2014西城一模文综(word)
【2014西城一模】北京市西城区2019届高三一模试卷_理综物理_Word版含答案

北京市西城区2014年高三一模试卷13. 下列说法中正确的是A .随着分子间距离增大,引力减小但斥力增大B .温度是分子热运动平均动能标志C .外界对系统做功,系统内能一定增加 D. 系统从外界吸收热量,系统内能一定增加14. 已知质子、中子、氘核质量分别是m 1、m 2、m 3,光速为c 。
则质子和中子结合成氘核过程中A .吸收的能量为(m 1+m 2+m 3)c 2B .吸收的能量为(m 1+m 2-m 3)c 2C .释放的能量为(m 1+m 2+m 3)c 2D .释放的能量为(m 1+m 2-m 3)c 215. 如图所示是一列简谐横波在t =0时刻的波形图,已知这列波沿x 轴正方向传播,周期为T ,P 是x =0.5m 处的一个质点,则 A .t =0时刻,P 点速度沿+y 方向 B .t =0时刻,P 点速度沿+x 方向C .t =4T时刻,P 点在波谷位置D .t =4T时刻,P 点在波峰位置16. 卡文迪许用扭秤测出引力常量G ,被称为第一个“称”出地球质量的人。
若已知地球表面的重力加速度g 、地球的半径R 、地球绕太阳运转的周期T ,忽略地球自转的影响,则关于地球质量M ,下列计算正确的是A .GgR M 2= B .g GR M 2= C .222π4GT R M = D .G R T M 222π4= 17. 冰壶运动深受观众喜爱,图1为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头。
在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图2。
若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图3中的哪幅图图1图2甲 乙v x/my0.5 1Pv18. 如图所示,几位同学在做“摇绳发电”实验:把一条长导线的两端连在一个灵敏电流计的两个接线柱上,形成闭合回路。
两个同学迅速摇动AB 这段“绳”。
假设图中情景发生在赤道,地磁场方向与地面平行,由南指向北。
图中摇“绳”同学是沿东西站立的,甲同学站在西边,手握导线的A 点,乙同学站在东边,手握导线的B 点。
【2014西城一模】北京市西城区2014届高三一模数学(理)试题Word版含解析

一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1.设全集U R =,集合{}02A x x =<≤,{}1B x x =<,则集合()U AB =ð( )A.(],2-∞B.(],1-∞C.()2,+∞D.[)2,+∞2.已知平面向量()2,1a =-,()1,1b =,()5,1c =-. 若()//a kb c +,则实数k 的值为( ) A.2 B.12 C.114 D.114-3.在极坐标系中,过点2,2π⎛⎫⎪⎝⎭且与极轴平行的直线方程是( ) A.2ρ= B.2πθ=C.cos 2ρθ=D.sin 2ρθ=考点:直角坐标与极坐标的互化4.执行如图所示的程序框图,如果输入2a =,2b =,那么输出的a 值为( )A.4B.16C.256D.3log 165.下列函数中,对于任意x R ∈,同时满足条件()()f x f x =-和()()f x f x π-=的函数是( ) A.()sin f x x = B.()sin cos f x x x = C.()cos f x x = D.()22cos sin f x x x =-6.“8m <”是“方程221108x y m m -=--表示双曲线”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于( )A.3B.4C.5D.6考点:1.数列求和;2.基本不等式8.如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )A.4个B.6个C.10个D.14个第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设复数12ix yi i-=++,其中x 、y R ∈,则x y +=______.10.若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =_____;C 的准线方程为_____. 【答案】8;4x =-. 【解析】试题分析:抛物线2:2C y px =的焦点坐标为,02p ⎛⎫⎪⎝⎭,该点在直线240x y +-=上,则有402p -=,解BADC. P得8p =,此时抛物线的准线方程为4x =-. 考点:抛物线的几何性质11.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.12.若不等式组1026ax y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是_______.【答案】()3,5. 【解析】试题分析:作出不等式组1026x y x y ≥⎧⎪≤⎨⎪+≤⎩所表示的平面区域如下图中的阴影部分所表示,直线26x y +=交x 轴于点()3,0A ,交直线1x =于点()1,4B ,当直线x y a +=与直线26x y +=在线段13.科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______.(用数字作答)14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,2BC =,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,对于函数()y f x =,给出以下三个结论:①当2a =时,函数()f x 的值域为[]1,4;②()0,a ∀∈+∞,都有()11f =成立; ③()0,a ∀∈+∞,函数()f x 的最大值都等于4. 其中所有正确结论的序号是_________.D C P线1x =与对称轴的距离远,此时函数()f x 在0x =处取得最大值,即()()max 04f x f ==,当()224121a a +≥+时,即当0a <≤时,函数()f x 在区间[]0,1上单调递减, 此时函数()f x 在0x =处取得最大值,即()()max 04f x f ==, 综上所述,正确结论的序号是②③. 考点:1.平面向量的数量积;2.二次函数三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .已知222b c a bc +=+. (1)求A 的大小;(2)如果cos 3=B ,2b =,求ABC ∆的面积.因为 0>c ,所以 1=c .故ABC ∆的面积1sin 22S bc A ==.考点:1.正弦定理与余弦定理;2三角形的面积公式16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(1)根据频率分布表中的数据,写出a 、b 的值;(2)某人从灯泡样品中随机地购买了()n n N *∈个,如果这n 个灯泡的等级情况恰好与按三个等级分层抽........样.所得的结果相同,求n 的最小值; (3)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.所以n 的最小值为4;17.(本小题满分14分)如下图,在四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都 是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==. (1)求证:1⊥BC D E (2)求证:1//B C 平面1BED ;(3)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求线段1D E 的长度.所以四边形11D DBB 是平行四边形.连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以 1//EF B C . 又因为 1⊄B C 平面1BED ,⊂EF平面1BED ,1设平面11BCC B 法向量为()111,,m x y z =, 因为()1,0,0CB =,()11,1,CB a =,由100m CB m CB ⎧⋅=⎪⎨⋅=⎪⎩得11110,0.x x y az =⎧⎨++=⎩ 令11z =,得()0,,1m a =-.由平面11BCC B 与平面1BED 所成的锐二面角的大小为3π, 得 ||cos ,cos32m n m n m nπ⋅===,解得1a =.考点:1.直线与平面垂直;2.直线与平面平行;3.二面角;4.空间向量法 18.(本小题满分13分)已知函数()2ln ,23,x x x a f x x x x a >⎧=⎨-+-≤⎩,其中0a ≥. (1)当0a =时,求函数()f x 的图象在点()()1,1f 处的切线方程;(2)如果对于任意1x 、2x R ∈,且12x x <,都有()()12f x f x <,求a 的取值范围.因为对于任意1x 、2x R ∈,且12x x <,都有()()12f x f x <成立, 所以1a ≤.19.(本小题满分14分)已知椭圆22:12x W y +=,直线l 与W 相交于M 、N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(1)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(2)判断是否存在直线l ,使得C 、D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)221152416x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(2)存在,且直线l 的方程为25y x =±或y x =. 【解析】试题分析:(1)先确定OCD ∆三个顶点的坐标,利用其外接圆圆心即为该三角形垂直平分线的交点求出外接圆的圆心,并利用两点间的距离公式求出外接圆的半径,从而求出外接圆的方程;(2)将C 、D 是线段MN由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得()222124220k x kmx m +++-=,所以 2216880k m ∆=-+>, (*)由韦达定理,得122412kmx x k-+=+,21222212m x x k -=+. 由C 、D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k mk-+==+-, 解得2k =±. 由C 、D 是线段MN 的两个三等分点,得3MN CD =.20.(本小题满分13分)在数列{}n a 中,()1n a n N n*=∈. 从数列{}n a 中选出()3k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列12、13、15、18为{}n a 的一个4 项子列.(1)试写出数列{}n a 的一个3项子列,并使其为等差数列;(2)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足108d -<<; (3)如果{}n c 为数列{}n a 的一个()3m m ≥项子列,且{}n c 为等比数列,证明:123m c c c c ++++1122m -≤-.则 ()2112311m m c c c c c q q q -++++=++++.因为{}n c 为{}n a 的一个m 项子列, 所以 q 为正有理数,且1q <,()111c a N a*=≤∈. 设 (),Kq K L N L*=∈,且K 、L 互质,2L ≥). 当1K =时,因为 112q L =≤,所以 ()2112311m m c c c c c q q q -++++=++++211111222m -⎛⎫⎛⎫≤++++ ⎪ ⎪⎝⎭⎝⎭,1122m -⎛⎫=- ⎪⎝⎭,所以 1123122m m c c c c -⎛⎫++++≤- ⎪⎝⎭.当1K ≠时,因为 11111m m m m K c c q a L---==⨯是{}n a 中的项,且K 、L 互质,所以 ()1*m a K M M N -=⨯∈,所以 ()2112311m m c c c c c q q q -++++=++++1232111111m m m m M K K L K LL ----⎛⎫=++++ ⎪⎝⎭. 因为 2L ≥,K 、*M N ∈, 所以 2111231111122222m m m c c c c --⎛⎫⎛⎫⎛⎫++++≤++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.综上, 1231122m m c c c c -++++≤-.考点:1.新定义;2.等比数列求和。
2014北京市西城区高考理综物理一模试题(附答案)

北京市西城区2014年高三一模试卷13. 下列说法中正确的是A .随着分子间距离增大,引力减小但斥力增大B .温度是分子热运动平均动能的标志C .外界对系统做功,系统内能一定增加 D. 系统从外界吸收热量,系统内能一定增加14. 已知质子、中子、氘核质量分别是m 1、m 2、m 3,光速为c 。
则质子和中子结合成氘核的过程中A .吸收的能量为(m 1+m 2+m 3)c 2B .吸收的能量为(m 1+m 2-m 3)c 2C .释放的能量为(m 1+m 2+m 3)c 2D .释放的能量为(m 1+m 2-m 3)c 215. 如图所示是一列简谐横波在t =0时刻的波形图,已知这列波沿x 轴正方向传播,周期为T ,P 是x =0.5m 处的一个质点,则 A .t =0时刻,P 点速度沿+y 方向 B .t =0时刻,P 点速度沿+x 方向C .t =4T时刻,P 点在波谷位置D .t =4T时刻,P 点在波峰位置16. 卡文迪许用扭秤测出引力常量G ,被称为第一个“称”出地球质量的人。
若已知地球表面的重力加速度g 、地球的半径R 、地球绕太阳运转的周期T ,忽略地球自转的影响,则关于地球质量M ,下列计算正确的是A .GgR M 2= B .g GR M 2= C .222π4GT R M = D .G R T M 222π4= 17. 冰壶运动深受观众喜爱,图1为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头。
在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图2。
若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图3中的哪幅图图1图2甲 乙v x/my0.5 1Pv18. 如图所示,几位同学在做“摇绳发电”实验:把一条长导线的两端连在一个灵敏电流计的两个接线柱上,形成闭合回路。
两个同学迅速摇动AB 这段“绳”。
假设图中情景发生在赤道,地磁场方向与地面平行,由南指向北。
【2014西城一模】北京市西城区2014届高三一模试卷 数学理 扫描版含答案( 2013高考)

北京市西城区2014年高三一模试卷参考答案及评分标准高三数学(理科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.8 4x =-11. 12.(3,5) 13.4814.○2,○3注:第10题第一问2分,第二问3分. 第14题若有错选、多选不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, …………… 3分 又因为 (0,π)∈A ,所以 π3A =. …………… 5分(Ⅱ)解:因为 cos 3=B ,(0,π)∈B ,所以 sin 3B ==. ……………7分 由正弦定理sin sin =a bA B , ……………9分 得 sin 3sin ==b Aa B. ……………10分 因为 222b c a bc +=+,所以 2250--=c c ,解得 1=c 因为 0>c ,所以 1c . ……………11分故△ABC 的面积1sin 2S bc A ==……………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =. …………… 2分 (Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,所以优等品、正品和次品的比例为50:100:501:2:1=. …………… 4分 所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N ,所以n 的最小值为4. …………… 6分 (Ⅲ)解:X 的所有取值为0,1,2,3. …………… 7分由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, …… 8分 从本批次灯泡中购买3个,可看成3次独立重复试验, 所以033127(0)C (1)464P X ==⨯-=, 1231127(1)C (1)4464P X ==⨯⨯-=, 2213119(2)C ()(1)4464P X ==⨯-=,33311(3)C ()464P X ==⨯=. …………… 11分 所以随机变量X 的分布列为:……………12分所以X 的数学期望2727913()0123646464644E X =⨯+⨯+⨯+⨯=. ……………13分(注:写出1(3,)4X B ,3311()C ()(1)44k kk P X k -==-,0,1,2,3k =. 请酌情给分)17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形,所以 BC CD ⊥,1BC CC ⊥, 又因为 1=CDCC C ,所以 BC ⊥平面11DCC D , ………………2分 因为 1D E ⊂平面11DCC D , 所以1BC D E ⊥. ………………4分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以1//EF B C . ………………6分又因为 1⊄B C 平面1BED ,⊂EF 平面1BED ,所以 1//BC 平面1BED . (8)(Ⅲ)解:由(Ⅰ)可知1BC D E ⊥,1又因为 1D E CD ⊥,BCCD C =,所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED 所在直线分别为x 轴,y 轴,z 轴 如图建立空间直角坐标系,设1D E a =,则11(0,0,0), (1,1,0), (0,0,), (0,1,0), (1,2,), (1,0,0)E B D a C B a G . 设平面1BED 法向量为(,,)x y z =n , 因为1(1,1,0), (0,0,)EB ED a ==,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0.x y z +=⎧⎨=⎩令1x=,得(1,1,0)=-n . ………………11分设平面11BCC B 法向量为111(,,)x y z =m , 因为1(1,0,0), (1,1,)CB CB a ==,由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩m m得11110,0.x x y az =⎧⎨++=⎩令11z =,得(0,,1)a =-m . ………………12分由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3, 得||π|cos ,|cos 3⋅<>===m n m n m n , ………………13分 解得1a =. ……………14分18.(本小题满分13分)(Ⅰ)解:由题意,得()(ln )ln 1f x x x x ''==+,其中0x >, ……………… 2分所以 (1)1f '=,又因为(1)0f =,所以函数()f x 的图象在点(1,(1))f 处的切线方程为1y x =-. …………… 4分 (Ⅱ)解:先考察函数2()23g x x x =-+-,x ∈R 的图象,配方得2()(1)2g x x =---, ……………… 5分所以函数()g x 在(,1)-∞上单调递增,在(1,)+∞单调递减,且max ()(1)2g x g ==-.…………… 6分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1a ≤. ……………… 8分 以下考察函数()ln h x x x =,(0,)x ∈+∞的图象, 则 ()ln 1h x x '=+,令()ln 10h x x '=+=,解得1e=x . ……………… 9分 随着x 变化时,()h x 和()h x '的变化情况如下:即函数()h x 在1(0,)e上单调递减,在1(,)e+∞上单调递增,且min 11()()e e==-h x h . ……………… 11分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1e≥a . ……………… 12分因为 12e->-(即min max ()()h x g x >),所以a 的取值范围为1,e[1]. ……………… 13分19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . ……………… 1分则线段CD 的中点11(,)24,||2CD ==, ……………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分 (Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……………… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分 所以 2216880k m ∆=-+>, (*) ……………… 8分由韦达定理,得122412km x x k -+=+, 21222212m x x k-=+. ……………… 9分 由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k m k-+==+-, ………………10分解得2k =±. ……………… 11分由,C D 是线段MN 的两个三等分点,得||3||MN CD =.12|x x -= ……………… 12分即 12||3||mx x k-==,解得 5m =±. ……………… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为y x =±,或2y x =-±. ……………… 14分20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列12,13,16; ……………… 2分 (Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥,所以 210d b b =-<. ……………… 3分 若 11b = ,由{}n b 为{}n a 的一个5项子列,得212b ≤, 所以 2111122d b b =--=-≤. 因为 514b b d =+,50b >,所以 515411d b b b =-=->-,即14d >-. 这与12d -≤矛盾. 所以 11b ≠.所以 112b ≤, ……………… 6分 因为 514b b d =+,50b >, 所以 51511422d b b b =-->-≥,即18d >-, 综上,得108d -<<. ……………… 7分 (Ⅲ)证明:由题意,设{}n c 的公比为q ,则 211231(1)m m c c c c c q q q -++++=++++.因为{}n c 为{}n a 的一个m 项子列, 所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. 设 (,Kq K L L*=∈N ,且,K L 互质,2L ≥). 当1K =时,因为 112q L =≤,所以 211231(1)m m c c c c c q q q -++++=++++211111()()222≤-++++m , 112()2-=-m ,所以 112312()2m m c c c c -++++-≤. ……………… 10分当1K ≠时,因为 11111m m m m K c c q a L---==⨯是{}n a 中的项,且,K L 互质,所以 1*()-=⨯∈m a KM M N ,所以 211231(1)m m c c c c c q q q -++++=++++1232111111()----=++++m m m m M K K L K LL . 因为 2L ≥,*K M ∈N ,,所以 21112311111()()2()2222m m m c c c c --++++++++=-≤. 综上, 1231122m m c c c c -++++-≤. …………… 13分。
【精品推荐】2014北京一模历史试题汇总(东城、西城、海淀、朝阳、丰台、石景山等)

北京市朝阳区2014届高三第一次综合练习文科综合历史部分试题2014.3 12.下图是民国初年的一部书籍,与它关联最为密切的是A.分封制B.宗法制C.郡县制D.行省制13.隋朝融汇南北之长而推陈出新,做出了一系列深远的改革和创新。
图中所示隋朝实行的制度①体现了皇权增强的趋势②有利于宰相的擅权专断③反映了行政分工与牵制④造成了皇权的专制独裁A.①②B.①③C.①④D.②④14.观察宋代“海上丝绸之路”路线图,当时输出的主要是A.茶叶、瓷器、丝绸等B.香料、药材、棉花等C.烟草、蔗糖、枪支等D.甘蔗、茶叶、玉米等15.租界和使馆区既是近代列强侵略中国的表现形式,也是传播西方文明的窗口。
与图中历史现象对应的历史事件分别是A.鸦片战争第二次鸦片战争B.第二次鸦片战争八国联军侵华战争C.鸦片战争八国联军侵华战争D.甲午中日战争八国联军侵华战争16.梁启超说:“国者何?积民而成也;国政者何?民自治其事也。
故民权兴则国权立,民权灭则国权亡。
为君相者而务压民之权,是之谓自弃其身。
故言爱国必自兴民权。
”这表明梁启超的认识是A.民权是国家主权的基础B.统治者应是民权的代表C.民权保障是爱国的前提D.国民自治决定国家兴亡17.1920年,全国工农业总产值为159.28亿元,其中近代工业产值为9.88亿元,占工农业总产值的6.2%,只有手工业总产值44.45亿元的22.2%。
这主要反映出A.中国资本主义工业分布极不平衡B.中国近代工业的发展水平比较低C.中国民族工业严重依赖外国资本D.中国近代农轻重的结构相对均衡18.读图,对中国共产党领导的新民主义革命过程中重要经历表述正确的是A.在④打响武装反抗国民党统治的第一枪B.在①在建立抗日民主政权C.三大主力红军从③开始长征到②会师D.中共七大在②胜利召开19.1954年中国人民政治协商会议召开,从这届政协开始性质有了变化。
“政协性质开始变化”的原因在于A.中国的社会性质发生根本改变B.三大改造胜利完成C.第一届全国人大已经胜利召开D.中苏关系严重恶化20.当商品经济发展到较高水平时,生产者逐渐与生产资料分离,马克思将这一过程称为资本原始积累。
2014北京西城高三一模化学试卷及答案

北京市西城区2014年抽样测试高三理科综合能力测试(化学部分)2014-4 6.下列措施不利于...保护环境的是A B C D焚烧废弃塑料处理污水风力发电推广电动汽车7.下列说法正确的是A.油脂都不能使溴水褪色B.氨基酸是两性化合物,能与酸、碱反应生成盐C.福尔马林可用作食品防腐剂D.蔗糖和麦芽糖的水解产物都是葡萄糖8.用下列各组仪器或装置,不.能.达到实验目的的是A.a组:制备少量乙酸乙酯B.b组:除去粗盐水中的泥沙C.c组:用CCl4提取碘水中的碘D.d组:配制100 mL 1.00 mol/L NaCl溶液9.下列解释事实的离子方程式不正确...的是A.氯化铜溶液显酸性:Cu2++2H2O Cu(OH)2+2H+B.氯气使湿润的淀粉KI试纸变蓝:Cl2+2I-=2Cl-+I2C.向硫酸铝溶液中加入氨水出现白色胶状沉淀:Al3++3OH-=Al(OH)3↓D.实验室不用玻璃塞试剂瓶盛装氢氧化钠溶液:SiO2+2OH-=SiO32-+H2O 10.已知16S、34Se位于同一主族,下列关系正确的是A.热稳定性:H2Se > H2S >HCl B.原子半径:Se>P>SiC.酸性:H3PO4>H2SO4>H2SeO4 D.还原性:Se2->Br->Cl-11.对常温下pH=3的CH3COOH溶液,下列叙述不.正确..的是A.c(H+)=c(CH3COO-)+c(OH-)B.加入少量CH3COONa固体后,c (CH3COO-)降低C.该溶液中由H2O电离出的c(H+)是1.0×10-11 mol/LD.与等体积pH=11的NaOH溶液混合后所得溶液显酸性12.欲检验CO2气体中是否含有SO2、HCl,进行如下实验:①将气体通入酸化的AgNO3溶液中,产生白色沉淀a;②滤去沉淀a,向滤液中加入Ba(NO3)2溶液,产生白色沉淀b。
下列说法正确的是A.沉淀a为AgCl B.沉淀b为BaCO3C.气体中含有SO2D.气体中没有HCl25.(17分)以乙炔或苯为原料可合成有机酸H2MA,并进一步合成高分子化合物PMLA。
2014年北京市西城区高考数学一模试卷(文科)(附答案解析版)

2014年北京市西城区高考数学一模试卷(文科)一、选择题(共8小题,每小题5分,满分40分)1. 设全集U ={x|0<x <2},集合A ={x|0<x ≤1},则集合∁U A =( ) A.(0, 1) B.(0, 1] C.(1, 2) D.[1, 2)2. 已知平面向量a →=(2, −1),b →=(1, 3),那么|a +b →|等于( ) A.5 B.√13 C.√17 D.133. 已知双曲线C:x 2a 2−y 2b 2=1(a >0, b >0)的虚轴长是实轴长的2倍,则此双曲线的离心率为( ) A.√2 B.2C.√3D.√54. 某几何体的三视图如图所示,则该几何体的体积为( )A.2B.43C.4D.55. 下列函数中,对于任意x ∈R ,同时满足条件f(x)=f(−x)和f(x −π)=f(x)的函数是( ) A.f(x)=sin x B.f(x)=sin 2xC.f(x)=cos xD.f(x)=cos 2x6. 设a >0,且a ≠1,则“函数y =log a x 在(0, +∞)上是减函数”是“函数y =(2−a)x 3在R 上是增函数”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7. 某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n ∈N ∗)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) A.4 B.5C.6D.78. 如图,设P 为正四面体A −BCD 表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )A.4个B.6个C.10个D.14个二、填空题(共6小题,每小题5分,满分30分)设复数1−i2+i =x +yi ,其中x ,y ∈R ,则x +y =________.若抛物线C:y 2=2px 的焦点在直线x +y −2=0上,则p =________;C 的准线方程为________.已知函数f(x)={x +3,x ≤01x+1,x >0,若f(x 0)=2,则实数x 0=________;函数f(x)的最大值为________.执行如图所示的程序框图,如果输入a =2,b =2,那么输出的a 值为________.若不等式组{x ≥1y ≥02x +y ≤6x +y ≤a表示的平面区域是一个四边形,则实数a 的取值范围是________.如图,在直角梯形ABCD 中,AB // CD ,AB ⊥BC ,AB =2,CD =1,BC =2,P 为线段AD (含端点)上一个动点.设AP →=xAD →,PB →⋅PC →=y ,记y =f(x),则f(1)=________; 函数f(x)的值域为________.三、解答题(共6小题,满分80分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc . (1)求A 的大小;(2)如果cos B =√63,b =2,求a 的值.某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.a ,b ,c 的值;(Ⅱ)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不是次品的概率;(Ⅲ)某人从这批灯泡中随机地购买了n(n ∈N ∗)个,如果这n 个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求n 的最小值.如图,在四棱锥S −ABCD 中,底面ABCD 是矩形,AD =2AB ,SA =SD ,SA ⊥AB ,N 是棱AD 的中点.(1)求证:AB // 平面SCD ;(2)求证:SN ⊥平面ABCD ;(3)在棱SC 上是否存在一点P ,使得平面PBD ⊥平面ABCD ?若存在,求出SPPC 的值;若不存在,说明理由.已知函数f(x)=ln x −ax ,其中a ∈R .(1)当a =2时,求函数f(x)的图象在点(1, f(1))处的切线方程;(2)如果对于任意x ∈(1, +∞),都有f(x)>−x +2,求a 的取值范围.已知椭圆W:x 2a 2+y 2b 2=1(a >b >0)的焦距为2,过右焦点和短轴一个端点的直线的斜率为−1,O 为坐标原点. (1)求椭圆W 的方程.(2)设斜率为k 的直线l 与W 相交于A ,B 两点,记△AOB 面积的最大值为S k ,证明:S 1=S 2.在数列{a n }中,a n =1n (n ∈N ∗).从数列{a n }中选出k(k ≥3)项并按原顺序组成的新数列记为{b n },并称{b n }为数列{a n }的k 项子列.例如数列12,13,15,18为{a n }的一个4项子列. (1)试写出数列{a n }的一个3项子列,并使其为等比数列;(2)如果{b n }为数列{a n }的一个5项子列,且{b n }为等差数列,证明:{b n }的公差d 满足−14<d <0;(3)如果{c n }为数列{a n }的一个6项子列,且{c n }为等比数列,证明:c 1+c 2+c 3+c 4+c 5+c 6≤6332.参考答案与试题解析2014年北京市西城区高考数学一模试卷(文科)一、选择题(共8小题,每小题5分,满分40分) 1.【答案】 C【考点】 补集及其运算 【解析】根据全集U 及A ,求出A 的补集即可. 【解答】解:∵ 全集U =(0, 2),集合A =(0, 1], ∴ ∁U A =(1, 2).故选:C .2.【答案】 B【考点】向量模长的计算 数量积的坐标表达式【解析】利用向量的坐标运算和模的计算公式即可得出. 【解答】解:∵ a →+b →=(2, −1)+(1, 3)=(3, 2), ∴ |a →+b →|=√32+22=√13. 故选:B . 3.【答案】 D【考点】 双曲线的特性 【解析】由已知条件推导出b =2a ,由此能求出此双曲线的离心率. 【解答】解:∵ 双曲线C:x 2a 2−y 2b 2=1(a >0, b >0)的虚轴长是实轴长的2倍, ∴ b =2a ,∴c =√a 2+b 2=√5a , ∴ e =ca =√5.故选:D . 4.【答案】 C【考点】由三视图求体积 【解析】由三视图知几何体是一个四棱柱,四棱柱的底面是一个直角梯形,梯形的下底是3,高是1,棱柱的高为2,求出梯形的上底,然后求出棱柱的体积,得到结果. 【解答】解:由三视图知几何体是一个四棱柱,四棱柱的底面是一个直角梯形,梯形的下底是3,斜边为√5, 高是1,梯形的上底为:3−√(√5)2−1=1,棱柱的高为2, ∴ 四棱柱的体积是:1+32×1×2=4,故选C . 5.【答案】 D【考点】抽象函数及其应用 函数的周期性【解析】由f(x)满足f(x)=f(−x),根据函数奇偶性的定义得f(x)为偶函数,将选项A ,B 排除,因为它们是奇函数,再由f(x)满足f(x −π)=f(x)推出函数的最小正周期是π,由三角函数的周期公式得选项D 符合. 【解答】解:对于任意x ∈R ,f(x)满足f(x)=f(−x), 则函数f(x)是偶函数,选项中,A ,B 显然是奇函数,C ,D 为偶函数, 又对于任意x ∈R ,f(x)满足f(x −π)=f(x), 则f(x +π)=f(x),即f(x)的最小正周期是π, 选项C 的最小正周期是2π, 选项D 的最小正周期是2π2=π,故同时满足条件的是选项D . 故选D . 6.【答案】 A【考点】必要条件、充分条件与充要条件的判断 【解析】根据函数单调性的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若函数y=logax在(0, +∞)上是减函数,则0<a<1,此时2−a>0,函数y=(2−a)x3在R上是增函数,成立.若y=(2−a)x3在R上是增函数,则2−a>0,即a<2,当1<a<2时,函数y=loga x在(0, +∞)上是增函数,∴函数y=logax在(0, +∞)上是减函数不成立,即“函数y=logax在(0, +∞)上是减函数”是“函数y=(2−a)x3在R上是增函数”的充分而不必要条件,故选:A.7.【答案】B【考点】等差数列的前n项和【解析】根据题意建立等差数列模型,利用等差数列的性质以及求和公式即可得到结论.【解答】解:设该设备第n年的营运费为a n万元,则数列{a n}是以2为首项,2为公差的等差数列,则a n=2n,则该设备使用了n年的营运费用总和为T n=n(2+2n)2=n2+n,设第n年的盈利总额为S n,则S n=11n−(n2+n)−9=−n2+10n−9=−(n−5)2+16,∴当n=5时,S n取得最大值16,故选:B.8.【答案】C【考点】计数原理的应用【解析】根据分类计数加法原理可得,由题意符合条件的点只有两类,一在棱的中点,二在面得中心,问题得以解决.【解答】解:符合条件的点P有两类:(1)6条棱的中点;(2)4个面的中心.共10个点.故集合M中有且只有2个元素,那么符合条件的点P有4+6=10.故选:C二、填空题(共6小题,每小题5分,满分30分)【答案】−2 5【考点】复数代数形式的乘除运算【解析】由复数代数形式的除法运算化简等式左边,然后利用复数相等的条件求得x,y的值,则x+y可求.【解答】解:∵1−i2+i =(1−i)(2−i)(2+i)(2−i)=1−3i5=15−35i,又1−i2+i =x+yi,∴15−35i=x+yi,∴x=15,y=−35,则x+y=15−35=−25.故答案为:−25.【答案】4,x=−2【考点】抛物线的求解【解析】直线x+y−2=0,令y=0,可得x=2,从而可求p,即可得出结论.【解答】解:直线x+y−2=0,令y=0,可得x=2,∵抛物线C:y2=2px的焦点在直线x+y−2=0上,∴p2=2,∴p=4,准线方程为x=−p2=−2.故答案为:4,x=−2.【答案】−1,3【考点】分段函数的应用【解析】利用分段函数,结合若f(x0)=2,可求实数x0;确定x≤0,x+3≤3;x>0,0<1x+1<1,可得函数f(x)的最大值.【解答】解:x≤0,x+3=2,∴x=−1;x>0,1x+1=2,x=−12(舍去);x≤0,x+3≤3;x>0,0<1x+1<1,∴函数f(x)的最大值为3.故答案为:−1,3.【答案】256【考点】程序框图【解析】根据程序框图,依次运行,直到满足条件即可得到结论.【解答】解:若a=2,则log3a=log32>4不成立,则a=22=4,若a=4,则log3a=log34>4不成立,则a=42=16,若a =16,则log 3a =log 316>4不成立,则a =162=256 若a =256,则log 3a =log 3256>4成立,输出a =256,故答案为:256 【答案】 (3, 5) 【考点】 简单线性规划 【解析】作出不等式组对应的平面区域,根据平面区域是四边形,即可确定a 的取值范围. 【解答】解:作出不等式组对应的平面区域,当直线x +y =a 经过点A(3, 0)时,对应的平面区域是三角形,此时a =3, 当经过点B 时,对应的平面区域是三角形,由{x =12x +y =6,解得{x =1y =4,即B(1, 4),此时a =1+4=5, ∴ 要使对应的平面区域是平行四边形,则3<a <5,故答案为:(3, 5)【答案】 1,[45, 4]【考点】函数解析式的求解及常用方法 平面向量数量积的运算 【解析】画出图形,建立直角坐标系,设出点P 的坐标,表示出AP →、AD →、PB →、PC →;求出PB →⋅PC →的值,即得y =f(x)的解析式;求出y 的最值,即得f(x)的值域.【解答】解:如图,建立直角坐标系; 设点P(a, b),则−2≤a ≤−1; ∴ AP →=(a +2, b),AD →=(1, 2); PB →=(−a, −b),PC →=(−a, 2−b);又∵ AP →=xAD →, ∴ {a +2=xb =2x,即{a =x −2b =2x ,(其中0≤x ≤1);∴ PB →⋅PC →=(−a, −b)⋅(−a, 2−b)=a 2−b(2−b)=(x −2)2−2x ⋅(2−2x) =5x 2−8x +4;即y =f(x)=5x 2−8x +4,其中0≤x ≤1; ∴ 当x =1时,y =f(1)=5−8+4=1; 当x =−−82×5=45时,y 取得最小值f(45)=45, 当x =0时,y 取得最大值f(0)=4; ∴ f(x)的值域是[45,4].故答案为:1,[45,4].三、解答题(共6小题,满分80分)【答案】 解:(1)∵ b 2+c 2=a 2+bc ,即b 2+c 2−a 2=bc , ∴ cos A =b 2+c 2−a 22bc =12,又∵ A ∈(0, π),∴ A =π3; (2)∵ cos B =√63,B ∈(0, π),∴ sin B =√1−cos 2B =√33, 由正弦定理asin A =bsin B ,得a =b sin A sin B=2×√32√33=3.【考点】 余弦定理正弦定理【解析】(1)利用余弦定理表示出cos A,将已知等式变形后代入求出cos A的值,即可确定出A的大小;(2)由cos B的值,利用同角三角函数间的基本关系求出sin B的值,再由sin A,b的值,利用正弦定理即可求出a的值.【解答】解:(1)∵b2+c2=a2+bc,即b2+c2−a2=bc,∴cos A=b2+c2−a22bc =12,又∵A∈(0, π),∴A=π3;(2)∵cos B=√63,B∈(0, π),∴sin B=√1−cos2B=√33,由正弦定理asin A =bsin B,得a=b sin Asin B=2×√32√33=3.【答案】(1)根据频率分布表中的数据,得a=30200=0.15,b=200−(10+30+70+60)=30,c=60200=0.3.(2)设“此人购买的灯泡恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有100个,次品有40个,所以此人购买的灯泡恰好不是次品的概率为P(A)=100+60200=45.(Ⅲ)由(Ⅱ)得这批灯泡中优等品、正品和次品的比例为60:100:40=3:5:2.所以按分层抽样法,购买灯泡数n=3k+5k+2k=10k(k∈N∗),所以n的最小值为10.【考点】分层抽样方法古典概型及其概率计算公式【解析】(Ⅰ)由频率分布表中的数据,求出a、b、c的值.(Ⅱ)根据频率分布表中的数据,求出此人购买的灯泡恰好不是次品的概率.(Ⅲ)由这批灯泡中优等品、正品和次品的比例数,再按分层抽样方法,求出购买灯泡数n的最小值.【解答】(1)根据频率分布表中的数据,得a=30200=0.15,b=200−(10+30+70+60)=30,c=60200=0.3.(2)设“此人购买的灯泡恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有100个,次品有40个,所以此人购买的灯泡恰好不是次品的概率为P(A)=100+60200=45.(Ⅲ)由(Ⅱ)得这批灯泡中优等品、正品和次品的比例为60:100:40=3:5:2.所以按分层抽样法,购买灯泡数n=3k+5k+2k=10k(k∈N∗),所以n的最小值为10.【答案】(1)证明:∵底面ABCD是矩形,∴AB // CD,又∵AB⊄平面SCD,CD⊂平面SCD,所以AB // 平面SCD.(2)证明:∵AB⊥SA,AB⊥AD,∴AB⊥平面SAD,又∵SN⊂平面SAD,∴AB⊥SN.∵SA=SD,且N为AD中点,∴SN⊥AD.∴SN⊥平面ABCD.(3)解:如图,连接BD交NC于点F,在平面SNC中过F作FP // SN交SC于点P,连接PB,PD.∵SN⊥平面ABCD,∴FP⊥平面ABCD.又∵FP⊂平面PBD,∴平面PBD⊥平面ABCD.在矩形ABCD中,∵ND // BC,∴NFFC=NDBC=12.在△SNC中,∵FP // SN,∴NFFC=SPPC=12.则在棱SC上存在点P,使得平面PBD⊥平面ABCD,此时SPPC=12.【考点】直线与平面垂直的判定直线与平面平行的判定【解析】(1)先判断出AB // CD,进而利用线面平行的判定定理得证.(2)先利用线面垂直的判定定理推断出AB⊥平面SAD,进而推断AB⊥SN.同时利用SA=SD,且N为AD中点,推断出SN⊥AD利用线面垂直判定定理得证.(3)连接BD交NC于点F,在平面SNC中过F作FP // SN交SC于点P,连接PB,PD.通过SN⊥平面ABCD,推断出FP⊥平面ABCD.利用面面垂直的性质推断平面PBD⊥平面ABCD.进而通过ND // BC,推断出NFFC=ND BC 并可求得值,最后通过FP // SN,得出NFFC=SPPC=12.【解答】(1)证明:∵底面ABCD是矩形,∴AB // CD,又∵AB⊄平面SCD,CD⊂平面SCD,所以AB // 平面SCD.(2)证明:∵AB⊥SA,AB⊥AD,∴AB⊥平面SAD,又∵SN⊂平面SAD,∴AB⊥SN.∵SA=SD,且N为AD中点,∴SN⊥AD.∴SN⊥平面ABCD.(3)解:如图,连接BD交NC于点F,在平面SNC中过F作FP // SN交SC于点P,连接PB,PD.∵SN⊥平面ABCD,∴FP⊥平面ABCD.又∵FP⊂平面PBD,∴平面PBD⊥平面ABCD.在矩形ABCD中,∵ND // BC,∴NFFC =NDBC=12.在△SNC中,∵FP // SN,∴NFFC =SPPC=12.则在棱SC上存在点P,使得平面PBD⊥平面ABCD,此时SPPC =12.【答案】解:(1)由f(x)=ln x−2x,∴f′(x)=1x +2x2,∴k=f′(1)=3,又∵f(1)=−2,∴函数f(x)的图象在点(1, f(1))处的切线方程为3x−y−5=0;(2)由f(x)>−x+2,得ln x−ax>−x+2,即a<x ln x+x2−2x,设函数g(x)=x ln x+x2−2x,则g′(x)=ln x+2x−1,∵x∈(1, +∞),∴ln x>0,2x−1>0,∴当x∈(1, +∞)时,g′(x)=ln x+2x−1>0,∴函数g(x)在x∈(1, +∞)上单调递增,∴当x∈(1, +∞)时,g(x)>g(1)=−1,∵对于任意x∈(1, +∞),都有f(x)>−x+2成立,∴对于任意x∈(1, +∞),都有a<g(x)成立,∴a≤−1.【考点】利用导数研究函数的单调性利用导数研究曲线上某点切线方程【解析】(1)求在某点出的切线方程,关键是求出斜率k,利用导数就可以斜率,再利用点斜式求切线方程.(2)设g(x)=x ln x+x2−2x,则g(x)>a,只要求出g(x)的最小值就可以.【解答】解:(1)由f(x)=ln x−2x,∴f′(x)=1x+2x2,∴k=f′(1)=3,又∵f(1)=−2,∴函数f(x)的图象在点(1, f(1))处的切线方程为3x−y−5=0;(2)由f(x)>−x+2,得ln x−ax>−x+2,即a<x ln x+x2−2x,设函数g(x)=x ln x+x2−2x,则g′(x)=ln x+2x−1,∵x∈(1, +∞),∴ln x>0,2x−1>0,∴当x∈(1, +∞)时,g′(x)=ln x+2x−1>0,∴函数g(x)在x∈(1, +∞)上单调递增,∴当x∈(1, +∞)时,g(x)>g(1)=−1,∵对于任意x∈(1, +∞),都有f(x)>−x+2成立,∴对于任意x∈(1, +∞),都有a<g(x)成立,∴a≤−1.【答案】(1)解:由题意得椭圆W的半焦距c=1,右焦点F(1, 0),上顶点M(0, b),∴直线MF的斜率为k MF=b−00−1=−1,解得b=1,由a2=b2+c2,得a2=2,∴椭圆W的方程为x22+y2=1.(2)证明:设直线l的方程为y=kx+m,其中k=1或2,A(x1, y1),B(x2, y2).由方程组{y=kx+mx22+y2=1得(1+2k2)x2+4kmx+2m2−2=0,∴△=16k2−8m2+8>0,(∗)由韦达定理,得x1+x2=−4km1+2k2,x1x2=2m2−21+2k2.∴|AB|=√1+k2√(−4km1+2k2)2−4×2m2−21+2k2=√1+k21+2k2√8(2k2−m2+1).∵原点O到直线y=kx+m的距离d=√1+k2,∴S△AOB=12|AB|⋅d=√21+2k2√m2(2k2−m2+1)≤√21+2k2×m2+2k2−m2+12=√22,当且仅当m2=2k2−m2+1,即2m2=2k2+1时取等号.与k的取值无关系,因此S1=S2.【考点】椭圆的定义【解析】(1)利用椭圆的标准方程及其性质、斜率计算公式即可得出;(2)设直线l的方程为y=kx+m,其中k=1或2,A(x1, y1),B(x2, y2).把直线l的方程与椭圆的方程联立可得关于x的一元二次方程及根与系数的关系,进而得到弦长|AB|,利用点到直线的距离公式可得原点到直线l的距离,利用三角形的面积计算公式和基本不等式即可得出.【解答】(1)解:由题意得椭圆W的半焦距c=1,右焦点F(1, 0),上顶点M(0, b),∴直线MF的斜率为k MF=b−00−1=−1,解得b=1,由a2=b2+c2,得a2=2,∴椭圆W的方程为x22+y2=1.(2)证明:设直线l的方程为y=kx+m,其中k=1或2,A(x1, y1),B(x2, y2).由方程组{y=kx+mx22+y2=1得(1+2k2)x2+4kmx+2m2−2=0,∴△=16k2−8m2+8>0,(∗)由韦达定理,得x1+x2=−4km1+2k2,x1x2=2m2−21+2k2.∴|AB|=√1+k2√(−4km1+2k2)2−4×2m2−21+2k2=√1+k21+2k2√8(2k2−m2+1).∵原点O到直线y=kx+m的距离d=√1+k2,∴S△AOB=12|AB|⋅d=√21+2k2√m2(2k2−m2+1)≤√21+2k2×m2+2k2−m2+12=√22,当且仅当m2=2k2−m2+1,即2m2=2k2+1时取等号.与k的取值无关系,因此S1=S2.【答案】解:(1)解:答案不唯一.如3项子列:12,14,18.…(2)证明:由题意,知1≥b1>b2>b3>b4>b5>0,所以d=b2−b1<0.…因为b5=b1+4d,b1≤1,b5>0,所以4d=b5−b1>0−1=−1,解得d>−14.所以−14<d<0.…(3)证明:由题意,设{c n}的公比为q,则c1+c2+c3+c4+c5+c6=c1(1+q+q2+q3+q4+q5).因为{c n}为{a n}的一个6项子列,所以q为正有理数,且q<1,c1=1a≤1(a∈N∗).…设q=KL(K,L∈N∗,且K,L互质,L≥2).当K=1时,因为q=1L≤12,所以c1+c2+c3+c4+c5+c6=c1(1+q+q2+q3+q4+q5)≤1+12+(12)2+(12)3+(12)4+(12)5,所以c1+c2+c3+c4+c5+c6≤6332.…当K≠1时,因为c6=c1q5=1a×K5L5是{a n}中的项,且K,L互质,所以a=K5×M(M∈N∗),所以c1+c2+c3+c4+c5+c6=c1(1+q+q2+q3+q4+q5)=1M(1K5+1K4L+1K3L2+1K2L3+1KL4+1L5).因为L≥2,K,M∈N∗,所以c1+c2+c3+c4+c5+c6≤1+12+(12)2+(12)3+(12)4+(12)5=6332.综上,c 1+c 2+c 3+c 4+c 5+c 6≤6332.…【考点】数列与不等式的综合 数列的应用 等比关系的确定 【解析】(1)由a n =1n (n ∈N ∗),及等比数列的定义写出一个即可;(2)由a n =1n (n ∈N ∗)得数列{a n }为递减数列,故有题意可得{b n }为递减等差数列,可求得d =b 2−b 1<0,又 b 5=b 1+4d ,b 1≤1,b 5>0,即可证明结论;(3)利用等比数列的定义得 c 1+c 2+c 3+c 4+c 5+c 6=c 1(1+q +q 2+q 3+q 4+q 5),设c 1=1a ≤1(a ∈N ∗),q =KL (K ,L ∈N ∗,分类讨论再结合不等式进行放缩得出结论.【解答】解:(1)解:答案不唯一.如3项子列:12,14,18.…(2)证明:由题意,知1≥b 1>b 2>b 3>b 4>b 5>0, 所以 d =b 2−b 1<0.…因为 b 5=b 1+4d ,b 1≤1,b 5>0, 所以 4d =b 5−b 1>0−1=−1, 解得 d >−14.所以−14<d <0.…(3)证明:由题意,设{c n }的公比为q ,则 c 1+c 2+c 3+c 4+c 5+c 6=c 1(1+q +q 2+q 3+q 4+q 5). 因为{c n }为{a n }的一个6项子列,所以 q 为正有理数,且q <1,c 1=1a ≤1(a ∈N ∗).… 设 q =KL (K ,L ∈N ∗,且K ,L 互质,L ≥2).当K =1时, 因为 q =1L ≤12,所以 c 1+c 2+c 3+c 4+c 5+c 6=c 1(1+q +q 2+q 3+q 4+q 5)≤1+12+(12)2+(12)3+(12)4+(12)5, 所以 c 1+c 2+c 3+c 4+c 5+c 6≤6332.… 当K ≠1时,因为 c 6=c 1q 5=1a ×K 5L 5是{a n }中的项,且K ,L 互质,所以 a =K 5×M(M ∈N ∗),所以 c 1+c 2+c 3+c 4+c 5+c 6=c 1(1+q +q 2+q 3+q 4+q 5)=1M (1K 5+1K 4L +1K 3L 2+1K 2L 3+1KL 4+1L 5). 因为 L ≥2,K ,M ∈N ∗,所以 c 1+c 2+c 3+c 4+c 5+c 6≤1+12+(12)2+(12)3+(12)4+(12)5=6332. 综上,c 1+c 2+c 3+c 4+c 5+c 6≤6332.…。
(完整word版)2014年高考全国卷1文综试题及答案(word版)

4、推测外国专家在图示区域铁路选线时考虑的主导因素是A 、河流B 、聚落C 耕地D 地形太阳能光热电站(图 1)通过数以十万计的反光版聚焦太阳能,给高塔顶端的锅炉加热, 产生蒸汽,驱动发电机发电。
据此完成 1-3 题。
1. 我国下列地区中,资源条件最适宜建太阳能光热电站的是:A. 柴达木盆地B. 黄土高原C. 山东半岛D. 东南丘陵 2. 太阳能光热电站可能会:A. 提升地表温度B. 干扰飞机电子导航C. 误伤途径飞鸟D. 提高作物产量3. 若在北回归线上建一太阳能光热电站,其高塔正午影长于塔高的比值为P ,则A. 春、秋分日 P=0B. 夏至日 P>0C. 全年日 P<1D. 冬至日 P>120 世纪 50 年代,在外国专家的指导下,我国修建了兰新铁路。
兰新铁路在新疆吐鲁番 附近的线路如图 2 所示。
读图 2,完成 4-6 题。
6、50 多年来,兰新铁路并没有改变该区域城镇的分布,是因为该区域的城镇分布受控于 A 、地形分布B 、绿洲分布C 、河流分布D 沙漠分布人类活动导致大气中含氮化合物浓度增加,产生沉降,是新出现的令人担忧的全球变化 问题。
一科研小组选择受人类干扰较小的某地,实验模拟大气氮沉降初期对植被的影响。
实 验地植被以灌木植物为主,伴生多年生草本植物。
表 1 数据为实验地以 2009 年为基数, 2010-2013 年实验中植被的变化值(测量时间为每年 9 月 30 日)。
据此完成 7-9 题。
7、实验期间植被变化表现为①生物量提高 ②生物量降低 ③植株密度改变 ④植被分布改变 A 、①③ B 、②③ C 、①④ D 、②④8、实验期间大气氮沉降导致灌木、草本两类植物出现此消彼长竞争的是A 植株数量B 、总生物量C 、地上生物量D 、地下生物量9.根据实验结果推测,随着大气氮沉降的持续,植被未来变化趋势是 A .灌木植物和草本植物繁茂 B.灌木植物和草本植物萎缩 C .灌木植物茂盛、草本植物萎缩D. 灌木植物萎缩、草本植物茂盛图 3 显示某国移民人数及其占总人口比例的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2014西城一模文综(地理)
2014.4
选择题:(每小题4分,共计44分)
图1是“纳木布沙海”的景观照片,它位于非州西南部大西洋沿岸,是世界上最古老最干燥的
沿海沙漠之一,2013年6月被列为世界自然遗产名录。读图,回答第1题。
1.该景观
A.具有鲜明季节特点
B.雨过天晴观赏最佳
C.所在地区经济发达
D.具有较高的科学价值
读图2和图3,回答2-4题。
2.图中
A.黄河的干流由北向南流 B.降水分布特点主要受夏季风影响
C.南部植被为常绿阔叶林 D.贺兰山为我国地势二、三阶梯分界线
3.宁夏
A.干旱危害最严重的地区降水量也最少 B. 黄河沿岸引水灌溉,干旱危害程度低
C.中东部的草原区对干旱的承受能力较强 D. 中西部第一产业为主,抵御干旱能力较强
4.为促进区域可持续发展,宁夏应采取的措施是
A.引黄灌区增加水稻种植,提高粮食产量 B. 中部大规模植树造林,治理土地荒漠化
C.山区恢复天然植被,增强水源涵养功能 D. 产业结构升级,大力发展二、三产业
5.在图4“地理要素关联示意图”中,①②③④依次是
A.大气 下垫面 太阳辐射 人类活动
B.太阳辐射 大气 下垫面 人类活动
C.人类活动 太阳辐射 下垫面 大气
D.下垫面 人类活动 大气 太阳辐射
(图4)
④
气候
③
①
②
2
2013年11月7日“雪龙号”有上海出发前往南极中山站,12月19日开始我国首次环南极航
行。2014年2月25日成功返回中山站。读图5,回答第6-8题。
6.雪龙号
A.离开上海时正值长江丰水期
B.在太平洋海域航行始终逆风
C.到弗里曼特尔正值当地少雨时节
D.抵达中山站前,要穿过极地东风带
7.环南极航行
A.中山站到乌斯怀亚,地球自转速度越来越快
B.乌斯怀亚到长城站,正午桅杆影子越来越短
C.长城站到中山站,船由西半球进入东半球
D.一路始终保持向西行驶,路线成顺时针方向
8.与弗里曼特尔相比,乌斯怀亚作为南极科考
补给基地的优势是
A.地热资源丰富 B.港口设施完善
C.农业基础雄厚 D.距南极大陆近
读图6,回答第9、10题。
9.该图为某人文要素变化示意图,若曲线代表
A.出境旅游人数 ①阶段客源地以发达国家为主
B.城市化的进程 ②阶段乡村人口比重迅速上升
C.第三产业发展 ②阶段经济发展水平最高
D.人口数量变化 ③阶段达到人口合理容量
10.该图为我国耕地用途转变模型
A.①阶段由于人口增加,耕地压力增大
B.②阶段变化是受自然灾害影响的结果
C.②阶段城市快速发展,占用耕地现象严重
D.③阶段推行生态退耕政策,耕地急剧减少
图7为我国研发的“渔信E通”系统示意图。读图,回答第11题。
GPS卫星
省渔政指挥中心
CDMA 1X通信系统
近海渔
船
外海渔船
短波岸台
GPSONE定位手机
沿岸船舶
通信卫星
卫星地面站
海区和农业部渔业指挥中心
GIS单机用户
3
11.该系统可为渔民和渔政管理提供的服务包括 图7
① 确定渔船位置 ② 对在台风路径内船舶发出警告 ③ 海难报警 ④ 规划渔船航行路
线 ⑤ 调度邻近船只组织救援 ⑥ 计算海水污染面积
A.①②③⑤ B.①③④⑤ C.②③⑤⑥ D.③④⑤⑥
第二部分(非选择题 共56分)
36.(36分)读图15,回答下列问题。
研究显示,秦岭以南黄土沉积层与黄土高原一样都是大气粉尘堆积物,但厚度较小。
(1)分析秦岭两侧地形区黄土沉积层厚度北厚南薄的自然原因。(6分)
东风汽车公司1969年始建于十堰,2003年部分迁至武汉,随着十堰国家级经济技术开
发区,高速公路的建设,2012年东风汽车商用车生产重新落户十堰。
(2)简述2012年东风汽车公司重新落户十堰的原因。(10分)
襄阳正在打造特色生态农业区,发展优质稻米、名特水产品、越冬蔬菜等农产品。
(3)说明襄阳发展特色生态农业的自然优势。(10分)
4
(4)概述实现汉江流域综合开发应采取的措施。(10分)
40.铁路被称为印度国内交通的生命线。
2006年,印度铁路总长63327千米,完成客运量62.19亿人次,货运量7.28亿吨。2011
年印度出台政策允许外资参与铁路建设。印度铁路干线分布如图17所示,读图,回答第(2)
题。
(2)概括印度铁路干线的分布特点,简述有利于铁路发展的条件。(10分)
41.“万里茶路”开创于晋商在贸易领域的全盛时期。晋商的运茶路线如图18所示。起点在福
建武夷山的下梅村,茶叶先经过水运,到达湖北襄阳,再依靠马车运至张家口,最后一直向
北依靠骆驼运输至恰克图与俄国人进行交易。读图,回答第(2)题。
5
(2)说出晋商运茶叶过程中可能面对的主要自然威胁,任选其一说明发生的路段及原因。
(10分)
参考答案:
DBCCB CCDAC A
图18
40.
41.