)填空:BC的长为;(2)求y关于x的函数关系式,并写出x的取值范围.【分析】(1)通过图2观察可知y=0时x=4,即D点从B运动到C平移的距离为4;(2)当△DEF在平移过程中,与△ABC的重合部分有三种情况,将三种图形分别画出,通过作辅助线构造相似三角形,通过相似三角形对应边的关系,将各边用x表示出来,即可以列出y与x的函数关系式.【解答】解:(1)由图2得当x=4时,y=0,说明此时△DEF与△ABC无重合部分,则点D从B到C运动的距离为4,即BC=4;故答案为:4.(2)当DE经过点A时(如图1),BD=3,CD=1,∵△ABC≌△DEF.∴∠EDF=∠BAC.∵∠ACD=∠BCA∴△ADC∽△BAC.∴,即.AC=2∴n=2当0≤x≤2时(如图2),设ED 、EF 与AB 分别相交于点M ,G ,作MN ⊥BC ,垂足为N .则∠MNB =90°=∠EFD =∠C .∵∠MDN =∠EDF .∴△DMN ∽△DEF .∴,即.∴MN =2DN .设DN =n ,则MN =2n .同理△BMN ∽△BAC .∴.即,∴BN =4n ,即x +n =4n .∴n =x .∴S △BDM =•BD •MN =2 同理△BGF ∽△BAC∴,即.∴GF =,∴y =S △BGF ﹣S △BDM =2=﹣x 2+x +1.当2<x ≤3时(如图3),由①知,S △BDM =x 2.∴y =S △ABC ﹣S △BDM =2=﹣x 2+4当3<x ≤4时(如图4),设DE 与AB 相交于点H .同理△DHC ∽△DEF .∴,即∴HC =24﹣x .∴y ==x 2﹣8x +16∴y =.【点评】本题考查了平移的性质、相似三角形性质,解题的关键是要找到△DEF 运动过程中与△ABC 重叠面积的不同情况,通过辅助线构造相似三角形,要注意分类讨论画出对应的图象.15.(2019北京市海淀区一模)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F (点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF =CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求△AEF得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,则C△AEF设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.【点评】本题主要考查的是三角形的综合应用,解答本题主要应用了角平分线的性质、等边三角形的性质、全等三角形的判定,相似三角形的判定与性质,锐角三角函数等知识点,综合性较强,难度较大,需要学生具备对所学几何知识的综合应用能力.16.(2019甘肃省高台县一模)如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为s时,四边形ACFE是菱形.【分析】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)①分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案;②若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【解答】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,∵在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=8﹣2t,解得:t=;当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣8(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣8,解得:t=8;综上可得:当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.②若四边形ACFE是菱形,则有CF=AC=AE=8,则此时的时间t=8÷1=8(s);故答案是:或8;8.【点评】此题考查了平行四边形的判定,菱形的判定,全等三角形的判定与性质,等边三角形的性质,解题的关键是理解题意,学会用分类讨论的思想思考问题.17.(2019广东省湛江市一模)如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF 并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.【分析】(1)由AAS证明△BDE≌△CDF,即可得出结论;(2)①设BH=11x,则HC=5x,BC=16x,则,DH=3x,由平行线得出△EDH∽△ADB,得出,即可得出结论;②求出=,证出FH∥AC,即PH∥AC,即可得出结论.【解答】(1)证明:∵AD为△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF;(2)①解:设BH=11x,则HC=5x,BC=16x,则,DH=3x,∵EG∥AB,∴△EDH∽△ADB,∴,∵DE=DF,∴;②证明:∵,∴,∵,∴=,∴FH ∥AC ,∴PH ∥AC ,∵EG ∥AB ,∴四边形HGAP 为平行四边形.【点评】本题考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握平行四边形的判定是关键.18.(2019广东省佛山市一模)如图,在△ABC 中,AB =AC =l 0cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2cm /s ;同吋点P 从点B 出发沿BA 的方向匀速运动,速度为lcm /s .已知:过点P 的直线PQ 满足PQ ∥AC ,直线PQ 交BC 于点Q 、交BD 于点F .设运动时间为ts (0<t <5);(1)当S 四边形PQCM =S △ABC 时,直接写出t 的值;(2)设四边形PQCM 的面积为ycm 2,求y 与t 之间的函数关系式;(3)连接PC ,是否存在某一时刻t ,使点M 在线段PC 的垂直平分线上?若存在,求出此时t 的值;若不存在,说明理由.【分析】(1)由题意可求S △ABC =×AC ×BD =40cm 2,通过证明△BPQ ∽△BAC ,可得S△BPQ =t 2,S △APM =×2t ×(8﹣t )=8t ﹣t 2,由S △ABC ﹣S △APM +S △BPQ =S 四边形PQCM ,可求t 的值;(2)由S △ABC ﹣S △APM +S △BPQ =S 四边形PQCM ,可求y 与t 之间的函数关系式;(3)过点M 作MH ⊥AB 于点H ,通过证明△AHM ∽△ADB ,可求AH =t ,HM =t ,由勾股定理可求PM 2,由两点距离公式可求t 的值.。
冲刺2019届中考:2019年全国各地中考模拟卷《三角形》压轴题集锦(含答案与解析)

冲刺2019届中考:2019年全国各地中考模拟卷《三角形》压轴题集锦(含答案与解析)1.(2019•哈尔滨模拟)在△ABC中,AB=AC,点D在AC边上,CD=BC,点E与点B位于AC 边的两侧,连接BD、DE、BE,DE∥BC且DE=AD.(1)如图1,求证:∠ABD=∠EBD;(2)如图2,延长BD,交射线CE于点F,连接AE,AF,若∠BEC=2∠ABD,在不添加任何字母和辅助线的情况下,请直接写出图中四个面积等于△ABC面积的三角形.解:(1)∵BC=DC,∴∠CDB=∠CBD.∵DE∥BC,∴∠CBD+∠BDE=180°.∵∠CDB+∠BDA=180°,∴∠BDE=∠BDA.∵AD=DE,BD=BD,∴△ABD≌△EBD(SAS).∴∠ABD=∠EBD.(2)与图中△ABC面积相等的四个三角形是:△ABE,△ABF,△BEF,△AEF.理由如下:由△ABD≌△EBD可得∠ABE=2∠ABD,又∵∠BEC=2∠ABD,∴∠BEC=∠ABE.∴CF∥AB.则△ABE,△ABF与△ABC都是以AB为底的同底等高的三角形,所以△ABE,△ABF与△ABC 面积相等;在△ABF和△EBF中,∴△ABF≌△EBF(SAS).∴△ABF与△EBF面积相等.∵△ABF与△ABC面积相等,∴△EBF面积与△ABC的面积相等.∵CF∥AB,∴△AEF和△BEF是以EF为底的同底等高的三角形,∴△AEF和△BEF面积相等.∴△AEF和△ABC面积相等.所以与图中△ABC面积相等的四个三角形是:△ABE,△ABF,△BEF,△AEF.2.(2019•南岸区校级模拟)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.3.(2019•綦江区一模)在菱形ABCD中,BD=BC,(1)如图1,若菱形ABCD的面积为6.求点B到DC的最短距离.(2)如图2,点F在BC边上,且DE=CF,连接DF交BE于点M,连接EB并延长至点N,使得BN=DM,求证:AN=DM+BM.解:(1)如图,作BE⊥CD于点E,∵四边形ABCD为菱形∴BC=CD又∵BD=CD∴△CDB是等边三角形∵BE⊥CD,∴点B到CD的距离最短是BE∵△BDC是等边三角形,且BE⊥CD,∴DE=CE,∠BDC=60°∴BE=DE设CE=DE=x,则CD=2x,BE=x∵菱形ABCD的面积为6∴2x×x=6∴x=∴BE=3,∴点B到DC的最短距离为3(2)连接AM∵DE=CF.∠BDE=∠C,BD=CD,∴△BDE≌△DCF(SAS)∴∠DBE=∠CDF,∴∠BMF=∠DBM+∠BDM=∠CDF+∠BDM=60°,∴∠DMB=120°∵∠DAB+∠DMB=180°,∴∠ADM+∠ABM=180°,又∵∠ABN+∠ABM=180°,∴∠ABN=∠ADM,且AB=AD,BN=DM,∴△ABN≌△ADM(SAS)∴∠DAM=∠BAN,AM=AN,∴∠MAN=∠DAB=60°,∴△AMN是等边三角形∴AN=NM又∵NM=NB+BM,NB=DM∴AN=DM+BM4.(2019•滨江区一模)如图1,点C、D是线段AB同侧两点,且AC=BD,∠CAB=∠DBA,连接BC,AD交于点E.(1)求证:AE=BE;(2)如图2,△ABF与△ABD关于直线AB对称,连接EF.①判断四边形ACBF的形状,并说明理由;②若∠DAB=30°,AE=5,DE=3,求线段EF的长.(1)证明:在△ABC和△BAD中,∵,∴△ABC≌△BAD(SAS),∴∠CBA=∠DAB,∴AE=BE;(2)解:①四边形ACBF为平行四边形;理由是:由对称得:△DAB≌△FAB,∴∠ABD=∠ABF=∠CAB,BD=BF,∴AC∥BF,∵AC=BD=BF,∴四边形ACBF为平行四边形;②如图2,过F作FM⊥AD于,连接DF,∵△DAB≌△FAB,∴∠FAB=∠DAB=30°,AD=AF,∴△ADF是等边三角形,∴AD=AB=3+5=8,∵FM⊥AD,∴AM=DM=4,∵DE=3,∴ME=1,Rt△AFM中,由勾股定理得:FM===4,∴EF==7.5.(2018秋•吴兴区期末)在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,过E作EM∥AC交AB于点M,连结MD.(1)当∠ADC=80°时,求∠CBE的度数;(2)当∠ADC=α时:①求证:BE=CE;②求证:∠ADM=∠CDM;③当α为多少度时,DM=EM.(1)解:∵DA=DC,∠ADC=80°,∴∠DAC=∠DCA=50°,∵∠ACB=90°,∴∠ECB=∠ACB﹣∠ACD=90°﹣50°=40°,∵AD∥BE,∴∠BED=∠ADC=80°,∴∠EBC=∠BED﹣∠ECB=80°﹣40°=40°,(2)证明:①∵DA=DC,∠ADC=α,∴∠DAC=∠DCA=,∵∠ACB=90°,∴∠ECB=∠ACB﹣∠ACD=90°﹣=,∵AD∥BE,∴∠BED=∠ADC=α,∴∠EBC=∠BED﹣∠ECB=α﹣=,∴∠ECB=∠EBC,∴EB=EC;证明:②如图,延长EM交AD于F,延长BE交AC于点G,∵∠BCG=90°,BE=CE,∴CE=CG,∴E为BG的中点,∵ME∥AC,∴AM=BM,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME(ASA),∴MF=ME,∵EF∥AC,∴∠FED=∠DFE=∠ACD=∠DAC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠ADM=∠CDM;解:③当α为60°时,DM=EM,理由如下:∵∠ADC=60°,由②知:DM⊥EF,DM平分∠ADC,∴∠MDE=30°,在Rt△MDE中,tan∠MDE=,∴DM=ME.6.(2019•莆田模拟)问题提出学习了全等三角形的判定方法(“SSS”“SAS”“ASA”“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.初步思考将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DEF,然后对∠ABC进行分类,可分为“∠ABC是锐角、直角、钝角”三种情况进行探究.第一种情况:当∠ABC是锐角时,AB=DE不一定成立第二种情况:当∠ABC是直角时,根据“HL”,可得△ABC≌△DEF,则AB=DE;第三种情况,当∠ABC是钝角时,则AB=DE.如图,在△ABC和△DEF中,AC=DF,BC=EF.∠ABC=∠DEF,且∠ABC是钝角.求证:AB=DE;方法归纳化归是一种有效的数学思维方式,一般是将未解决的问题通过变换转化为已解决的问题,观察发现第三种情况可以转化为第二种情况,如图,过点C作CG⊥AB交延长线于点G.(1)在△DEF中用尺规作出DE边上的高FH,不写作法,保留作图痕迹;(2)请你完成(1)中作图的基础上,加以证明AB=DE.解:(1)如图所示:(2)证明:∵∠ABC=∠DEF,∴∠CBG=∠FEH,∵CG⊥AB,FH⊥DE,∴∠BGC=∠EHF=90°,∵BC=EF,∴△CBG≌△FEH(AAS),∴BG=EH,CG=FH,∵AC=DF,∴Rt△ACG≌Rt△DFH(HL),∴AG=DH,∴AG﹣BG=DH﹣EH,即AB=DE.7.(2018秋•蚌埠期末)在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点D:①求证:BE=AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N是BD的中点.解:(1)①∵CA=CB,CD=CE,∠CAB=∠CED=α,∴∠ACB=180°﹣2α,∠DCE=180°﹣2α,∴∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;②∵△ACD≌△BCE,∴∠CAD=∠CBE=α+∠BAO,∵∠ABE=∠BOA+∠BAO,∴∠CBE+α=∠BOA+∠BAO,∴∠BAO+α+α=∠BOA+∠BAO,∴∠BOA=2α;(2)如图2,作BP⊥MN交MN的延长线于P,作DQ⊥MN于Q,∵∠BCP+∠BCA=∠CAM+∠AMC,∵∠BCA=∠AMC,∴∠BCP=∠CAM,在△CBP与△ACM中,,∴△CBP≌△ACM(AAS),∴MC=BP,同理,CM=DQ,∴DQ=BP,在△BPN与△DQN中,,∴△BPN≌△DQN(AAS),∴N是BD的中点.8.(2019•娄底模拟)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)求证:AC=EF;(2)试判断四边形EFDA的形状,并证明你的结论.证明:(1)∵△ABE是等边三角形,EF⊥AB,∴∠EAF=60°,AE=BE,∠EFA=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EFA=∠ACB,∠EAF=∠ABC.在△ABC和△EAF中,∴△ABC≌△EAF(AAS),∴AC=EF.(2)结论:四边形EFDA是平行四边形.理由:∵△ABC≌△EAF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD,∠CAD=60°,又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.9.(2019•慈溪市模拟)一个三角形的三条边上各取一点,这三点构成的三角形叫做原三角形的内接三角形.△ABC中,∠A=∠B=30°,AC=4,△DEF是△ABC的内接三角形.(1)如图①,已知DE∥AB,DF∥BC.①若DF=EF,则DE=2②若△DEF是直角三角形,求CD的长;(2)如图②,若△DEF是等腰直角三角形,∠DFE=90°,D是AC中点,求tan∠AFD的值.解:(1)①如图1,过C作CG⊥DE于G,∵DF∥BC,∴∠DFA=∠B=30°,∵∠A=30°,∴∠A=∠DFA=30°,∴AD=DF,∴DE∥AB,∴∠EDF=∠DFA=30°,∵DF=EF,∴∠DEF=∠FDE=30°,∴∠DFE=∠ADF=120°,∴EF∥AC,∴四边形CDFE是平行四边形,∴CD=EF=AD=AC=2,∵∠CDE=∠CED=30°,∴CD=CE,∴DG=EG,Rt△CDG中,CD=2,∴CG=CD=1,DG=,∴DE=2DG=2;故答案为:2;②分两种情况:i)如图2,当∠DFE=90°时,△DEF是直角三角形,过C作CG⊥DE于G,设CG=x,则CD=2x,DG=EG=x,∴DE=2x,Rt△DEF中,∠EDF=30°,∴EF=x,DF=AD=3x,∴AC=4,∴3x+2x=4,x=,∴CD=2x=;ii)如图3,当∠DEF=90°时,△DEF是直角三角形,过C作CG⊥DE于G,设CG=x,则CD=2x,DE=2xRt△DEF中,∠EDF=30°,∴EF=2x,DF=AD=4x,∴AC=4,∴4x+2x=4,x=,∴CD=2x=;综上,CD的长是或;(2)如图4,过D作DG⊥AB于G,过E作EH⊥AB于H,∵D是AC的中点,AC=4,∴AD=2,∵△DEF是等腰直角三角形,∴DF=EF,∠DFE=90°,∴∠DFG+∠EFH=90°=∠EFH+∠FEH,∴∠DFG=∠FEH,∵∠DGF=∠EHF=90°,∴△DGF≌△FHE(AAS),∴DG=FH=1,FG=EH,设FG=x,则EH=x,BH=x,如图5,过C作CM⊥AB于M,∵∠A=30°,AC=4,∴AM=2,∴AB=2AM=4,如图4,AG+FG+FH+BH=AB,+x+1+x=4,x=,∴tan∠AFD===.10.(2019•杭州模拟)△ABC和△ADE是有公共顶点的三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点.(1)①如图1,∠ADE=∠ABC=45°,求证:∠ABD=∠ACE.②如图2,∠ADE=∠ABC=30°,①中的结论是否成立?请说明理由.(2)在(1)①的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,画图并求PB的长度.(1)①证明:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵∠ADE=∠ABC=45°,∴AD=AE,AB=AC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE;②解:①中的结论成立;理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵∠ADE=∠ABC=30°,∴,,∴,∴△BAD∽△CAE,∴∠ABD=∠ACE.(2)解:分为两种情况:①当点E在AB上时,如图1所示:∵∠BAC=∠DAE,又∵∠ADE=∠ABC=45°,∴AD=AE,AB=AC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE;∴△AEC∽△BPE,∴,∵AB=6,AD=4,∴EB=2,,∴,解得.②当点E在AB延长线上时,如图2所示:∵∠BAC=∠DAE,又∵∠ADE=∠ABC=45°,∴AD=AE,AB=AC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE;∴△ABD∽△DPC,∴,∵AB=6,AD=4,∴DC=2,,∴,解得.∴.综上,或.11.(2019•邗江区校级一模)阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.4,AC=3.6,求BC得长.小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请完成:(1)求证:△BDE是等腰三角形(2)求BC的长为多少?(3)参考小聪思考问题的方法,解决问题:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=,BC=,求AD的长.解:(1)如图2,在BC边上取点E,使EC=AC,连接DE.在△ACD与△ECD中,,∴△ACD≌△ECD(SAS),∴AD=DE,∠A=∠DEC,∵∠A=2∠B,∴∠DEC=2∠B,∴∠B=∠EDB,∴△BDE是等腰三角形;(2)由(1)知:AC=CE=3.6,DE=BE=2.4,∴BC=BE+CE=2.4+3.6=6;(3)∵△ABC中,AB=AC,∠A=20°,∴∠ABC=∠C=80°,∵BD平分∠ABC,∴∠1=∠2=40°,∠BDC=60°,在BA边上取点E,使BE=BC=3,连接DE,在△DEB和△DBC中,∵,∴△DEB≌△DBC(SAS),∴∠BED=∠C=80°,∴∠4=60°,∴∠3=60°,在DA边上取点F,使DF=DB,连接FE,同理得△BDE≌△FDE(SAS),∴∠5=∠1=40°,BE=EF=3,∵∠A=20°,∴∠6=20°,∴AF=EF=3,∵BD=DF=4,∴AD=BD+BC=7.12.(2019•温州模拟)如图,AC,DB相交于点O,OB=OC,OA=OD.(1)求证:△ABC≌△DCB;(2)若BD平分∠ABC,∠A=60°,求∠BCD的度数.解:(1)在△ABO和△DCO中,∴△ABO≌△DCO(SAS).∴∠A=∠D.∵OB=OC,∴∠DBC=∠ACB.又BC=BC.∴△ABC≌△DCB(AAS);(2)∵△ABO≌△DCO,∴∠ABD=∠DCA,∠D=∠A=60°.∵BD平分∠ABC,∴∠DBC=∠ABD.∴∠DBC=∠ACB=∠DCA.∵∠DBC+∠ACB+∠DCA+∠D=180°,∴3∠DBC+60°=180°,解得∠DBC=40°,则∠BCD=180°﹣40°﹣60°=80°.13.(2019•温州模拟)如图,在四边形ABCD中,AD=BC,∠A=∠B,E为AB的中点,连结CE,DE.(1)求证:△ADE≌△BCE.(2)若∠A=70°,∠BCE=60°,求∠CDE的度数.(1)证明:∵E为AB的中点,∴AE=BE,∵在△ADE和△BCE中∴△ADE≌△BCE(SAS);(2)解:∵△ADE≌△BCE,∴DE=CE,∠A=∠B=70°,∠ADE=∠BCE=60°,∴∠AED=∠BEC=50°,∠CED=80°,∴∠CDE=∠DCE=50°.14.(2019•硚口区模拟)在△ACB和△DCE中,AB=A C,DE=DC,点E在AB上(1)如图1,若∠ACB=∠DCE=60°,求证:∠DAC=∠EBC;(2)如图2,设AC与DE交于点P.①若∠ACB=∠DCE=45°,求证:A D∥CB;②设AC与DE交于点P,当tan∠ADE=时,直接写出的值.(1)证明:∵AB=AC,DE=DC,∠ACB=∠DCE=60°,∴△ACB和△DCE都是等边三角形,∴BC=AC,EC=DC,∠DCA=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(SAS),∴∠DAC=∠EBC;(2)①证明:∵AB=AC,DE=DC,∠ACB=∠DCE=45°,∴△ACB和△DCE都是等腰直角三角形,∠CAB=∠CDE=90°,∠ECB=∠DCA,∴cos∠ACB=cos∠DCE,∴即,又∵∠ECB=∠DCA,∴△ECB∽△DCA,∴∠B=∠DAC=45°,∴∠DAC=∠ACB=45°,∴AD∥CB;②解:作EH∥AD交AC于点H,如图2所示:则:,由①中的△ECB∽△DCA得:,∵∠DAC=∠B═45°=∠DEC,∴∠ADE=∠ACE,∴tan∠ACE=tan∠ADE=,设AE=2m,∴tan∠ACE==,∴AC=4m,∴BE=AB﹣AE=AC﹣AE=4m﹣2m=2m,∴AE=BE,∴BC=AC=4m,∵EH∥AD,AD∥CB,∴EH∥CB,∴EH是△ABC的中位线,∴EH=BC=×4m=2m,AD===m,∴==.15.(2019•沈阳模拟)如图,在平面直角垫标系中,O是坐标原点,△ABC的各顶点坐标分别为A(﹣8,0),B(﹣2,8),C(4,0).动点M从点A出发,以每秒8个单位的速度沿A→C→B→A路线向终点A匀速运动,动点N从点A点出发,以每秒5个单位的速度沿A→B→C路线向终点C匀速运动,两点同时出发,当其中一点到达终点后,另一点也随之停止运动,设运动的时间为t秒(t>0),△AMN的面积为S.(1)①当t=秒时,点M与点N相遇;②求sin∠BAC;(2)当0<t<时,求S与t的函数关系式;(3)若S=,请直接写出此时t的值.解:(1)作BD⊥AC于点D,如图1所示:①∵A(﹣8,0),B(﹣2,8),C(4,0).∴OA=8,BD=8,OC=4,OD=2,∴AC=OA+OC=12,CD=6,AD=6,∴AD=CD,∴AB=CB==10,∴AB+BC+AC=32,点M与点N相遇时,8t+5t=32,解得:t=;即t=秒时,点M与点N相遇;故答案为:;②在Rt△ABD中,sin∠BAC===;(2)当0<t<时,点M在线段AC上,点N在线段AB上,作NE⊥AM于点E,如图2所示:则sin∠NAE==,∴NE=AN=×5t=4t,则S=AM•NE=×8t×4t=16 t2;△ANM(3)分情况讨论:①当0<t<时,S=16 t2=,解得:t=;△ANM②当≤t≤2时,作MF⊥AB于F,CG⊥AB于G,如图3所示:则CG∥MF,∴=,∵△ABC的面积=×AB×CG=×12×8,AB=10,∴CG=,∴=,解得:MF=(22﹣8t),∴S△ANM=AN•MF=×5t•=,解得:t=0或t=,∵≤t≤2,∴无解;③当2<t≤4时,作AH⊥BC于H,如图4所示:则S△AMN =AH•MN=××(32﹣13 t)=,或S△AMN=AH•MN=××(13t﹣32)=,解得:t=或t=;综上所述,若S=,t的值为或=或.16.(2019•昆山市一模)已知锐角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD 于F.(1)求证:△BDF≌△ADC;(2)若BD=4,DC=3,求线段BE的长度.证明:(1)∵AD⊥BC,∠ABC=45°∴∠ABC=∠BAD=45°,∴AD=BD,∵DA⊥BC,BE⊥AC∴∠C+∠DAC=90°,∠C+∠CBE=90°∴∠CBE=∠DAC,且AD=BD,∠ADC=∠ADB=90°∴△BDF≌△ADC(ASA)(2)∵△BDF≌△ADC∴AD=BD=4,CD=DF=3,BF=AC∴BF==5∴AC=5,=×BC×AD=×AC×BE ∵S△ABC∴7×4=5×BE∴BE=。
中考几何压轴--三角形与四边形(19年真题干货)

2019全国中考几何压轴题【2019兰州】某数学课题研究小组针对兰州市住房窗户“如何设计遮阳蓬”这一课题进行了探究,过程如下: 问题提出:如图1是某住户窗户上方安装的遮阳蓬,要求设计的遮阳蓬能最大限度地遮住夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内. 方案设计:如图2,该数学课题研究小组通过调查研究设计了垂直于墙面AC 的遮阳蓬CD . 数据收集:通过查阅相关资料和实际测量:兰州市一年中,夏至日这一天的正午时刻太阳光线DA 与遮阳蓬CD 的夹角∠ADC 最大(∠ADC =77.44°);冬至日这一天的正午时刻,太阳光线DB 与遮阳蓬CD 的夹角∠BDC 最小(∠BDC =30.56°).窗户的高度AB =2m . 问题解决:根据上述方案及数据,求遮阳蓬CD 的长.(结果精确到0.1m ,参考数据:sin30.56°≈0.51,cos30.56°≈0.86,tan30.56°≈0.59,sin77.44°≈0.98,cos77.44°≈0.22,tan77.44°≈4.49)【2019成都】如图1,在△ABC 中,AB=AC=20,tanB=43,点D 为BC 边上的动点(点D 不与点B ,C 重合).以点D 为顶点作∠ADE=∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于F ,连接CF. (1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DE =CF ?若存在,求出此时BD 的长;若不存在,请说明理由.【2019天水】如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB =AD ,CB =CD ,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD 的对角线AC 、BD 交于点O ,AC ⊥BD .试证明:AB 2+CD 2=AD 2+BC 2; (3)解决问题:如图3,分别以Rt △ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知AC =4,AB =5,求GE 的长.【2019甘肃】如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ⊥ED 交DE 于点F ,交CD 于点G .(1)证明:△ADG ≌△DCE ; (2)连接BF ,证明:AB =FB .【2019广州】如图11,等边ABC ∆中,AB=6,点D 在BC 上,BD=4,点E 为边AC 上一动点(不与点C 重合),CDE ∆关于DE 的轴对称图形为FDE ∆.(1)当点F 在AC 上时,求证:DF//AB ;(2)设ACD ∆的面积为S 1,ABF ∆的面积为S 2,记S=S 1-S 2,S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;(3)当B ,F ,E 三点共线时。
(名师整理)最新数学中考专题冲刺《三角形》压轴真题训练(含答案)

冲刺中考《三角形》压轴真题训练1.(2019•鄂州)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E、F分别为DB、BC 的中点,连接AE、EF、AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系式.2.(2019•江西)在图1,2,3中,已知▱ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.(1)如图1,当点E与点B重合时,∠CEF=°;(2)如图2,连接AF.①填空:∠FAD∠EAB(填“>”,“<“,“=”);②求证:点F在∠ABC的平分线上;1(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求的值.3.(2019•扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB 在直线l2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.请依据上述定义解决如下问题:(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=;(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)═9,求△ABC的面积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD),24.(2019•枣庄)在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.5.(2019•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.6.(2019•呼和浩特)如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;3(3)若=,求证:△ABC是直角三角形.7.(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:△AGE≌△CHF;(2)连接AC,线段GH与AC是否互相平分?请说明理由.8.(2019•北京)已知∠AOB=30°,H为射线OA上一定点,OH =+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.49.(2019•河北)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /510.(2019•赤峰)【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;【拓展引申】(3)如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD 上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.611.(2019•长春)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G ,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF 的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为.712.(2019•鸡西)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若∠ABC=30°,求证:DF+BH =BD;(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.13.(2019•铁岭)如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC =180°.(1)如图1,当∠B=45°时,线段AG和CF 的数量关系是.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.814.(2019•阜新)如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD =CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.15.(2019•锦州)已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.9(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.10参考答案1.(1)证明:点E、F分别为DB、BC的中点,∴EF =CD,∵∠DAB=90°,∴AE =BD,∵DB=DC,∴AE=EF;(2)解:∵AF=AE,AE=EF,∴△AEF是等边三角形,∴∠AEF=60°,∵∠DAB=90°,点E、F分别为DB、BC的中点,∴AE=DE,EF∥CD,∴∠ADE=∠DAE,∠BEF=∠BDC=β,∴∠AEB=2∠ADE=2α,∴∠AEF=∠AEB+∠FEB=2α+β=60°,∴α,β之间的数量关系式为2α+β=60°.2.解:(1)∵四边形AEFG是菱形,∴∠AEF=180°﹣∠EAG=60°,∴∠CEF=∠AEC﹣∠AEF=60°,11故答案为:60°;(2)①∵四边形ABCD是平行四边形,∴∠DAB=180°﹣∠ABC=60°,∵四边形AEFG是菱形,∠EAG=120°,∴∠FAE=60°,∴∠FAD=∠EAB,故答案为:=;②当BA<BE时,如图2,作FM⊥BC于M,FN⊥BA交BA的延长线于N,则∠FNB=∠FMB=90°,∴∠NFM=60°,又∠AFE=60°,∴∠AFN=∠EFM,∵EF=EA,∠FAE=60°,∴△AEF为等边三角形,∴FA=FE,在△AFN和△EFM中,,∴△AFN≌△EFM(AAS)∴FN=FM,又FM⊥BC,FN⊥BA,∴点F在∠ABC的平分线上,当BA=BE时,如图4,12∵BA=BE,∠ABC=120°,∴∠BAE=∠BEA=30°,∵∠EAG=120°,四边形AEFG为菱形,∴∠EAF=60°,又EA=EF,∴△AEF为等边三角形,∴∠FEA=60°,FA=FE,则∠FAB=∠FEB=90°,又FA=FE,∴点F在∠ABC的平分线上,当BA>BE时,同理可证,点F在∠ABC的平分线上,综上所述,点F在∠ABC的平分线上;(3)∵四边形AEFG是菱形,∠EAG=120°,∴∠AGF=60°,∴∠FGE=∠AGE=30°,∵四边形AEGH为平行四边形,∴GE∥AH,∴∠GAH=∠AGE=30°,∠H=∠FGE=30°,∴∠GAN=90°,又∠AGE=30°,∴GN=2AN,∵∠DAB=60°,∠H=30°,∴∠ADH=30°,∴AD=AH=GE,13∵四边形ABCD为平行四边形,∴BC=AD,∴BC=GE,∵∠HAE=∠EAB=30°,∴平行四边形ABEN为菱形,∴AB=AN=NE,∴GE=3AB,∴=3.3.解:(1)如图1中,作CH⊥AB.14∵T(AC,AB)=3,∴AH=3,∵AB=5,∴BH=5﹣3=2,∴T(BC,AB)=BH=2,故答案为2.(2)如图2中,作CH⊥AB于H.∵T(AC,AB)=4,T(BC,AB)═9,∴AH=4,BH=9,∵∠ACB=∠CHA=∠CHB=90°,∴∠A+∠ACH=90°,∠ACH+∠BCH=90°,∴∠A=∠BCH,∴△ACH∽△CBH,15∴=,∴=,∴CH=6,∴S△ABC =•AB•CH =×13×6=39.(3)如图3中,作CH⊥AD于H,BK⊥CD于K.∵∠ACD=90°,T(AD,AC)=2,∴AC=2,∵∠A=60°,∴∠ADC=∠BDK=30°,∴CD =AC=2,AD=2AC=4,AH =AC=1,DH=AD﹣AH=3,∵T(BC,AB)=6,CH⊥AB,∴BH=6,∴DB=BH﹣DH=3,在Rt△BDK中,∵∠K=90°,BD=3,∠BDK=30°,∴DK=BD•cos30°=,16∴CK=CD+DK=2+=,∴T(BC,CD)=CK =.4.(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC =,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2=()2,解得,DM =,∴AM=AD﹣DM =﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA)∴BE=AF;17(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE =AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在△BME和△NMA中,,∴△BME≌△NMA(ASA),∴BE=AN,∴AB+AN=AB+BE=AE =AM.5.解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;18(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.6.解:(1)∵在△ABC中,a=6,b=8,c=12,∴∠A+∠B<∠C;(2)如图,过点B作MN∥AC,∵MN∥AC,∴∠MBA=∠A,∠NBC=∠C(两直线平行,内错角相等),∵∠MBA+∠ABC+∠NBC=180°(平角的定义),∴∠A+∠ABC+∠C=180°(等量代换),即:三角形三个内角的和等于180°;(3)∵=,∴ac =(a+b+c)(a﹣b+c )=[(a2+2ac+c2)﹣b2],∴2ac=a2+2ac+c2﹣b2,∴a2+c2=b2,19∴△ABC是直角三角形.7.(1)证明:∵AG⊥EF,CH⊥EF,∴∠G=∠H=90°,AG∥CH,∵AD∥BC,∴∠DEF=∠BFE,∵∠AEG=∠DEF,∠CFH=∠BFE,∴∠AEG=∠CFH,在△AGE和△CHF 中,,∴△AGE≌△CHF(AAS);(2)解:线段GH与AC互相平分,理由如下:连接AH、CG,如图所示:由(1)得:△AGE≌△CHF,∴AG=CH,∵AG∥CH,∴四边形AHCG是平行四边形,∴线段GH与AC互相平分.208.解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°21∵∠AOB=30°,OP=2∴PD =OP=1∴OD =∵OH =+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中22∴△OCN≌△QDP(SAS)∴ON=QP9.解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=17;当n2﹣1=35时,n2+1=37.故答案为:17;3710.证明:【探究发现】(1)∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP【数学思考】23(2)∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴BD=DP【拓展引申】(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ24∵∠ACB=90°,AC=BC=4,∴AB=4,AC﹣AH=BC﹣BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ =∴AM=2时,BQ有最大值为2.11.教材呈现:证明:如图①,连结ED.∵在△ABC中,D,E分别是边BC,AB的中点,∴DE∥AC,DE =AC,25∴△DEG∽△ACG,∴===2,∴==3,∴==;结论应用:(1)解:如图②.∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,∴AD∥BC,BE =BC =AD,BO =BD,∴△BEF∽△DAF,∴==,∴BF =DF,∴BF =BD,∵BO =BD,∴OF=OB﹣BF =BD ﹣BD =BD,∵正方形ABCD中,AB=6,∴BD=6,∴OF =.26故答案为;(2)解:如图③,连接OE.由(1)知,BF =BD,OF =BD,∴=2.∵△BEF与△OEF的高相同,∴△BEF与△OEF 的面积比==2,同理,△CEG与△OEG的面积比=2,∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,∴△BOC 的面积=,∴▱ABCD的面积=4×=6.故答案为6.12.(1)证明:连接CF,如图①所示:∵AD⊥BC,BE⊥AC,∴CF⊥AB,27∵BH⊥AB,∴CF∥BH,∴∠CBH=∠BCF,∵点M是BC的中点,∴BM=MC,在△BMH和△CMF 中,,∴△BMH≌△CMF(ASA),∴BH=CF,∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,∴BH=AF,∴AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=30°,∴AD =BD,∴DF+BH =BD;(2)解:图②猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=45°,28∴AD=BD,∴DF+BH=BD;图③猜想结论:DF+BH =BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=60°,∴AD =BD,∴DF+BH =BD.13.解:(1)相等,理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∴AE⊥BC,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,29∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为:AG=CF;(2)AG =CF,理由:如图2,连接AE,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=90°,∠BAE=∠C,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=180°,∵∠CFE+∠AFE=180°,∴∠AGE=∠CFE,∴△AGE∽△CFE,30∴,在Rt△ACE中,∵∠C=30°,∴=sin C =,∴=,∴AG =CF;(3)①当G在DA上时,如图3,连接AE,∵DE垂直平分AB,∴AD=BD=3,AE=BE,∵cos B =,∴BE ===4,∴AE=BE=4,∴∠BAE=∠B,∵AB=AC,∴∠B=∠C,∴∠C=∠BAE,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,31∴∠CFE=∠AGE,∴△CFE∽△AGE,∴=,过A作AH⊥BC于点H,∵cos B =,cos45°=,∵>,∴∠B<45°,∴E在H的左侧,∵cos B =,∴BH =AB =×6=,∵AB=AC,∴BC=2BH=9,∵BE=4,∴CE=9﹣4=5,∵AG=AD﹣DG=3﹣1=2,∴=,∴CF=2.5;②当点G在BD上,如图4,同(1)可得,△CFE∽△AGE,∴=,32∵AG=AD+DG=3+1=4,∴=,∴CF=5,综上所述,CF的长为2.5或5.14.(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,33∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE是等腰直角三角形,∴DE =CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD =CD;(2)解:AD﹣BD =CD;理由:如图2,在AD上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°﹣∠BAD﹣∠ABC=90°﹣∠BAD﹣45°=45°﹣∠BAD,∵∠CAE=∠BAC﹣∠BAD=45°﹣∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),34∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE ===CD,∵DE=AD﹣AE=AD﹣BD,∴AD﹣BD =CD.15.(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,,35∴△ACD≌△DHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH﹣CD=CB﹣CD,即HG=BD,∴BD=EF;(2)BD=EF,理由如下:作FG⊥BC交BC的延长线于G,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴△ACD∽△DGF,∴===2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.3637。
2019年山东省中考数学真题分类汇编 专题04 三角形 (解析版)

专题04 三角形一、选择题1.(2019山东枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°【答案】C .【解析】解:如图,∵∠ACD =90°、∠F =45°, ∴∠CGF =∠DGB =45°,则∠α=∠D +∠DGB =30°+45°=75°,故选:C .2.(2019山东淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B .若△ADC 的面积为a ,则△ABD 的面积为( )A .2aB .52a C .3a D .72a 【答案】C .【解析】解:∵∠CAD =∠B ,∠ACD =∠BCA ,∴△ACD ∽△BCA , ∴2()ACD BCAS AC SAB =,即14BCA a S =, 解得,△BCA 的面积为4a ,∴△ABD的面积为:4a﹣a=3a,故选:C.3.(2019山东青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【答案】A.【解析】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.4.(2019山东临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.2【答案】B.【解析】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,∴△ADE ≌△CFE (AAS ), ∴AD =CF =3,∵AB =4,∴DB =AB ﹣AD =4﹣3=1. 故选:B .5.(2019山东枣庄)如图,将△ABC 沿BC 边上的中线AD 平移到△A ′B ′C ′的位置.已知△ABC 的面积为16,阴影部分三角形的面积9.若AA ′=1,则A ′D 等于( )A .2B .3C .4D .32【答案】B .【解析】解:∵S △ABC =16、S △A ′EF =9,且AD 为BC 边的中线, ∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ', ∴A ′E ∥AB , ∴△DA ′E ∽△DAB ,则2()A DE ABDS A D AD S''=,即2992()1816A D A D '=='+,解得A ′D =3或A ′D =﹣37(舍), 故选:B .6.(2019山东泰安)如图,一艘船由A 港沿北偏东65°方向航行km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为( )km .A.B.C.D.【答案】B.【解析】解:根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=,如图,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=,AB=30km,∴AE=BE=2在Rt△CBE中,∵∠ACB=60°,BE=,∴CE=3∴AC=AE+CE=∴A,C两港之间的距离为(km,故选:B.7.(2019山东聊城)如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=AC B.∠BEO+∠OFC=180°C.OE+OF BC D.S四边形AEOF=12S△ABC【答案】C.【解析】解:连接AO,如图所示.∵△ABC为等腰直角三角形,点O为BC的中点,∴OA=OC,∠AOC=90°,∠BAO=∠ACO=45°.∵∠EOA+∠AOF=∠EOF=90°,∠AOF+∠FOC=∠AOC=90°,∴∠EOA=∠FOC.∴△EOA≌△FOC(ASA),∴EA=FC,∴AE+AF=AF+FC=AC,选项A正确;∵∠B+∠BEO+∠EOB=∠FOC+∠C+∠OFC=180°,∠B+∠C=90°,∠EOB+∠FOC=180°﹣∠EOF=90°,∴∠BEO+∠OFC=180°,选项B正确;∵△EOA≌△FOC,∴S△EOA=S△FOC,∴S四边形AEOF=S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=12S△ABC,选项D正确.故选:C.8.(2019山东淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD =12AC 时,tan α1=34; 如图2,当CD =13AC 时,tan α2=512;如图3,当CD =14AC 时,tan α3=724;……依此类推,当CD =11n +AC (n 为正整数)时,tan αn = .【答案】22122n n n++.【解答】解:观察可知,正切值的分子是3,5,7,9,…,2n +1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n +1,2(21)12n +-,2(21)12n ++中的中间一个.∴tan αn =221(21)12n n ++-=22122n n n++.故答案为:22122n n n++.9.(2019山东滨州)如图,在△OAB 和△OCD 中,OA =OB ,OC =OD ,OA >OC ,∠AOB =∠COD =40°,连接AC ,BD 交于点M ,连接OM .下列结论:①AC =BD ;②∠AMB =40°;③OM 平分∠BOC ;④MO 平分∠BMC .其中正确的个数为( )A .4B .3C .2D .1【答案】B .【解析】解:∵∠AOB =∠COD =40°, ∴∠AOB +∠AOD =∠COD +∠AOD , 即∠AOC =∠BOD , ∴△AOC ≌△BOD (SAS ),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;正确的个数有3个;故选:B.二、填空题10.(2019山东枣庄)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】9.5.【解析】解:过D作DE⊥AB,∵在D 处测得旗杆顶端A 的仰角为53°, ∴∠ADE =53°,∵BC =DE =6m , ∴AE =DE •tan53°≈6×1.33≈7.98m ,∴AB =AE +BE =AE +CD =7.98+1.5=9.48m ≈9.5m , 故答案为:9.511.(2019山东德州)如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,如果梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得∠CDO =50°,那么AC 的长度约为 米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)【答案】1.02.【解析】解:由题意可得: ∵∠ABO =70°,AB =6m ,∴sin70°=6AO AOAB ≈0.94, 解得:AO =5.64(m ),∵∠CDO =50°,DC =6m ,∴sin50°=6CO≈0.77, 解得:CO =4.62(m ),则AC =5.64-4.62=1.02(m ), 答:AC 的长度约为1.02米. 故答案为:1.02.12.(2019山东临沂)如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则△ABC 的面积是 .【答案】【解析】解:∵DC ⊥BC ,∴∠BCD =90°, ∵∠ACB =120°,∴∠ACD =30°, 延长CD 到H 使DH =CD , ∵D 为AB 的中点,∴AD =BD , ∴△ADH ≌△BCD (SAS ),∴AH =BC =4,∠H =∠BCD =90°,∵∠ACH =30°,∴CH =,∴CD =,∴△ABC 的面积=2S △BCD =2×12×4×=,故答案为:13.(2019山东枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若AB =2,则CD = ..【解析】解:如图,过点A 作AF ⊥BC 于F , 在Rt △ABC 中,∠B =45°,∴BC AB=,BF=AF=AB,∵两个同样大小的含45°角的三角尺,∴AD=BC=,在Rt△ADF中,根据勾股定理得,DF∴CD=BF+DF﹣BC﹣,.14.(2019山东聊城)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=12BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.【答案】92 a.【解析】解:在Rt△ABC中,∠B=60°,∴∠A=30°,∴AB=2a,AC.∵DE是中位线,∴CE=2a.在Rt△FEC中,利用勾股定理求出FE=a,∴∠FEC=30°.∴∠A=∠AEM=30°,∴EM=AM.△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB=92 a.故答案为92 a.三、解答题15.(2019山东淄博)已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E =∠C .【答案】见解析【解析】证明:∵∠BAE =∠DAC ∴∠BAE +∠CAE =∠DAC +∠CAE ∴∠CAB =∠EAD ,且AB =AD ,AC =AE ∴△ABC ≌△ADE (SAS ). ∴∠C =∠E .16.(2019山东菏泽)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛B 位于它的北偏东30°方向,且与航母相距80海里再航行一段时间后到达C 处,测得小岛B 位于它的西北方向,求此时航母与小岛的距离BC 的长.【答案】(﹣)海里. 【解析】解:过点C 作CD ⊥AB 于点D ,由题意,得:∠BAD =60°,∠BCD =45°,AC =80, 在Rt △ADB 中,∠BAD =60°,∴tan60°=BDAD,∴AD在Rt△BCD中,∠BCD=45°,∴BD=CD,∴AC=AD+CDBD=80,∴BD=120﹣∴BC BC=﹣,答:BC的距离是()海里.17.(2019山东聊城)某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A 处测得大楼部分楼体CD的顶端C点的仰角为45°,底端D点的仰角为30°,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为63.4°(如图②所示),求大楼部分楼体CD的高度约为多少米?(精确到1米)(参考数据:sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00 1.41≈1.73)【答案】17米.【解析】解:设楼高CE为x米,∵在Rt△AEC中,∠CAE=45°,∴AE=CE=x,∵AB=20,∴BE=x﹣20,在Rt△CEB中,CE=BE•tan63.4°≈2(x﹣20),∴2(x﹣20)=x,解得:x=40(米),在Rt△DAE中,DE=AE tan30°=40≈17(米),∴CD=CE﹣DE=40﹣3答:大楼部分楼体CD的高度约为17米.18.(2019山东临沂)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.【答案】km.【解析】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD=km,即BD的长是km.19.(2019山东潍坊)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD 的长.(结果保留根号)【答案】【解析】解:∵∠AEB=90°,AB=200,坡度为1∴tan∠ABE3=,∴∠ABE=30°,∴AE=12AB=100,∵AC=20,∴CE=80,∵∠CED=90°,斜坡CD的坡度为1:4,∴14CEDE=,即8014ED=,解得,ED=320,∴CD=答:斜坡CD的长是20.(2019山东青岛)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈1732,cos32°≈1720,tan32°≈58,sin42°≈2740,co s42°≈34,tan42°≈9 10)【答案】134米.【解析】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×1720≈68,BF=sin32°•BD=80×1732≈852,∴BE=EF﹣BF=1552,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×910=3065,∴AB=AE+BE=1552+3065≈134m,答:木栈道AB的长度约为134m.21.(2019山东威海)如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=35,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部.【答案】不会触碰到汽车货厢顶部,理由见解析.【解析】解:∵BH=0.6米,sinα=35,∴AB=0.613sin5BHα==米,∴AH=0.8米,∵AF=FC=2米,∴BF=1米,作FJ⊥BG于点J,作EK⊥FJ于点K,∵EF=FB=AB=1米,∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,∴△EFK≌△FBJ≌△ABH,∴EK=FJ=AH,BJ=BH,∴BJ+EK=0.6+0.8=1.4<2,∴木箱上部顶点E不会触碰到汽车货厢顶部.22.(2019山东菏泽)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=,AD=3,求△PDE的面积.【答案】(1)见解析;(2)910. 【解析】解:(1)∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°.∴AD =AE ,AB =AC ,∠BAC ﹣∠EAF =∠EAD ﹣∠EAF , 即∠BAE =∠DAC , ∴△ABE ≌△ADC (SAS ), ∴∠ABE =∠ACD ,∵∠ABE +∠AFB =∠ABE +∠CFP =90°, ∴∠CPF =90°, ∴BP ⊥CD ;(2)在△ABE 与△ACD 中,90AE ADEAB CAB AB AC =⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ACD (SAS ), ∴∠ABE =∠ACD ,BE =CD , ∵∠PDB =∠ADC , ∴∠BPD =∠CAB =90°, ∴∠EPD =90°, ∵BC =,AD =3, ∴DE =,AB =6, ∴BD =6﹣3=3,CD=∵△BDP ∽△CDA , ∴BD PD PBCD AD AC ==,36PD PB==, ∴PDPB∴PE =,∴△PDE 的面积=1925510⨯⨯=. 23.(2019山东枣庄)在△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且∠BMN =90°,当∠AMN =30°,AB =2时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且∠EDF =90°,求证:BE =AF ; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且∠BMN =90°,求证:AB +AN AM .【答案】(1;(2)证明见解析;(3)见解析. 【解析】(1)解:∵∠BAC =90°,AB =AC ,AD ⊥BC ,∴AD =BD =DC ,∠ABC =∠ACB =45°,∠BAD =∠CAD =45°,∵AB =2,∴AD =BD =DC ,∵∠AMN =30°,∴∠BMD =180°﹣90°﹣30°=60°, ∴∠MBD =30°,∴BM =2DM ,由勾股定理得,BM 2﹣DM 2=BD 2,即(2DM )2﹣DM 2)2,解得,DM =3,∴AM =AD ﹣DM ﹣3; (2)证明:∵AD ⊥BC ,∠EDF =90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,∴△BME≌△AMN(ASA),∴BE=AN,∴AB+AN=AB+BE=AE AM.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考备考:中考模拟卷三角形压轴题精选1.(2019广东省深圳市福田二模)如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.己知A、B两地相距2400米.(1)求农户c到公路B的距离;(参考数据:sin22°≈,cos22°≈,tan22°≈(2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米?【分析】(1)农户C到公路的距离,也就是求C到AB的距离.要构造直角三角形,再解直角三角形;(2)设原计划x天完成,则由等量关系“原工作效率×(1+25%)=提前完成时的工作效率”列方程求解.【解答】解:(1)如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=68°,∠FBC=45°,则∠CAH=22°,∠CBA=45°.在Rt△BCH中,BH=CH=x,在Rt△HBC中,tan∠HBC=,∴HB==,∵AH+HB=AB,∴x+x=2400,解得x=(米),∴农户C到公路的距离米.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y﹣4)天.根据题意得:=(1+20%)×,解得:y=24.经检验知:y=24是原方程的根,2400÷24=100(米).答:原计划该工程队毎天修路100米.【点评】考查了构造直角三角形解斜三角形的方法和分式方程的应用.2.(2019浙江省南通市一模)如图,已知△ABC中,AB=8,BC=10,AC=12,D是AC边上一点,且AB2=AD•AC,连接BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点G.(1)求:BD的长;(2)求证:△BGE∽△CEF;(3)连接FG,当△GEF是等腰三角形时,直接写出BE的所有可能的长度.【分析】(1)证明△ADB∽△ABC,可得,由此即可解决问题.(2)想办法证明∠BEA=∠EFC,∠DBC=∠C即可解决问题.(3)分三种情形构建方程组解决问题即可.【解答】解:(1)∵AB=8,AC=12,又∵AB2=AD•AC∴∵AB2=AD•AC,∴,又∵∠BAC是公共角∴△ADB∽△ABC,∴∴=∴.(2)∵AC=12,,∴,∴BD=CD,∴∠DBC=∠C,∵△ADB∽△ABC∴∠ABD=∠C,∴∠ABD=∠DBC,∵∠BEF=∠C+∠EFC,即∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE.(3)如图1中,过点A作AH∥BC,交BD的延长线于点H,设BE=x,CF=y,∵AH∥BC,∴====,∵BD=CD=,AH=8,∴AD=DH=,∴BH=12,∵AH∥BC,∴=,∴=,∴BG=,∵∠BEF=∠C+∠EFC,∴∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE,∴=,∴=,∴y=;当△GEF是等腰三角形时,存在以下三种情况:①若GE=GF,如图2中,则∠GEF=∠GFE=∠C=∠DBC,∴△GEF∽△DBC,∵BC=10,DB=DC=,∴==,又∵△BEG∽△CFE,∴==,即=,又∵y=,∴x=BE=4;②若EG=EF,如图3中,则△BEG与△CFE全等,∴BE=CF,即x=y,又∵y=,∴x=BE=﹣5+;③若FG=FE,如图4中,则同理可得==,由△BEG∽△CFE,可得==,即=,又∵y=,∴x=BE=﹣3+.【点评】本题属于相似形综合题,主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、解一元二次方程等知识的综合运用.解题的难点是正确寻找相似三角形解决问题,运用分类思想是解决第(3)小题的关键.3.(2019江苏省无锡市一模)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,GM=3,P为MN中点,求MQ的长度.【分析】(1)证明FC=FB,利用等腰三角形的三线合一的性质即可解决问题.(2)①作点P关于GN的对称点P′,连P′M交GN于Q,连接PQ,点Q即为所求.②想办法证明GQ=GN即可.【解答】(1)证明:如图1中,∵FK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连P′M交GN于Q,连接PQ,点Q即为所求.理由:∵GN垂直平分PP′,∴QP′=QP,∠KQP′=∠KQP,∵∠GQM=∠KQP′,∴∠GQM=∠PQK,∴点P即为所求.②∵P,P′关于GN对称,∴GN⊥PP′,PK=KP′,∴∠PKN=90°,∵∠N=30°,∴∠PNK=60°,∴PN=2KP=PP′,∵PM=PN,∴PM=PP′,∵∠NPK=∠PMP′+∠P′,∴∠PMP′=∠P′=30°,∴∠QMN=∠N=30°,∴MQ=NQ,∵∠G=∠QMG=60°,∴QG=QM,∴MQ=QG=NQ,∵GM=3,∠N=30°,∠NMG=90°,∴GN=2GM=6,∴MQ=3.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(2019江苏省扬州市一模)有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.(1)在Rt△ABC中,∠ACB=90°,若∠A为智慧角,则∠B的度数为;(2)如图①,在△ABC中,∠A=45°,∠B=30°,求证:△ABC是智慧三角形;(3)如图②,△ABC是智慧三角形,BC为智慧边,∠B为智慧角,A(3,0),点B,C在函数y=(x>0)的图象上,点C在点B的上方,且点B的纵坐标为.当△ABC是直角三角形时,求k的值.【分析】(1)利用智慧角的意义和勾股定理即可得出结论;(2)构造出两个直角三角形,即可得出结论;(3)分两种情况:①先判断出△BCF∽△ABE,进而得出B(3+a,),C(1+a,+a),最后代入反比例函数解析式中即可得出结论;②先判断出△MAC≌△NBA(AAS).进而AM=BN=,进而得出B(3+b,),C(3﹣,b),最后代入反比例函数解析式中即可得出结论.【解答】解:(1)如图1,在Rt△ABC中,∠ACB=90°,∠A是智慧角,∴AB=AC,根据根据勾股定理得,BC=AC,∴∠B=∠A=45°,故答案为45°;(2)如图2,过点C作CD⊥AB于点D.在Rt△ACD中,∠A=45°,∴AC=DC.在Rt△BCD中,∠B=30°,∴BC=2DC.∴=.∴△ABC是智慧三角形.(3)由题意可知∠ABC=90°或∠BAC=90°.①当∠ABC=90°时,如图3,过点B作BE⊥x轴于点E,过点C作CF⊥EB交EB延长线于点F,过点C作CG⊥x轴于点G,则∠AEB =∠F=∠ABC=90°.∴∠BCF+∠CBF=∠ABE+∠CBF=90°.∴∠BCF=∠ABE.∴△BCF∽△ABE.∴===.设AE=a,则BF=a.∵BE=,∴CF=2.∵OG=OA+AE﹣GE=3+a﹣2=1+a,CG=EF=+a,∴B(3+a,),C(1+a,+a).∵点B,C在函数y=(x>0)的图象上,∴(3+a)=(1+a)(+a)=k.解得:a1=1,a2=﹣2(舍去).∴k=.②当∠BAC=90°时,如图4,过点C作CM⊥x轴于点M,过点B作BN⊥x轴于点N.则∠CMA=∠CAB=∠ANB=90°.∴∠MCA+∠CAM=∠BAN+∠CAM=90°.∴∠MCA=∠BAN.由(1)知∠B=45°.∴△ABC是等腰直角三角形.∴AC=AB.由①知△MAC∽△NBA.∴△MAC≌△NBA(AAS).∴AM=BN=.设CM=AN=b,则ON=3+b.∴B(3+b,),C(3﹣,b).∵点B,C在函数y=(x>0)的图象上,∴(3+b)=(3﹣)b=k.解得:b=9+12.∴k=18+15.综上所述,k=4或18+15.【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,构造直角三角形和相似三角形是解本题的关键.5.(2019辽宁省沈阳市一模)如图在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,M为AC的中点.D 是射线CB上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接MN.(1)如图1,∠BCE=,NM与AC的位置关系是;(2)如图2,判断(1)中NM与AC的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当CD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.【分析】(1)如图1中,连接AN,CN.证明△BAD≌△CAE(SAS),推出∠ABD=∠ACE=45°,再利用直角三角形斜边中线的性质以及等腰三角形的性质即可解决问题.(2)如图2中,结论不变.证明方法类似(1).(3)根据垂线段最短即可解决问题.【解答】解:(1)如图1中,连接AN,CN.∵△ABC,△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠B=∠ACB=45°∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠ECB=45°+45°=90°,∵DN=EN,∴CN=DE,同法AN=DE,∴NA=NC,∵AM=MC,∴NM⊥AC,故答案为90°,MN⊥AC.(2)如图2中,结论不变.理由:连接AN,CN.∵△ABC,△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠B=∠ACB=45°∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABC=∠ACB=45°,∴∠ABD=∠ACE=135°,∴∠DCB=90°,∵DN=EN,∴CN=DE,同法AN=DE,∴NA=NC,∵AM=MC,∴NM⊥AC.(3)如图3中,由(1)可知∠ECB=90°,∴CE⊥BC,∴当ME⊥EC时,ME的值最小,在Rt△ABC中,∵AB=AC=2,∴BC=4,∵AM=MC=,在Rt△CME中,∵∠ECM=∠CME=45°,∴EC=EM=1,由(1)可知:△BAD≌△CAE,∴BD=EC=1,∴CD=4﹣1=3.∴当CD=3时,EM的值最小,最小值为1.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,直角三角形斜边中线的性质,垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.6.(2019辽宁省营口市一模)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.(1)求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);(2)甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?【分析】(1)过点P作PE⊥MN,垂足为E.构造直角三角形APE和BPE,利用直角三角形中特殊角所对应的边角关系,求出AP、BP.(2)设乙船的速度是x海里/时,根据甲船比乙船晚到小岛24分钟,列出方程,求解方程即可.【解答】解:(1)过点P作PE⊥MN,垂足为E.由题意,得∠PAB=90°﹣60°=30°,∠PBA=90°﹣45°=45°.∵PE=30海里,∴AP=60海里.∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里.在Rt△PEB中,BP==30≈42(海里).故AP=60(海里),BP=42(海里).(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得﹣=,解得x=20经检验,x=20是原方程的解.∴甲船的速度为1.2x=1.2×20=24.答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点评】本题考查了解直角三角形的应用和列分式方程解应用题.解决(1)的关键是构造直角三角形,利用特殊角的边角关系;解决(2)的关键是根据题意,找到等量关系列出分式方程.7.(2019浙江省温州市龙湾区一模)如图,在8×8的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出∠ADC,使得∠ADC=∠ABC,且点D为格点.(2)在图2中画出∠CEB,使得∠CEB=2∠CAB,且点E为格点.【分析】(1)构造全等三角形解决问题即可.(2)利用圆周角定理解决问题即可.【解答】解:(1)如图点D,D′,D″即为所求.(2)如图点E,E′即为所求.【点评】本题考查作图﹣应用与设计,全等三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2019浙江省台州市一模)直角三角形有一个非常重要的性质质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=AB.请你利用该定理和以前学过的知识解决下列问题:在△ABC中,直线a绕顶点A旋转.(1)如图2,若点P为BC边的中点,点B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN.求证:PM=PN;(2)如图3,若点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)如图4,∠BAC=90°,直线a旋转到与BC垂直的位置,E为AB上一点且AE=AC,EN⊥a于N,连接EC,取EC中点P,连接PM、PN,求证:PM⊥PN.【分析】(1)如图2中,延长NP交BM的延长线于G.只要证明△PNC≌△PGB,推出PN=PG,再根据直角三角形斜边中线定理即可证明.(2)结论:PM=PN.延长NP交BM于G,证明方法类似(1).(3)如图4中,延长NP交BM于G.先证明△EAN≌△CAM,推出EN=AM,AN=CM,再证明△ENP ≌△CGP,推出EN=CG=AM,PN=PG,因为AN=CM,所以MG=MN,即可证明PM⊥PN.【解答】(1)证明:如图2中,延长NP交BM的延长线于G.∵BM⊥AM,CN⊥AM,∴BG∥CN,∴∠PCN=∠PBG,在△PNC和△PGB中,,∴△PNC≌△PGB,∴PN=PG,∵∠NMG=90°,∴PM=PN=PG.(2)结论:PM=PN.如图3中,延长NP交BM于G.∵BM⊥AM,CN⊥AM,∴BM∥CN,∴∠PCN=∠PBG,在△PNC和△PGB中,,∴△PNC≌△PGB,∴PN=PG,∵∠NMG=90°,∴PM=PN=PG.(3)如图4中,延长NP交BM于G.∵∠EAN+∠CAM=90°,∠CAM+∠ACM=90°,∴∠EAN=∠ACM,在△EAN和△CAM中,,∴△EAN≌△CAM,∴EN=AM,AN=CM,∵EN∥CG,∴∠ENP=∠CGP,在△ENP和△CGP中,,∴△ENP≌△CGP,∴EN=CG=AM,PN=PG,∵AN=CM,∴MG=MN,∴PM⊥PN.【点评】本题考查几何变换综合题、直角三角形斜边中线性质、全等三角形的判定和性质、平行线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.(2019安徽省淮南市一模)如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC上,且满足∠AFE=∠A,DM∥EF交AC于点M.(1)证明:DM=DA;(2)如图2,点G在BE上,且∠BDG=∠C,求证:△DEG∽△ECF;(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=3,求EH的长.【分析】(1)想办法证明∠AMD=∠A即可.(2)根据两角相等的两个三角形相似即可证明.(3)理由相似三角形以及平行四边形的性质证明BG=EH即可解决问题.【解答】(1)证明:如图1所示,∵DM∥EF,∴∠AMD=∠AFE,∵∠AFE=∠A,∴∠AMD=∠A,∴DM=DA.(其他解法酌情给分)(2)证明:如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF.(3)如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=3.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,平行四边形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用相似三角形的性质证明线段线段,属于中考压轴题.10.(2019安徽省淮南市二模)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)先过点A作AH⊥PO,根据斜坡AP的坡度为1:2.4,得出=,设AH=5k,则PH=12k,AP=13k,求出k的值即可.(2)先延长BC交PO于点D,根据BC⊥AC,AC∥PO,得出BD⊥PO,四边形AHDC是矩形,再根据∠BPD=45°,得出PD=BD,然后设BC=x,得出AC=DH=x﹣14,最后根据在Rt△ABC中,tan76°=,列出方程,求出x的值即可.【解答】解:(1)过点A作AH⊥PO,垂足为点H,∵斜坡AP的坡度为1:2.4,设AH=5k,则PH=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AH=10,答:坡顶A到地面PO的距离为10米.(2)延长BC交PO于点D,∵BC⊥AC,AC∥PO,∴BD⊥PO,∴四边形AHDC是矩形,CD=AH=10,AC=DH,∵∠BPD=45°,∴PD=BD,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.01.解得x≈19.答:古塔BC的高度约为19米.【点评】此题考查了解直角三角形,用到的知识点是勾股定理、锐角三角函数、坡角与坡角等,关键是做出辅助线,构造直角三角形.11.(2019安徽省庐江县一模)已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.【分析】(1)结论:FD=FC,DF⊥CF.理由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【解答】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.12.(2019北京市汇文中学一模)阅读理解:如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是;(2)当图③中的∠BCD=120°时,∠AEB′=°;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有个(包含四边形ABCD).拓展提升:当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.【分析】(1)由平行四边形、矩形、菱形、正方形的性质和“完美筝形”的定义容易得出结论;(2)先证出∠AEB′=∠BCB′,再求出∠BCE=∠ECF=40°,即可得出结果;(3)由折叠的性质得出BE=B′E,BC=B′C,∠B=∠CB′E=90°,CD=CD′,FD=FD′,∠D =∠CD′F=90°,即可得出四边形EBCB′、四边形FDCD′是“完美筝形”;由题意得出∠OD′E=∠OB′F=90°,CD′=CB′,由菱形的性质得出AE=AF,CE=CF,再证明△OED′≌△OFB′,得出OD′=OB′,OE=OF,证出∠AEB′=∠AFD′=90°,即可得出四边形CD′OB′、四边形AEOF是“完美筝形”;即可得出结论;当图③中的∠BCD=90°时,四边形ABCD是正方形,证明A、E、B′、F四点共圆,得出,由圆周角定理即可得出∠AB′E的度数.【解答】解:(1)①∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C≠90°,∠B=∠D≠90°,∴AB≠AD,BC≠CD,∴平行四边形不一定为“完美筝形”;②∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,∴AB≠AD,BC≠CD,∴矩形不一定为“完美筝形”;③∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C≠90°,∠B=∠D≠90°,∴菱形不一定为“完美筝形”;④∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∴正方形一定为“完美筝形”;∴在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是正方形;故答案为:正方形;(2)根据题意得:∠B′=∠B=90°,∴在四边形CBEB′中,∠BEB′+∠BCB′=180°,∵∠AEB′+∠BEB′=180°,∴∠AEB′=∠BCB′,∵∠BCE=∠ECF=∠FCD,∠BCD=120°,∴∠BCE=∠ECF=40°,∴∠AEB′=∠BCB′=40°+40°=80°;故答案为:80;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有5个;理由如下;根据题意得:BE=B′E,BC=B′C,∠B=∠CB′E=90°,CD=CD′,FD=FD′,∠D=∠CD′F=90°,∴四边形EBCB′、四边形FDCD′是“完美筝形”;∵四边形ABCD是“完美筝形”,∴AB=AD,CB=CD,∠B=∠D=90°,∴CD′=CB′,∠CD′O=∠CB′O=90°,∴∠OD′E=∠OB′F=90°,∵四边形AECF为菱形,∴AE=AF,CE=CF,AE∥CF,AF∥CE,∴D′E=B′F,∠AEB′=∠CB′E=90°,∠AFD′=∠CD′F=90°,在△OED′和△OFB′中,,∴△OED′≌△OFB′(AAS),∴OD′=OB′,OE=OF,∴四边形CD′OB′、四边形AEOF是“完美筝形”;∴包含四边形ABCD,对应图③中的“完美筝形”有5个;故答案为:5;当图③中的∠BCD=90°时,如图所示:四边形ABCD是正方形,∴∠BAD=90°,∵∠EB′F=90°,∴∠BAD+∠EB′F=180°,∴A、E、B′、F四点共圆,∵AE=AF,∴,∴∠AB′E=∠AB′F=∠EB′F=45°.【点评】本题是四边形综合题目,考查了平行四边形、矩形、菱形、正方形的性质、“完美筝形”的判定与性质、全等三角形的判定与性质、四点共圆、圆周角定理等知识;本题难度较大,综合性强,熟练掌握“完美筝形”的定义,并能进行推理论证与计算是解决问题的关键.13.(2019北京市大兴区一模)在平面直角坐标系xOy中,已知点A的坐标为(0,﹣1),点C(m,0)是x轴上的一个动点.(1)如图1,点B在第四象限,△AOB和△BCD都是等边三角形,点D在BC的上方,当点C在x轴上运动到如图所示的位置时,连接AD,请证明△ABD≌△OBC;(2)如图2,点B在x轴的正半轴上,△ABO和△ACD都是等腰直角三角形,点D在AC的上方,∠D =90°,当点C在x轴上运动(m>1)时,设点D的坐标为(x,y),请探求y与x之间的函数表达式;(3)如图3,四边形ACEF是菱形,且∠ACE=90°,点E在AC的上方,当点C在x轴上运动(m>1)时,设点E的坐标为(x,y),请探求y与x之间的函数表达式.【分析】(1)由等边三角形的性质得到AB=OB,BD=BC,∠ABO=∠DBC=60°,从而判断出∠ABD=∠OBC即可;(2)过点D作DH⊥y轴,垂足为H,延长HD,过点C作CG⊥HD,垂足为G,由△ABO和△ACD都是等腰直角三角形,得出∠ADC=90°,AD=CD,∠CDG=∠DAH,从而得到△AHD≌△DGC(AAS),根据DH=CG=OH,点D的坐标为(x,y),得出y与x之间的关系是y=x;(3)过点E作EM⊥x轴,垂足为M,则∠EMC=∠COA=90°,再利用正方形的性质即可得出△EMC ≌△COA(AAS),得到MC=OA=1,EM=OC,EM=OC=x+1,进而得出y与x之间的关系是y=x+1.【解答】解:(1)∵△AOB和△BCD都是等边三角形,∴AB=OB,BD=BC,∠ABO=∠DBC=60°,∴∠ABD=∠OBC,在△ABD和△OBC中,,∴△ABD和△OBC;(2)如图,过点D作DH⊥y轴,垂足为H,延长HD,过点C作CG⊥HD,垂足为G.∴∠AHD=∠CGD=90°,∵△ABO和△ACD都是等腰直角三角形,∴∠ADC=90°,AD=CD,∴∠ADH+∠CDG=90°,∵∠ADH+∠DAH=90°,∴∠CDG=∠DAH,∵在△AHD和△DGC中,,∴△AHD≌△DGC(AAS),∴DH=CG=OH,∵点D的坐标为(x,y),∴y与x之间的关系是y=x;(3)过点E作EM⊥x轴,垂足为M,则∠EMC=∠COA=90°,∵四边形ACEF是菱形,且∠ACE=90°,∴AC=CE,∠ACO+∠ECO=90°,∵∠ACO+∠CAO=90°,∴∠ECO=∠CAO,在△EMC和△COA中,,∴△EMC≌△COA(AAS),∴MC=OA=1,EM=OC,∵点E的坐标为(x,y),∴EM=OC=x+1,∴y与x之间的关系是y=x+1.【点评】此题是四边形综合题,主要考查了等边三角形,等腰直角三角形的性质,全等三角形的性质和判定的综合应用,解本题的关键是判定三角形全等,根据全等三角形的对应边相等进行推导.本题也可以运用相似三角形的性质进行求解.14.(2019北京市丰台区一模)如图1,两个全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中点B和点D重合,点F在BC上,将△DEF沿射线BC平移,设平移的距离为x,平移后的图形与△ABC重合部分的面积为y,y关于x的函数图象如图2所示(其中0≤x≤m,m<x≤3,3<x≤4时,函数的解析式不同)(1)填空:BC的长为;(2)求y关于x的函数关系式,并写出x的取值范围.【分析】(1)通过图2观察可知y=0时x=4,即D点从B运动到C平移的距离为4;(2)当△DEF在平移过程中,与△ABC的重合部分有三种情况,将三种图形分别画出,通过作辅助线构造相似三角形,通过相似三角形对应边的关系,将各边用x表示出来,即可以列出y与x的函数关系式.【解答】解:(1)由图2得当x=4时,y=0,说明此时△DEF与△ABC无重合部分,则点D从B到C运动的距离为4,即BC=4;故答案为:4.(2)当DE经过点A时(如图1),BD=3,CD=1,∵△ABC≌△DEF.∴∠EDF=∠BAC.∵∠ACD=∠BCA∴△ADC∽△BAC.∴,即.AC =2∴n =2当0≤x ≤2时(如图2),设ED 、EF 与AB 分别相交于点M ,G ,作MN ⊥BC ,垂足为N . 则∠MNB =90°=∠EFD =∠C . ∵∠MDN =∠EDF . ∴△DMN ∽△DEF .∴,即.∴MN =2DN .设DN =n ,则MN =2n . 同理△BMN ∽△BAC .∴.即,∴BN =4n ,即x +n =4n .∴n =x .∴S △BDM =•BD •MN =2同理△BGF ∽△BAC∴,即.∴GF =,∴y =S △BGF ﹣S △BDM =2=﹣x 2+x +1.当2<x ≤3时(如图3),由①知,S △BDM =x 2.∴y =S △ABC ﹣S △BDM =2=﹣x 2+4当3<x ≤4时(如图4),设DE 与AB 相交于点H . 同理△DHC ∽△DEF .∴,即∴HC =24﹣x .∴y ==x 2﹣8x +16∴y =.【点评】本题考查了平移的性质、相似三角形性质,解题的关键是要找到△DEF 运动过程中与△ABC 重叠面积的不同情况,通过辅助线构造相似三角形,要注意分类讨论画出对应的图象.15.(2019北京市海淀区一模)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F . (1)若AB =6,AE =4,BD =2,则CF = ;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,则C△AEF设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.【点评】本题主要考查的是三角形的综合应用,解答本题主要应用了角平分线的性质、等边三角形的性质、全等三角形的判定,相似三角形的判定与性质,锐角三角函数等知识点,综合性较强,难度较大,需要学生具备对所学几何知识的综合应用能力.16.(2019甘肃省高台县一模)如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为s时,四边形ACFE是菱形.【分析】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)①分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F 为顶点四边形是平行四边形,可得方程,解方程即可求得答案;②若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【解答】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,∵在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=8﹣2t,解得:t=;当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣8(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣8,解得:t=8;综上可得:当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.②若四边形ACFE是菱形,则有CF=AC=AE=8,则此时的时间t=8÷1=8(s);故答案是:或8;8.【点评】此题考查了平行四边形的判定,菱形的判定,全等三角形的判定与性质,等边三角形的性质,解题的关键是理解题意,学会用分类讨论的思想思考问题.17.(2019广东省湛江市一模)如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.【分析】(1)由AAS证明△BDE≌△CDF,即可得出结论;(2)①设BH=11x,则HC=5x,BC=16x,则,DH=3x,由平行线得出△EDH∽△ADB,得出,即可得出结论;②求出=,证出FH∥AC,即PH∥AC,即可得出结论.【解答】(1)证明:∵AD为△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF;(2)①解:设BH=11x,则HC=5x,BC=16x,则,DH=3x,∵EG∥AB,∴△EDH∽△ADB,∴,∵DE=DF,∴;②证明:∵,∴,∵,∴=,∴FH∥AC,∴PH∥AC,∵EG∥AB,∴四边形HGAP为平行四边形.【点评】本题考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握平行四边形的判定是关键.18.(2019广东省佛山市一模)如图,在△ABC中,AB=AC=l0cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同吋点P从点B出发沿BA的方向匀速运动,速度为lcm/s.已知:过点P的直线PQ满足PQ∥AC,直线PQ交BC于点Q、交BD于点F.设运动时间为ts(0<t<5);。