八扩散
第八章 扩散

2 2
在给定条件下Cm,D, l 皆为定值。只有当 t 时 C / C m 0 才完全均匀化,可见所谓均匀化只有相 对意义。一般来说,只有偏析衰减到一定程度(如
1 1 0 ),即可认为均匀化了。凝固过程细化晶粒,及通
过锻造、轧制、热处理使组织充分细化都可以大大缩短 均匀化退火时间
a.同素异晶转变的金属中,D随晶体结构改变, 910℃,Dα-Fe/Dγ-Fe=280, α-Fe致密度低, 且易形成空位。 b.晶体各向异性使D有各向异性。 铋扩散的各向异性,菱方系Bi沿C轴的自扩 散为垂直C轴方向的1/106 六方系的Zn:平行底面的自扩散系数大于 垂直底面的,因底面原子排列紧密,穿过底面 困难。
Cs C0 2 Dt
C0为原始浓度;Cs为渗碳气氛浓度Cx为距表 x erf 面x处的浓度; ( 2 D t ) erf ( z ) 为误差函数
Fick第二定律的解无限大物体中扩散应用
2.扩散方程在扩散退火过程的应用
显微偏析是合金在结晶过程中形成的,在铸件,锻件中 普遍存在。扩散退火时将零件在高温下长时间保温可促 使成分的均匀化。 具有显微偏析的合金其组元分布大多呈周期性变化。 在研究扩散退火过程时,可以近似为 Dt /t
8.3.3.晶体结构 晶体结构对扩散有影响,有些金属存在同 素异构转变,当它们的晶体结构改变后, 扩散系数也随之发生较大的变化。例如铁 在912℃时发生-Fe-Fe转变,-Fe的自 扩散系数大约是-Fe的240倍。所有元素在 -Fe中的扩散系数都比在-Fe中大,其原 因是体心立方结构的致密度比面心立方结 构的致密度小,原子较易迁移。
空位扩散机制--- 3.交换机制 相邻两原子交换位臵而实现 F10-14:扩散的交换机 制
8-第八章扩散详解

向一致
注意: (1)关系式并不涉及扩散系统内部原子 运动的微观过程。 (2)适用于扩散系统的任何位置和扩散 过程的任一时刻。
4、扩散第二定律
通常的扩散过程大都是非稳态扩散
1)一维扩散 A x, J x 和 J xx 分 在扩散方向上取体积元 Ax, J , x 别表示流入体积元及从体积元流出的扩散通量, 则在Δt时间内,体积元中扩散物质的积累量为
C C (D ) t x x
C C D 2 t x
2
5、扩散方程的应用
(一)一维稳态扩散
(二)不稳态扩散
5、扩散方程的应用
对于扩散的实际问题,一般要求出穿过某一
曲面(如平面、柱面、球面等)的通量J,单位
时间通过该面的物质量dm/dt=AJ,以及浓度分
布c(x,t),为此需要分别求解菲克第一定律及菲
存在着热起伏iiuixfx????组分的质点沿方向扩散受到的应力iibbiiufx????i相应的质点运动平均速率vii组分质点的平均速率或淌度iijcii组分的扩散通量viiiiiicjcbcbcxiiuux????????iicjdx???iiiiiicbcblnciiiudu??????iiiibblnclnniiiuud?????iicnlncidn?idlnc00iilnlnlnln1lnnlnln1lniiiiiiiiiiiitprtrtnurtndrtbn??????????????????????扩散系数的热力学因子判断扩散类型的特征项ln100lniiidn??????ln100lniiidn??????由低浓度区向高浓度区的扩散逆扩散上坡扩散偏聚由高浓度区向低浓度区的扩散顺扩散下坡扩散均匀化22扩散系数扩散的动力学方程将宏观的扩散系数与质点的微观运动联系起来
第八章扩散

扩散现象和本质
图8-3 对称和倾斜的势能曲线
扩散现象和本质
呈正弦波形变化(图8-12b)。
扩散应用举例
(一)铸锭(件)的均匀化退火
图8-12 铸锭中的枝晶偏析a)及溶质 原子在枝晶二次轴之间的浓度分布b)
扩散应用举例
(二)金属的粘接
1.
钎焊是连接金属的一
种方法。钎焊时,先将零
件(母材)搭接好,将钎
料安放在母材的间隙内或
间隙旁(图8-13),然后
将它们一起加热到稍高于
三、固态金属扩散的条件
扩散过程都是在扩散驱动力作用下进行的,如 果没有扩散驱动力,也就不可能发生扩散。墨水向 周围水中的扩散,锡向钢表面层中的扩散,其扩散 过程都是沿着浓度降低的方向进行,使浓度趋于均 匀化。相反,有些杂质原子向晶界的偏聚,使晶界 上的杂质浓度要比晶内高几倍至几十倍,又如共析 转变和过饱和固溶体的分解,扩散过程却是沿着浓 度升高的方向进行。可见,浓度梯度并不是导致扩 散的本质原因。
扩散现象和本质
应当指出,固态扩散是大量原子无序跃迁的统计 结果。在晶体的周期势场中,原子向各个方向跃迁的 几率相等,这就引不起物质传输的宏观扩散效果。如 果晶体周期场的势能曲线是倾斜的(图8-3),那么
原子自左向右跃迁的激活能为Q,而自右向左的激活 能在数值上为Q+ΔG(图8-3c)。这样一来,原子向
固态金属扩散的条件
(一)扩散要有驱动力
从热力学来看,在等温等压条件下,不管浓度 梯度如何,组元原子总是从化学位高的地方自发地 迁移到化学位低的地方,以降低系统的自由能。只 有当每种组元的化学位在系统中各点都相等时,才 达到动态平衡,宏观上再看不到物质的转移。当浓 度梯度与化学位梯度方向一致时,溶质原子就会从 高浓度地区向低浓度地区迁移;相反,当浓度梯度 与化学位梯度不一致时,溶质原子就会朝浓度梯度 相反的方向迁移。可见,扩散的驱动力不是浓度梯 度,而是化学位梯度。
8.金属学热处理 扩散

第八章 扩散
§8-1 概述 一、扩散现象和本质 柯肯达尔效应 柯肯达尔(Kirkendall)于1947年首先用实验验证了置换 型原子的互扩散过程。
实验结果发现,随着保温时间的延长,即界面位置向内发 生了微量漂移。
第八章 扩散
如果铜和锌的扩散系数相同,由于锌原子尺寸大于铜原子, 扩散以后界面外侧的铜晶格膨胀,内部的黄铜晶格收缩, 这种因为原子尺寸不同也会引起界面向内漂移,但位移量 只有实验值的十分之一左右。
位机制。
图 直接换位扩散模型
第八章 扩散
图 面心立方晶体的空位扩散机制 图 环形换位扩散模型
第八章 扩散
扩散激活能 晶体点阵中的原子进行扩散时,均需具有一定的超 额能量方可克服周围原子的能垒而实现迁移,该能量 称为扩散激活能。它在数值上等于势垒的高度Q。
第八章 扩散
三、固态金属扩散的条件
(一)、温度要足够高 温度越高,原子的热振动越激烈,原子被激活而进行 迁移的几率就越大。 固态扩散必须在足够高的温度以上才能进行。例如碳 原子在室温下的扩散过程极其微弱,在100℃以上时 才较为显著,而铁原子必须在500℃以上时才能有效 地进行扩散。 (二)、时间要足够长 扩散原子在晶体中每跃迁一次最多也只能移动0.3~ 0.5nm的距离,要扩散1 mm的距离,必须跃迁亿万次 才行。
第八章 扩散
前面讨论的是单相固溶体中的扩散,其特点是溶质原子的 浓度未超过固溶体的溶解度。
在许多的实际相图中,不仅包含一种固溶体,有可能出现 几种固溶体或者中间相。如果由构成这样相图的两个组元 制成扩散偶,或者在一种组元的表面渗入另一种组元,并 且在温度适宜保温时间足够的情况下,就会由于作为基体 的组元过饱和而反应生成一种或者几种新的合金相(中间 相或者固溶体)。
第八章-扩散

F ui x
当化学位降低的方向与浓度降低的方向相反,如溶质原子 的偏聚、调幅分解等,扩散表现为向浓度高的方向进行, 称为上坡扩散。
1.弹性应力作用下的扩散 金属晶体中存在弹性应力梯度时,将造成原子的扩散。 2.晶界的内吸附 如果溶质原子位于晶界上可使体系总能量降低,它们就会
扩散而聚集在晶界上,使得晶界上浓度比晶内高。 3.电场作用下的扩散
第二节 扩散机制
§8.2.1 间隙扩散(Interstitial diffusion)
间隙扩散是小的间隙原子, 扩散时由一个间隙位置跃 迁到另一个间隙位置。间 隙原子换位时,必须从基 体原子之间挤过去,这就 要求间隙原子具有足够的 激活能来克服基体原子造
成的势垒。
图 间隙扩散机制示意图
图 面心立方结构的八面体间隙及(100)间隙
§8.2.2 置换扩散
1.柯肯达尔效应 柯肯达尔(Kirkendall)于1947年首先用实验验证了置换
将伴随有相变过程的扩散,或者有新相产生的扩散称为反 应扩散或者相变扩散。
图 反应扩散时的相图(a)与对应的浓度分布(b)和相分布(c)
图 纯铁的表面氮化 (a)Fe-N相图 (b)相分布 (c)氮浓度分布
第三节 影响扩散的因素
§8.3.1温度
由扩散系数的表达式 D=D0exp(-Q/RT) ,可以看 出,温度对扩散的影响是 很大的。
D0和Q是随成分和晶体结 构变化而变化的,与温度 基本无关,常看作常数。 扩散系数与温度的变化就 是指数关系。
图 Na+在NaCl中的扩散系数
半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序,是指半导体制造过程中的八个主要工艺步骤。
这些工艺步骤包括晶圆清洗、光刻、沉积、刻蚀、扩散、离子注入、退火和包封。
下面将逐一介绍这些工艺步骤的顺序及其作用。
1. 晶圆清洗晶圆清洗是半导体制造过程中的第一步。
在这一步骤中,晶圆将被放入化学溶液中进行清洗,以去除表面的杂质和污染物。
这样可以确保后续工艺步骤的顺利进行,同时也可以提高器件的质量和性能。
2. 光刻光刻是半导体制造中的关键工艺步骤之一。
在这一步骤中,将使用光刻胶覆盖在晶圆表面上,并通过光刻机将图形投射到光刻胶上。
然后,利用化学溶液将未曝光的光刻胶去除,从而形成所需的图形。
3. 沉积沉积是指在晶圆表面上沉积一层薄膜的工艺步骤。
这一层薄膜可以用于改变晶圆表面的性质,增加其导电性或绝缘性。
常用的沉积方法包括化学气相沉积和物理气相沉积。
4. 刻蚀刻蚀是将多余的材料从晶圆表面去除的工艺步骤。
在这一步骤中,利用化学溶液或等离子刻蚀机将不需要的材料去除,从而形成所需的图形和结构。
5. 扩散扩散是将杂质或掺杂物diffused 到晶圆中的工艺步骤。
这一步骤可以改变晶圆的电学性质,并形成PN 结等器件结构。
常用的扩散方法包括固体扩散和液相扩散。
6. 离子注入离子注入是将离子注入到晶圆中的工艺步骤。
这可以改变晶圆的导电性和掺杂浓度,从而形成电子器件的结构。
离子注入通常在扩散之前进行。
7. 退火退火是将晶圆加热至一定温度并保持一段时间的工艺步骤。
这可以帮助晶圆中的杂质扩散和掺杂物活化,从而提高器件的性能和稳定性。
8. 包封包封是将晶圆封装在外部保护材料中的工艺步骤。
这可以保护晶圆不受外部环境的影响,同时也可以方便晶圆的安装和使用。
半导体制造过程中的八大工艺顺序是一个复杂而精密的过程。
每个工艺步骤都起着至关重要的作用,只有严格按照顺序进行,才能生产出高质量的半导体器件。
希望通过本文的介绍,读者对半导体制造过程有了更深入的了解。
第八章扩散答案

第八章扩散答案A.本征扩散B.非本征扩散第八章扩散—、是非题1. (错)扩散一定从高浓度到低浓度。
2. (对)原子扩散的驱动力是化学位梯度。
3. (对)菲克第一定律适用于稳定扩散过程。
4. (对)菲克第二定律描述的是在扩散过程中某点的浓度随时间的变化率与浓度分布曲线在该点的二阶导数成正比。
5. (错)对扩散常数D o 的影响因素主要是扩散激活能。
(应是形成商与生成商)D0为与晶格结构和扩散方向有关的 常 数6. (错)菲克第二定律适用于稳定扩散过程。
7. (对)对扩散系数D 的影响因素主要是温度及扩散激活能。
8. (错)菲克第一定律适用于不稳定扩散。
9. (对)晶体结构对扩散有一定的影响,在致密度较小的晶体结构中。
原子的 扩算系数较大。
二、选择题1. 在扩散系数的热力学关系中,非理想混合体系中:当扩散系数的热力学因子〉0时,扩散结果使溶质 ( )A .发生偏聚B .浓度不改变C .浓度趋于均匀非理想混合体系中:当扩散系数的热力学因子v 0时,扩散结果使溶质 ()A .发生偏聚B .浓度不改变C .浓度趋于均匀3. 原子扩散的驱动力是 ____________ 。
A .组元的浓度梯度 B .组元的化学位梯度C .扩散的温度D .扩散的时间4. 受固溶引入的杂质离子的电价和浓度等外界因素所控制的扩散是 __________ o B.非本征扩散C.正扩散 (1ln N i称为扩散系数的热力学因子。
在A .发生偏聚 B浓度不改变 C .浓度趋于均匀2. 在扩散系数的热力学关系中,°-^)lnN i称为扩散系数的热力学因子。
在A.本征扩散 D.逆扩散5. _____________________________ 由热缺陷所引起的扩散是A.本征扩散B.非本征扩散三、名词解释1. 稳定扩散稳定扩散是指在垂直扩散方向的任一平面上,单位时间内通过该平面单位面积的粒子数一定,即任一点的浓度不随时间而变化,2. 不稳定扩散不稳定扩散是指扩散物质在扩散介质中浓度随时间发生变化。
第八章 扩散

Kirkendall effect :Cu-Zn合金焊合后在高温下扩散, Cu-Ni界面向Ni一侧移动的现象。
Q
扩散现象的本质:
大量原子不断克服原子之间 能垒,跃 迁到邻近位置,实现宏观的物质迁移过程。 阻 力:邻近原子间势能垒
驱动力:热振动原子的能量起伏
——与温度有关
二、 扩散的微观机制
1.空位扩散机制 —主要机制
二、 扩散的微观机制
2. 间隙扩散—小原子
在间隙固溶体中溶质原子的扩散是从一个间隙位置跳到 近邻的另一间隙位置,发生间隙扩散。
3. 换位扩散机制—难进行
三、扩散的分类
根据扩散生浓度变化,扩散过程快慢与浓度梯度无关。 常见于纯金属和均匀固溶体中。
图8-23 固体晶体中原子扩散途径 1-体扩散;2-表面扩散;3-晶 界扩散; 4-位错扩散
图8-24 银的体扩散、晶界扩散和表 面扩散系数D与温度T的关系
复习要点
基本概念 扩散通量、扩散系数、扩散激活能、空位扩散机制、 间隙扩散机制、柯肯达尔效应、扩散驱动力 菲克第一、第二定律的物理意义。
扩散方程的求解。
反应扩散
反应扩散的特点:在相界面处产生浓度突变。
四、金属固态扩散 的条件
1. 温度高→动力学条件
固态扩散是依靠原子热激活而进行的过程。温度越 高,原子的热振动越激烈,原子被激活而进行迁移的 几率就越大。固态扩散越易进行。
2. 时间长→宏观迁移动力学条件
固态金属扩散很慢,完成时间长。
3. 扩散原子要固溶→前提条件
概述
气、液 : 对流、 扩散
物质传输方式:
固 : 扩散 —— 唯一机制 一、 扩散定义与本质 定义: 物质中原子或分子通过无 规运动导致宏观迁移与传质的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m ( J x J xx ) At
( J x J x x ) m J xAt x x C J x 0, t 0时, t x
dC J D dx
C C 2C (D ) D 2 t x x x
§8.1.3 扩散方程在生产中的应用举例
2.空位扩散机制 有人曾提出置换扩散机制为直接交换式、环行交换式和空 位机制。
图 直接换位扩散模型
图 面心立方晶体的空位扩散机制
图 环形换位扩散模型
§8.2.3 扩散系数公式
考虑两个邻近的晶面1和 晶面2,面间距为a,设C1 和C2分别为晶面1和晶面2 上的原子面密度。 则每秒由平面1跳跃到平 面2和由平面2跳跃到平面 1的原子数分别为
C s Cc x erf ( )为定值 C s C0 2 Dt x 也为定值 2 Dt
x K Dt
思考题
假设对一个原始碳浓度为0.25wt %的钢件进行渗碳处理, 要求渗碳层厚度为0.5mm处的碳浓度为0.8wt %,渗碳气 体的碳浓度为1.2wt %,在950℃进行渗碳处理。应用菲克 第二定律计算可以知道,需要时间约7小时。如果将渗碳 层厚度由0.5mm提高到1.0mm,则需要多少时间?
第八章 扩散
物质中的原子随时进行着热振动,温度越高,振动频率 越快。当某些原子具有足够高的能量时,便会离开原来的 位置,跳向邻近的位置,这种由于物质中原子的微观热运 动所引起的宏观迁移现象称为扩散。 在气态和液态物质中,原子迁移可以通过对流和扩散两 种方式进行,与扩散相比,对流要快得多。然而,在固态 物质中,扩散是原子迁移的唯一方式。 实验证实,物质在高温下的许多物理及化学过程均与扩 散有关,因此研究物质中的扩散无论在理论上还是在应用 上都具有重要意义。
x
图 显微偏析中浓度随距离的变化
C Cm sin
x
l
菲克第二定律方程通解为 : C Cm sin e l 2 2 nl C / Cm e Dt / l ( x , n 1,3,5,......) 2
x
2 Dt / l 2
l / D
2
2
提高扩散温度,增加D,可以加快扩散速率; 减小偏析波长l也是提高均匀化速率的有效手段(细化晶 粒)。
§8.3.4 浓度
在二元合金中,组元的扩散系数是浓度的函数,只有当浓 度很低,或者浓度变化不大时,才可将扩散系数看作是与 浓度无关的常数。 组元的浓度对扩散系数的影响比较复杂,若增加浓度能使 原子的Q减小,而D0增加,则D增大。 通常的情况是Q减小,D0也减小;Q增加,D0也增加。这 种对扩散系数的影响呈相反作用的结果,使浓度对扩散系 数的影响并不是很剧烈,实际上浓度变化引起的扩散系数 的变化程度一般不超过2~6倍。
晶体结构反映了原子在空间排列的紧密程度。晶体的致密 度越高,原子扩散时的路径越窄,产生的晶格畸变越大, 同时原子结合能也越大,使得扩散激活能越大,扩散系数 减小。这个规律无论对纯金属还是对固溶体的扩散都是适 用的。 钢的渗碳温度选择在900-930℃。奥氏体是面心立方结构, C在奥氏体中的扩散速度似乎较慢,但是由于渗碳温度较 高,加速了C的扩散,同时C在奥氏体中的溶解度远比在 铁素体中的大也是一个基本原因。
( Dt ) 600 (5.3 1013 ) 10 t500 110.4(h) 14 D500 4.8 10
2.扩散方程在扩散退火中的应用 具有显微偏析的合金组元分布大多呈周期性变化,可用一 正弦曲线组元沿某方向x的分布情况。
l C m 表示偏析的最大差值
C Cm sin
1 1 aC1和 aC2 6 6
图 扩散系数公式的推导
1 J a(C1 C2 ) 6 dx a
1 2 dc J a 6 dx dC J D dx
1 2 1 2 1 2 q / kT D a a p z a ze 6 6 6
D D0e
0, C C2 ; x 0, C C1
x , C C2 ; x , C C1
C1 C 2 C1 C 2 x C erf 2 2 2 Dt
erf(z)为误差函数,它的值通过查误差函数表可得。 误差函数有如下的性质:erf(0) = 0,erf(∞) = 1,erf(-x) = erf(x)。 扩散开始以后焊接面处的浓度C为扩散偶原始浓度的平均 值,该值在扩散过程中一直保持不变。 扩散的抛物线规律:原子的扩散距离与时间呈抛物线关系, 许多扩散型相变的生长过程也满足这种关系。
2 t1 x2 7 1.0 2 t2 2 28(h) 2 x1 0.5
t1 t2 2 2 x1 x2
思考题
已知Cu在Al中的扩散系数D, 在500℃和600℃时分别为 4.8×10-14 m2/s和5.3×10-13 m2/s。假如一个工件在600℃ 需要处理10小时,如果在500℃处理,要达到同样的效果 则需要多少小时? (Dt)500 = (Dt)600
图 合金元素对碳在 γ-Fe中扩散系数的影响
§8.3.6 短路扩散
将沿缺陷进行的扩散称为短路扩散,沿晶格内部进行的扩 散称为体扩散或晶格扩散。
图 短路扩散示意图
图 不同扩散方式的 扩散系数与温度的关系
晶粒尺寸越小,金属的晶 界面积越多,晶界扩散对 扩散系数的贡献就越大。 温度较低时晶界扩散激活 能比体扩散激活能小得多, 晶界扩散起主导作用;温 度较高时晶体中的空位浓 度增加,扩散速度加快, 体扩散起主导作用。
Q / RT
Q D D0 exp( ) RT
扩散元素 N 基体金属 γ-Fe D0/10-5m2/s 0.33 Q/103J/mol 144
C
N Fe Fe Ni Mn
α-Fe
α-Fe α-Fe γ-Fe γ-Fe γ-Fe
0.20
0.46 19 1.8 4.4 5.7
84
75 239 270 283 277
扩散第一方程是被大量实验所证实的公理,是扩散理论的 基础。 浓度梯度一定时,扩散仅取决于扩散系数,扩散系数是描 述原子扩散能力的基本物理量。 在浓度均匀的系统中,尽管原子的微观运动仍在进行,但 是不会产生宏观的扩散现象。 扩散第一定律只适合于描述的稳态扩散,即在扩散过程中 系统各处的浓度不随时间变化。 扩散第一定律不仅适合于固体,也适合于液体和气体中原 子的扩散。
§8.1.4 扩散的驱动力及上坡扩散
根据热力学理论,在恒温、恒压条件下,系统变化总是向 吉布斯自由能降低的方向进行,自由能最低态是系统的平 衡状态,过程的自由能变化 是系统变化的驱动力。 合金中的扩散也是一样,原子总是从化学位高的地方向化 学位低的地方扩散,当各相中同一组元的化学位相等(多 相合金),则达到平衡状态,宏观扩散停止。原子扩散的 真正驱动力是化学位梯度。
第一节 扩散定理
§8.1.1 菲克第一定律
菲克(A. Fick)于1855年参考导热方程,通过实验确立 了扩散物质量与其浓度梯度之间的宏观规律,即单位时间 内通过垂直于扩散方向的单位截面积的物质量(扩散通量) 与该物质在该面积处的浓度梯度成正比 。
J D dC dx
J为扩散通量,表示扩散物质通过单位截面的流量, dC/dx为沿x方向的浓度梯度;D为原子的扩散系数。负号 表示扩散由高浓度向低浓度方向进行。
ui F x
当化学位降低的方向与浓度降低的方向相反,如溶质原子 的偏聚、调幅分解等,扩散表现为向浓度高的方向进行, 称为上坡扩散。 1.弹性应力作用下的扩散 金属晶体中存在弹性应力梯度时,将造成原子的扩散。 2.晶界的内吸附 如果溶质原子位于晶界上可使体系总能量降低,它们就 会扩散而聚集在晶界上,使得晶界上浓度比晶内高。 3.电场作用下的扩散
图 其他元素在铜中的扩散系数
图 碳在γ-Fe中的扩散系数
图 Au-Ni系中扩散系数与浓度的关系
§8.3.5 合金元素的影响
1.强碳化物形成元素如W、Mo、 Cr等,能强烈阻止碳的扩散, 降低碳的扩散系数。 2.不形成稳定的碳化物,但易 溶解于碳化物中的元素,对碳 扩散的影响不大,如Mn和Ni。 3.不形成稳定的碳化物而溶于 固溶体中的元素对碳扩散的影 响比较复杂,如Co。
2.半无限长物体的扩散 由于渗碳时,活性碳原子附在零件表面上,然后向零件内 部扩散,这就相当于无限长扩散偶中的一根金属棒,因此 叫做半无限长。
Cs C x x erf ( ) C s C0 2 Dt
Co为原始浓度;Cs为渗碳气氛浓度;Cx为距表面x处的浓 度。
直接应用菲克第二定律解决实际扩散问题,往往很复杂。 但是有两条由菲克第二定律推导出来的结论却十分简单、 有用: 对于钢铁材料渗碳处理时,扩散需要的时间t与扩散距离x 的平方成正比。 对于同一个扩散系统,扩散系数D与扩散时间t的乘积为一 常数。 渗层深度:碳浓度大于某一值Cc处铁棒表层的深度x。
§8.2.2 置换扩散
1.柯肯达尔效应 柯肯达尔(Kirkendall)于1947年首先用实验验证了置换 型原子的互扩散过程。
实验结果发现,随着保温时间的延长,即界面位置向内发 生了微量漂移。
如果铜和锌的扩散系数相同,由于锌原子尺寸大于铜原子, 扩散以后界面外侧的铜晶格膨胀,内部的黄铜晶格收缩, 这种因为原子尺寸不同也会引起界面向内漂移,但位移量 只有实验值的十分之一左右。 柯肯达尔效应的唯一解释是,锌的扩散速度大于铜的扩散 速度,使越过界面向外侧扩散的锌原子数多于向内侧扩散 的铜原子数,出现了跨越界面的原子净传输,导致界面 (即钨丝层)向内漂移。 大量的实验表明,柯肯达尔效应在置换固溶体中是普遍现 象,它对扩散理论的建立起到了非常重要的作用。
1.无限长扩散偶的扩散
图 无限长扩散偶中的溶质原子分布