体育比赛中的数学问题

合集下载

小学四年级奥数 体育比赛中的数学问题

小学四年级奥数 体育比赛中的数学问题

体育比赛中的数学问题【例2】⑴(★★)赛制介绍淘汰赛:每两个队用一场比赛定胜负,胜者之间再按前述规则比赛定胜负单循环赛:每两个队之间都要比赛一场,无主客场之分。

有n 个队参加的单循环赛中,每个队要参加的比赛场数为(n-1)场双循环赛:每两个队之间都要比赛两场,有主客场之分。

五个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一共要进行多少场比赛?有n 个队参加的双循环赛中,每个队要参加的比赛场数为2(n-1)场一、比赛赛制【例1】⑴(★★) ⑵(★★)几个学校举行篮球比赛,每两个学校都要赛一场,共赛了28 场,那么有几个学校参加了比赛?8 只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?⑵(★★)20 名羽毛球运动员参加单打比赛,两两配对进行淘汰赛,那么决出冠军一共要比赛多少场?【例3】(★★★) 【例4】参加世界杯足球赛的国家共有32 个(称32 强),每四个国家编入一个小组,⑴(★★★) 在第一轮单循环赛中,每个国家都必须而且只能分别和本小组的其他各国进A、B、C、D、E 五位同学一起比赛象棋,每两人都要比赛一盘。

到行一场比赛,赛出16 强后,进入淘汰赛,每两个国家用一场比赛定胜负,产生8 强、4 强、2 强,最后决出冠军、亚军、第三名,第四名。

至此,本现在为止,A 已经赛4 盘,B 赛3 盘,C 赛2 盘,D 赛1 盘。

问:此时E 同学赛了几盘?届世界杯的所有比赛结束。

根据以上信息,算一算,世界杯的足球赛全程共有几场?1⑵(★★★) 二、比赛得分网校的四位学员进行乒乓球比赛,每两个人只能比赛一次,他们的编【例5】(★★★)号分别为1,2,3,4,到现在为止,编号为1,2,3 的学员已参加比班上四名同学进行跳棋比赛,每两名同学都要赛一局。

每局胜者得2 分,平赛的场数正好分别等于他们的编号。

编号为 4 的运动员已经赛了几者各得1 分,负者得0 分。

已知甲、乙、丙三名同学得分分别为3 分、4 分、场?编号为1,2,3,4,5,6 的六个运动员进行乒乓球单循环赛。

体育比赛中的数学问题

体育比赛中的数学问题

体育比赛中的数学体育比赛中的数学是组合问题的重要组成部分,主要结合逻辑推理考察孩子的分析能力和思维的灵活性,走美杯每年都会考到本知识点,这个内容也是2015年四年级学而思杯很可能考到的内容,家长可以让孩子看这个资料适当预习下,咱们这讲内容会在春季下半册书上学习。

一、对单循环赛、淘汰赛的认识在体育比赛中,每两个人之间都要赛一场并且只赛一场,称这样的比赛为单循环赛。

例如:有n 个队参加比赛,其中每个队都要和其他队各赛一场,即每个队都赛了(n- 1) 场。

每一场比赛都被算在两个(n- 1) 中,也就是说在n 个(n- 1) 每一场比赛都计算了两次。

那么一共进行了n ⨯(n- 1) ÷ 2 场比赛。

练习1 (2008 年第四届“IMC 国际数学邀请赛”(新加坡)初赛)学校进行乒乓球选拔赛,每个选手都要和其它所有选手各赛一场,一共进行了36 场比赛,有()人参加了选拔赛。

A、8B、9C、10分析:36 ⨯ 2 =72 (场)。

如果有n 个选手,那么n ⨯(n- 1) =72。

两个连续的自然数乘积为72,n =9 。

在体育比赛中,规定每一场赛事中败者淘汰胜者晋级,称这类比赛为淘汰赛。

在淘汰赛中,每一轮淘汰掉一半选手,直至产生最后的冠军。

n 个队进行淘汰赛,每进行一场比赛就要淘汰一个队,最后只剩下冠军,也就是说其它选手都被淘汰掉了,决出冠军需要进行(n- 1) 场比赛。

练习 2 16 个人进行淘汰赛,(1)决出冠军需要进行几场比赛?冠军一共参加了几场比赛?(2)要决出前三名需要进行几场比赛?分析:(1)第16 ÷2 =8 (场),8 名胜利者晋级!第二轮:8 ÷2 =4 (场),4 名胜利者晋级!第三轮:4 ÷2 =2 (场),2 名胜利者晋级!第四轮:2 ÷2 = 1 (场),决出冠军!要决出冠军共需要进行8 +4 +2 + 1 = 15 (场)。

在每一轮比赛中,冠军都参加了其中一场比赛,冠军一共参加了1 ⨯ 4 =4 场比赛。

体育比赛中的数学

体育比赛中的数学

体育比赛中的数学一、基础知识1.淘汰赛:n 个队进行淘汰赛,第一至少要打n-1场比赛,每场比赛淘汰一名选手。

2.单循环赛:n支队伍进行单循环赛,将进行n(n-1)÷2场,其中每支队都进行(n-1)场。

3. 体育比赛中的总分(记为A)问题三分制:胜、平、负按3、1、0积分制度,其中2m≤A≤3m,每多出现一场平局,总分就会减少1分;二分制∶胜、平、负按 2、1、0积分制度,其中A=2m,不管比赛情况如何、最后的总分总是不变的。

4.一个小组内:胜的总场数等于负的总场数;平的总场数一定是偶数。

二、例题精讲【例1】16支羽毛球队伍进行淘汰赛,最终决出冠、亚、季军各1队。

那么这次淘汰赛共进行多少场比赛?【例2】四年级五个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一总共要进行多少场比赛?(如果参赛队每两队之间都要赛一场、这种比赛称为单循环赛)【巩固】学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有多少人参加了选拔赛?【例3】参加世界杯足球赛的国家共有32个(称32强),每四个国家编入一个小组,在第一轮单循环赛中,每个国家都必须而且只能分别和本小组的其他各国进行一场比赛,赛出16强后,进入淘汰赛,每两个国家用一场比赛定胜负,产生8强、4强、2强,最后决出冠军、亚军、第三名,第四名.至此,本届世界杯的所有比赛结束.根据以上信息,算一算,世界杯的足球赛全程共有几场?【例4】A、B、C、D、E、F六人赛棋,采用单循环制,现在知道:A、B、C、D、E五人已经分别赛过5、4、3、2、1盘.问:这时F已赛过了多少盘?【巩固】有8个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?【例5】六个人进行象棋单循环赛,规定胜者得2分,负者得0分,和棋双方各得1分,比赛结束后统计发现,六个人的得分和加起来一定是多少?已知冠军得7分,负了一场,问冠军胜了多少场?【巩固】东亚男足邀请赛共有四支足球队进行单循环赛,即每两队之间都要进行一场比赛,每场比赛胜者得3分,负者得0分,平局两队各得1分。

小学奥数教程:体育比赛问题_全国通用(含答案)

小学奥数教程:体育比赛问题_全国通用(含答案)

体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

【例 1】 三年级四个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一共要进行多少场比赛? (如果参赛队每两队之间都要赛一场,这种比赛称为单循环赛)【考点】体育比赛 【难度】1星 【题型】解答【解析】 (法一)题意要求每两个点之间都连一条线段.先考虑点A (如图),它与B 、C 、D 三点能且只能连接三条线段AB 、AC 、AD ;同样,从点B 也可以连出三条线段BA 、BC 、BD ;从点C 可以连出三条线段CA 、CB 、CD ;从点D 可以连出三条线段DA 、DB ,DC .因此,从一个点可以连三条线段.从每个点都连出三条线段,共有四个点.3412⨯=(条)注意到线段AB 既是由A 点连出的,也是由B 点连出的,并且每一条线段都是这样(如图),所以,线段的总数应为:6(条).(法二)从点A 引出三条线.AB 、AC 、AD ,为避免重复计数,从B 点引出的线段只计BC 、BD 两条,由C 点引出的只有CD 一条.因此,线段的总数为3216++=(条).通过例题的讲解,对于这个问题,我们就可以很轻松地解决了.一共有四个队,每个队都要比赛413-=场,一共有比赛3426⨯÷=场.【点拨】我们可以将上面的问题如下表述:下面的四个点,每两个点之间都连一条线段,那么,从一个点可以连出几条线段?一共可以连多少条线段?【答案】6场【巩固】 市里举行足球联赛,有5个区参加比赛,每个区出2个代表队.每个队都要与其他队赛一场,这些比赛分别在5个区的体育场进行,那么平均每个体育场都要举行多少场比赛?【考点】体育比赛 【难度】1星 【题型】解答【解析】 一共有5210⨯=(个)队参加比赛,共赛10(101)245⨯-÷=(场),平均每个体育场都要举行4559÷=(场)比赛.【答案】9场【巩固】 二年级六个班进行拔河单循环赛,每个班要进行几场比赛?一共要进行几场比赛?【考点】体育比赛 【难度】1星 【题型】解答【解析】 每个班要进行5场,一共要进行65215⨯÷=(场)比赛.【答案】每个班要进行5场,一共要进行15场比赛例题精讲 知识点拨体育比赛问题【巩固】20名羽毛球运动员参加单打比赛,两两配对进行单单循环赛,那么冠军一共要比赛多少场?【考点】体育比赛【难度】1星【题型】解答【解析】假设20名羽毛球运动员中的甲是冠军,那么甲与其他19名运动员都赛过了,也就是一共赛了19场.【答案】一共赛了19场【例2】8只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?【考点】体育比赛【难度】2星【题型】解答【解析】方法一:8进4进行了4场,4进2进行2场,最后决赛是1场,因此共进行了4217++=(场)比赛.方法二:每进行一场比赛就淘汰一支球队,最后只剩下冠军了,也就是说淘汰了7只球队,因此进行了7场比赛.【答案】7场比赛【例3】学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有人参加了选拔赛.A.8B.9C.10【考点】体育比赛【难度】2星【题型】选择【关键词】2008,第四届,IMC国际数学邀请赛,新加坡,初赛【解析】三个人比赛,可以比赛3223⨯÷=场;如果有五个⨯÷=场;如果四个人比赛,可以比赛4326人比赛,那么可以比赛54210⨯÷=场,所以⨯÷=场;如果有9个人比赛,那么可以比赛98236答案是B.【答案】答案是B【巩固】朝阳区的几个学校举行篮球比赛,每两个学校都要赛一场,共赛了28场,那么有几个学校参加了比赛?【考点】体育比赛【难度】2星【题型】解答【解析】假设有n个学校参加比赛,那么就有(1)2⨯-÷场比赛,现在已知共赛了28场,那么8n nn=,也就是有8个学校参加了比赛.【答案】8个学校【例4】有8个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?【考点】体育比赛【难度】2星【题型】解答【解析】8个选手进行乒乓球单循环赛,每个选手都要参加7场比赛,而且每人获胜局数各不相同,所以每人获胜的局数分别为0~7局,那么冠军胜了7局.【答案】冠军胜了7局【例5】A、B、C、D、E五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,A已经赛4盘,B赛3盘,C赛2盘,D赛1盘.问:此时E同学赛了几盘?【考点】体育比赛【难度】2星【题型】解答【解析】画5个点表示五位同学,两点之间连一条线段表示赛一场,建议教师让学生动手按要求画一画.A根据题意,A已经赛4盘,说明A与B、C、D、E各赛一盘,A应与B、C、D、E点相连.D 赛1盘,是与A点相连的.B赛3盘,是与A、C、E点相连的.C赛2盘,是与A、B点相连的.从图上E点的连线条数可知,E同学赛了2盘.【答案】E同学赛了2盘【巩固】八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了4场,北京队赛了3场,江苏队赛了2场,山东队赛了1场.那么广东队赛了几场?【考点】体育比赛【难度】2星【题型】解答【解析】八一队赛了4场,说明八一队和其它四队都赛过了.山东队赛了1场,说明只和八一队赛过.北京队赛了3场,说明与八一队、江苏队、广东队赛过.江苏队赛了2场,说明与八一队、北京队赛过.由此可知,广东队只和八一队、北京队赛过,赛了2场.【答案】赛了2场【巩固】A、B、C、D、E、F六人赛棋,采用单循环制。

第二讲复习总结-体育比赛中的数学问题

第二讲复习总结-体育比赛中的数学问题

写在前面的话:对于回去对课堂内容的整理,建议引导孩子自己完成,并用两种颜色的笔进行整理。

这里的提纲相当于脑图,整理的部分相当于二次笔记第二讲体育比赛中的数学问题【前言】体育比赛中的数学问题在奥数的学习过程中主要考察场次和分数的问题,杯赛考试中一般以中等难度的题目出现。

【提纲】(2+2+2)两种赛制,两种工具,两种计分方法一、赛制1.淘汰赛(每场淘汰一个队伍)场次=队伍数-12.单循环(两两比赛一次)场次=(队伍数-1)×队伍数÷2二、工具1.点线图(与场次相关)2.列表法(与分数相关)三、积分制2-1-0或者3-1-0规律:胜场数=负场数;平场数为偶数(多应用于列表法)注意:涉及到积分制的题目比较难,一般情况下先求场次,再求总分,各个击破【整理】淘汰赛:32个队伍进行淘汰赛,决出冠军需要多少场?分析:①每场淘汰一个队伍,决出冠军需要淘汰31个队伍,因此,场次=队伍数-1=32-1=31场②每一轮淘汰一半的队伍,第一轮过后剩余32÷2=16个队伍,第二轮过后剩余16÷2=8 个队伍,每一轮都要在上一轮的基础上除以2,决出冠军最后只剩一个队伍32÷2÷2÷2÷2÷2=1除以2的次数就等于轮数,故需要5轮。

15个人进行淘汰赛,决出冠军需要多少场比赛?分析:每场淘汰一个队伍,决出冠军需要淘汰14个队伍,因此,场次=队伍数-1=15-1=14场单循环赛:4支队伍进行单循环赛(每两个队伍之间都要比赛一次),完成比赛,共进行了多少场?分析:①相当于握手问题:3+2+1=6场②每个队伍参加3场比赛,共四个队伍,参加3×4=12场,但是每次比赛在这个过程中都被重复计算一次,故12÷2=6场总结:场次=(队伍数-1)×队伍数÷2=(4-1)×4÷2=6场世界杯足球赛共有32个国家参加,比赛分为两个阶段:第一阶段,每四个国家分为一组,共八个小组,每个小组内进行单循环比赛,小组前两名晋级下一轮比赛,第二个阶段,晋级的16个国家的队伍进行淘汰赛,最后决出冠、亚、季军,问:世界杯共进行多少场比赛?分析:第一阶段,每个小组进行单循环,比赛场次=(队伍数-1)×队伍数÷2=(4-1)×4÷2=6场,8个小组共6×8场。

第2课、体育比赛中的数学问题

第2课、体育比赛中的数学问题

第2课、体育比赛中的数学问题一、赛制问题1、淘汰赛:n支队伍淘汰赛选出冠军,共需比赛(n-1)场原因:n支队选出一支冠军,相当于淘汰(n-1)支队,每场淘汰赛淘汰1支队,所以共需(n-1)场Ps:对于两两捉对厮杀的比赛(参赛队伍为2支,4支,8支,16支,……)选出冠军需要:(n-1)场选出亚军需要:(n-1)场选出季军需要:(n-1+1)场选出殿军需要:(n-1+1)场2、循环赛①单循环:n支队,每支队比赛(n-1)场。

原因:除不与自己比赛外,与其他对手各比一场。

n支队,一共需要比赛1+2+3+…+(n-1)场比赛。

原因:打枪法数量:4+3+2+1=10Ps:①n支队,每支队比(n-1)场,所以一共比赛:n×(n-1)÷2 注意去重②1+2+3+…+(n-1)=(1+n-1)×(n-1)÷2= n×(n-1)÷2两种方法结果一致。

②双循环:所有情况为:单循环×23、混合赛制:(仅了解)包含淘汰赛和循环赛,分段进行,如足球世界杯。

二、积分制1、2,1,0积分制:胜者得2分,打平各得1分,负者得0分特点:每场比赛,打平与分出胜负,总得分一样,都是2分例、5支球队进行单循环比赛,采用210积分制a.请问比赛都结束后,5队总积分是多少?b.前4支队分别得2分,4分,8分,4分,最后一支队积分是多少?解:①(1+2+3+4)×2=20(分)②20-2-4-8-4=2(分)2、3,1,0积分制:胜者得3分,打平各得1分,负者得0分特点:每场比赛,打平比分出胜负少得1分,打平总分2分,分出胜负总分3分例、5支球队进行单循环比赛,采用310积分制a.请问比赛都结束后,5队总积分可能是多少?b.总得分为26分,打平了多少场?解:①最少(1+2+3+4)×2=20(分)最多(1+2+3+4)×3=30(分)总得分为20~30分②假设全分出胜负:(1+2+3+4)×3=30(分)假设比实际多:30-26=4(分)用打平替换分出胜负:4÷(3-2)=4(场)。

体育比赛中的数学问题

体育比赛中的数学问题

体育比赛中的数学问题练习题一.夯实基础1.东东、西西、北北三人进行乒乓球单循环赛,结果3人获胜的场数各不相同.问第一名胜了几场?2.四个人进行象棋单循环赛,规定胜者得2分,负者得0分,和棋双方各得1分,比赛结束后统计发现,四个人的得分和加起来一定是多少?3.8只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?4.振华小学组织了一次投篮比赛,规定投进一球得3分,投不进倒扣1分.小亮投了5个球,投进了3个.那么,他应该得多少分?5.八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了4场,北京队赛了3场,江苏队赛了2场,山东队赛了1场.那么广东队赛了几场?二.拓展提高:6.班里举行投篮比赛,规定投中一个球得5分,投不进扣2分.小立一共投了6个球,得了16分,那么小立投中了几个球?7.52 5学而思要举行足球联赛,有 个校区参加比赛,每个区出 个代表队.每个队都要与其他队赛一场,这些比赛分别在 个校区的体育场进行,那么平均每个体育场都要举行多少场比赛?8.学校组织了一次投篮比赛,规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没有投进,那么大明共投了几个球?9.编号为1,2,3,4,5,6的六个运动员进行乒乓球单循环赛。

到现在为止,编号为1,2,3,4,5的运动员已参加比赛的场数正好分别等于他们的编号数。

编号为6的运动员已经赛了几场?三.杯赛演练:10.(“IMC国际数学邀请赛”(新加坡)初赛)学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有多少人参加了选拔赛?11.(走进美妙数学花园少年数学邀请赛)三人打乒乓球,每场两人,输者退下换另一人,这样继续下去,在甲打了9场,乙打了6场时,丙最多打几场?12.(“迎春杯”决赛试题)四个足球队进行单循环比赛,每两队都要赛一场,如果踢平,每队各得l分,否则胜队得3分,负队得0分,比赛结果,各队的总得分恰好是四个连续的自然数,问:输给第一名的队的总分是多少?(要求说明理由)答案:1.解析:三人进行单循环赛,即每两人都要赛一场,共进行3×2÷2=3(场)比赛.每场比赛都有一人获胜,由三人获胜的场数各不相同,所以三人获胜的场数分别为2、1、0.显然,第一名是胜了2场.2.解析:四个人循环比赛总共比赛4×3÷2=6(场),每场无论分出胜负还是打平,两人的得分和一定是2分,因此最终四个人的得分加起来一定是2×6=12(分).3.解析:方法一:8进4进行了4场,4进2进行2场,最后决赛是1场,因此共进行了4+2+1=7(场)比赛.方法二:每进行一场比赛就淘汰一支球队,最后只剩下冠军了,也就是说淘汰了7只球队,因此进行了7场比赛.4.解析:方法一:小亮投的5个球中,投进的3个球得到3×3=9 (分),而没有投进的2个球被扣掉1×2=2 (分),于是他应得9-2=7 (分).方法二:如果小亮投的5个球都进了,那么他应得3×5=15 (分),但是实际上他只投进了3个球,未投进的2个球中每个球都由得3分变为扣1分,多计3+1=4分,共多计了4×2=8 (分),故小亮应得15-8=7 (分).5.解析: 八一队赛了4场,说明八一队和其它四队都赛过了.山东队赛了1场,说明只和八一队赛过.北京队赛了3场,说明与八一队、江苏队、广东队赛过.江苏队赛了2场,说明与八一队、北京队赛过.由此可知,广东队只和八一队、北京队赛过,赛了2场.6.解析: 如果小立6个球全部投中,应该得6×5=30(分),实际上少了30-16=14(分),投中一个球得5分,投不进扣2分,投不进一个球就少5+2=7(分),所以一共没投进14÷7=2(个),投中了6-2=4(个)球.⨯-÷=(场),平均每个体育7.解析:一共有5210⨯=(个)队参加比赛,共赛10(101)245场都要举行4559÷=(场)比赛.8.解析:大明有6个球没有投进,要被扣掉6分,如果不考虑这6个球,大明应该得30+6=36 (分),规定投进一球得3分,36÷3=12 (个),所以,大明投进了12个球,加上未投进的6个球,大明共投了12+6=18个球.9.解析:∵共有6队∴每队最多赛5场∴编号5和所有人赛过∴编号1只和编号5赛过∴编号4和编号2、3、5、6赛过∴编号2只和编号4、5赛过∴编号3和编号4、5、6赛过∴编号6和编号3、4、5赛过3场。

第10讲体育比赛中的数学问题

第10讲体育比赛中的数学问题

体育比赛中的数学问题一.知识点总结1.单循环赛:每两个队之间都要比赛一场,无主客场之分。

(通俗的说就是除了不和自己比赛,其他人都要比)2.双循环赛:每两个队都要比赛一场,有主客场之分。

(每个队和同一个对手交换场地赛两次)一共比赛场数=(人数-1)×人数3.淘汰赛:每两个队用一场比赛定胜负,经过若干轮之后,最后决出冠军。

(每场比赛输者打包回家)二.做题方法1.点线图2.列表法3.极端性分析------根据个人比赛场数,猜个人最高分根据得分,猜“战况”三.例题分析例题1:三年级四个班进行足球比赛,每两个班之间都要赛一场,每个班赛几场?一共要进行多少场比赛?解析:除了不和自己赛,和其他班都要赛,所以每个班赛4-1=3场一共进行的场数:3×4÷2=6场学案1:每个学校都要赛一场,共赛了28场,那么有几个学校参加比赛?解析:方法一:“老土方法”:1+2+3+4+……7=287+1=8个方法二:(人数-1)×人数=28×2=567×8=56,所以为8人例题2:20名羽毛球运动员参加单打比赛,淘汰赛,那么冠军一共要比赛多少场?解析:第一轮:20÷2=10(场),10名胜利者进入下一轮比赛第二轮:10÷2=5(场),5名胜利者进入下一轮比赛第三轮:5÷2=2(场)....1人,3名胜利者进入下一轮比赛第四轮:2÷2=1(场)胜利者和第三轮中剩下的一人进入下一轮比赛第五轮:2÷2=1(场)冠军一共参加了5场比赛。

决出冠军一共要比赛的场数:一场比赛淘汰一人,除了冠军不被淘汰20-1=19场例题3:规定投中一球得5分,投不进得2分,涛涛共投进6个球,得了16分,涛涛投中几个球?解析:方法一:(鸡兔同笼)6个球全投进得5×6=30分少得了30-16=14分有1个不进的球就少得5+2=7分,不但没得5分,反而倒扣2分所以没进的个数14÷7=2个进的个数6-2=4个方法二:5×() -2 ×() = 16根据个位数字特点猜数,5×( 4 ) -2 ×( 2 ) = 16 进了4个学案2:规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没进,他共进几个球?解析:方法一:(鸡兔同笼)假设6个没进的球也进,30+6×(3+1)=54分共投54÷3=18个方法二:3×() -1 ×( 6 ) = 30(30+6)÷3=12个12+6=18个例题4:A,B,C,D,E,五位同学一起比赛象棋,单循环比赛,A已经赛了4盘,B已经赛了3盘,C赛了2盘,D赛了1盘,此时E赛了几盘?解析:利用点线图所以E赛2盘例题5:A,B,C,D,E,五位同学一起比赛乒乓球,单循环比赛,胜者得2分,负者不得分,比赛结果如下:(1)A与E并列第一(2)B是第三名(3)C和D并列第四名求B得分?解析:根据个人比赛场数猜最高分每人比赛4场,全胜得8分,有并列第一,就没有全胜,所以不可能得8分;有并列倒数第一,所以没有全败,没有0分;而每个人得分是个偶数,在0和8之间的偶数只有2,4,6,三个分数,三个名次,所以B得4分学案3:四名同学单循环比赛,胜者得2分,负者得0分,平者各得1分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

体育比赛中的数学问题
(★★)
⑴8只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?
⑵20名羽毛球运动员参加单打比赛,两两配对进行淘汰赛,那么为了决出冠军一共要比赛多少场?
(★★★)
A、B、C、D、E五位同学一起比赛围棋,每两人都要比赛一盘。

到现在为止,A已经赛4盘,B赛3盘,C赛2盘,D赛1盘。

问:此时E同学赛了几盘?
(★★★)
(09年迎春杯中年级复赛) A、B、C、D、E、F六个足球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场。

胜者得3分,负者得0分,平局每队各得1分。

比赛结果,各队得分由高到低恰好为一个等差数列,获得第3名的队得了8分,那么,这次比赛中共有_______场平局。

(★★★)
(走进美妙数学花园少年数学邀请赛)甲、乙、丙、丁四人进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分。

结果甲第一,乙、丙并列第二,丁最后一名,那么乙得几分?
(★★★★)
五个足球队进行循环比赛,即每两个队之间都要赛一场。

每场比赛胜者得2分、负者得0分、打平两队各得1分。

比赛结果各队得分互不相同。

已知:
⑴第1名的队没有平过;
⑵第2名的队没有负过;
⑶第4名的队没有胜过。

问全部比赛共打平了________场。

(★★★★★)
(2008年南京市第四届青少年“科学小博士”思维训练系列活动)甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判。

每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战。

半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局。

那么整个训练中的第3局当裁判的是。

在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节!
1.(★★)
4个小组进行辩论会淘汰赛,为了决出冠军,需要进行多少场比赛?
A.3 B.4 C.5 D.6
2.(★★★)
A、B、C、D四位同学一起围棋象棋,每两人都要比赛一盘。

到现在为止,A已经
赛3盘,B赛2盘,C赛1盘。

问:此时D同学赛了几盘?
A.2 B.3 C.4 D.5
3.(★★★)
班上三名同学进行跳棋比赛,每两名同学都要赛一局。

每局胜者得2分,平者各得1分,负者得0分。

已知甲、乙两名同学得分分别为2分、3分,且甲同学无平局,乙同学有平局,那么丙同学得分是多少?
A.3 B.0 C.1 D.2
4.(★★★)
四个人进行象棋单循环赛,规定胜者得4分,负者得0分,和棋双方各得2分,比赛结束后统计发现,四个人的得分和加起来一定是多少?
A.14 B.24 C.18 D.26
5.(★★★★)
A B C D E
、、、、五个篮球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场。

胜者得3分,负者得0分,平局每队各得1分。

比赛结果,各队得分由高到低恰好为一个等差数列,获得第4名的队得了3分,那么,这次比赛中共有( )场平局。

A.3 B.4 C.5 D.6
6.(★★★★★)
甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判。

每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战。

半天训练结束时,发现甲共打了13局,乙共打了20局,而丙共当裁判6局。

那么整个训练中的第3局当裁判的是。

A.甲B.乙C.丙D.无法确定。

相关文档
最新文档