第三章_线性方程组习题课

合集下载

线性方程组习题参考答案

线性方程组习题参考答案

第三章 线性方程组习题参考答案P154,1. 用消元法解下来线性方程组.(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-++=-++-=--+--=+-++=-++1234321223145354321542154321543214321x x x x x x x x x x x x x x x x x x x x x x x x .解:542143313241425152135401135401132211003212121113054312141113074512712111101431213540101431200321200161261200r r r r r r r r r r r r r r r r r r ↔---⎛⎫⎛⎫-⎪ ⎪↔---- ⎪⎪- ⎪⎪↔→-------⎪ ⎪------ ⎪ ⎪- ⎪ ⎪------⎝⎭⎝⎭----→----43435314101354015014312160012128000212241681600000r r r r r r r -⎛⎫⎛⎫-⎪⎪--- ⎪⎪- ⎪⎪→--+⎪⎪- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭11000013500121354010143121014312010012001000001000001000100021200011120001100000020000000000⎛⎫ ⎪⎛⎫-⎛⎫ ⎪⎪-⎪⎪⎪---- ⎪ ⎪ ⎪ ⎪→→→ ⎪ ⎪⎪⎪ ⎪-- ⎪ ⎪ ⎪⎪- ⎪ ⎪⎝⎭⎝⎭⎪ ⎪⎝⎭方程组的解是 12345121120112x k x k x x k x k ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩=-=--==--=, k 为任意数.(2) ⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+-=-+--=+-+2521669972543223312325432154321543215421x x x x x x x x x x x x x x x x x x x解:422332322112032111313291131320334512323452701107839961622500332529711313211313201107830110783003325298003003325297r r r r r r r r r r ----⎛⎫⎛⎫-↔ ⎪⎪------ ⎪ ⎪-→- ⎪ ⎪----- ⎪ ⎪---⎝⎭⎝⎭------⎛⎫ ⎪----⎪→→ ⎪---- ⎪-⎝⎭325298000001⎛⎫ ⎪ ⎪ ⎪-- ⎪-⎝⎭最后一列为(0,0,0,0,0,-1),所以方程组无解.(3) ⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-3371334424324214324321x x x x x x x x x x x x x解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------→-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------+→-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------6210012020031110443215248400353503111044321731370110313111044321141232413r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→01060100300108000101000601003101082001 有唯一解: x 1= -8, x 2=3, x 3=6, x 4=0. (4) ⎪⎪⎩⎪⎪⎨⎧=++-=++=+-=+-+032701613-11402-332075434321432143214321x x x x x x x x x x x x x x x x解:−−−→−+-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−−−→−---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛14122321342292724120191702332987122312-71613-1142-33-275-43r r r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----2019170201917020191709871⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→0000000010010000000010987117201719171317317201719 得解:⎪⎪⎩⎪⎪⎨⎧====--lx k x x x l k lk 4321172017191713173 (5) ⎪⎪⎩⎪⎪⎨⎧=-+--=+-+=-+-=+-+43212523223124321432143214321x x x x x x x x x x x x x x x x解:4324131211112111121111322323223232232511210224002240211340224300003r r r r r r r ⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪+------ ⎪ ⎪ ⎪--→ ⎪ ⎪ ⎪----→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭,最后一列为(0,0,0,0,3),所以方程组无解.(6) ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-++=+++=-+-=-++225512221321231323214321432143214321x x x x x x x x x x x x x x x x x x x解:52324431232212311123111010032111048220112023111015310065122221101120000003 (15520)20000000000r r r r r r r r rr r r r ⎛⎫⎛⎫⎛⎫-----↔ ⎪ ⎪ ⎪------ ⎪ ⎪ ⎪-+ ⎪⎪ ⎪→---- ⎪ ⎪ ⎪-→--- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭511006671010665100166000000000⎛⎫-⎪ ⎪ ⎪ ⎪⎪→ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭. 一般解为 1234156617661566x k x k x kx k⎧+⎪⎪⎪-⎪⎨⎪+⎪⎪⎪⎩====, k 为任意数.2. 把向量β表成向量α1,α2,α3,α4的线性组合. (1) 解:设β=x 1α1+ x 2α2+ x 3α3+ x 4α4,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-===⇒=+--=-+-=--+=+++41414145112143214321432143214321x x x x x x x x x x x x x x x x x x x x .432141414145ααααβ--+=(2) 解:设β=x 1α1+ x 2α2+ x 3α3+ x 4α4,则⎪⎪⎩⎪⎪⎨⎧=-===⇒⎪⎪⎩⎪⎪⎨⎧=-+=-+=+++=++010110300024321421424321321x x x x x x x x x x x x x x x x , 即β=α1-α3. 3. 证明:如果向量组α1,α2,…, αr 线性无关, 而向量组α1,α2,…, αr ,β 线性相关,则β可由向量组α1,α2,…, αr 线性表出.证明:因为向量组α1,α2,…, αr ,β 线性相关,所以存在k 1, k 2, ,k r , l 不全为0,使11220r r k k k l αααβ+++=.若l =0, 则k 1,,k r 不全为0,于是存在不全为零的数k 1,,k r 使得011=+r r k k αα 与α1,α2,…, αr 线性无关矛盾. 所以l0,则r s lkl k l k αααβ)()()(2211-++-+-= . 即β可由向量组α1,α2,…, αr 线性表出.证法2. 由于向量组α1,α2,…, αr ,β 线性相关,所以存在k 1, k 2, ,k r , l 不全为0,使11220r r k k k l αααβ+++=. 若l =0, 则得11220r r k k k ααα++=. 因为向量组α1,α2,…, αr 线性无关,所以021====r k k k . 与k 1, k 2, ,k r , l 不全为0矛盾. 所以l0, 这样r s lkl k l k αααβ)()()(2211-++-+-= . 即β可由向量组α1,α2,…, αr 线性表出.4. 设αi =(a i1,a i2,…,a in ), i=1,2,…,n, 证明如果|a ij |0, 则α1,α2,…, αn 线性无关.证明:设x 1α1+x 2α2++x n αn =0,则11121211212222112200n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩因为系数行列式()0T ij ij a a =≠,由Cramer 法则, 上面的方程组有唯一解, 即只有零解,得n x x x === 21=0,于是α1,α2,αn 线性无关.5. 设t 1,t 2,…,t r 是互不相同的数(rn),证明αi =(1, t i , t i 2,…,t i n -1), i=1,2,…,r 线性无关.证法1:添加t r +1,,t n , 使t 1, t 2,,t r , t r +1,,t n 两两不同, 得向量组αi =(1, t t , t t 2,…,t t n -1) i =1,2,...,n .由于α1,α2,,αn 的分量作成一个Vandermonde 行列式且不等于0,由上一题,α1,α2,,αr ,,αn 线性无关,于是它的任一部分组线性无关.证法2:因为rn, 所以令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---1121121111n r n n r t t t t t t A ,则A 的前r 行作成一个r 阶范德蒙行列式B, 从而非零. 于是B 的列向量线性无关, 增加分量后为A 的列向量, 所以A 的列向量也线性无关. 证法3. 设x 1α1+x 2α2++x r αr =0, 则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121r n r n n rr r x t x t x t x t x t x t x x x (1) 考虑(1)的前r 个方程作成的齐次线性方程组:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121r r r r r rr r x t x t x t x t x t x t x x x (2) 因为t 1, t 2,,t r 两两不同, 所以(2)的系数行列式为r 阶Vandermonde 行列式0111||11211211≠=---r r r r rt t t t t t A. 于是线性方程组(2)有唯一的零解. 又由于(1)的解都是(2)的解, 而(2)只有零解,所以(1)只有零解. 即r x x x === 21=0,于是α1,α2,αr 线性无关.6. 假设α1, α2,α3线性无关,证明β1=α2+α3,β2=α3+α1,β3=α1+α2线性无关. 证法1:设x 1β1+x 2β2+x 3β3=0,则(x 2+x 3)α1+(x 3+x 1)α2+(x 1+x 2)α3=0由于α1, α2, α3线性无关得:23013012x x x x x x +=+=+=⎧⎪⎨⎪⎩,该齐次线性方程组只有零解. x 1= x 2=x 3=0,因而β1, β2, β3线性无关.证法2: 由于⎪⎪⎪⎭⎫⎝⎛=+++110011101),,(),,(321133221ααααααααα, 矩阵⎪⎪⎪⎭⎫⎝⎛=110011101A 可逆, 所以两个向量组等价. 又已知向量组α1, α2, α3的秩为3, 所以后一个向量组的秩也是3, 从而后一个向量组也线性无关.注:无论向量组α1,α2,α3,α4线性无关或相关,α1+α2, α2+α3, α3+α4, α4+α1线性相关. 7. 设向量组A: α1,α2,,α s 的秩为r, 证明向量组A 的任意r 个线性无关的向量组都构成它的一个极大线性无关组. 证明: 设向量组A: α1,α2,,α s 任一线性无关向量组B: αj1, αj2,, α jr , 任取A 中的一个向量β,由于R (A )=r , 所以A 中任意r +1个向量线性相关,有αj1,,αjr , β线性相关,由条件知向量组 B 线性无关,由临界定理,β可以由向量组B 线性表示,故向量组B 是极大无关组. 证法2. 设A:αj1, αj2,, α jr 是α1,α2,,α s 中的任一个线性无关的向量组, β是A中的一个向量, 由于R (A )=r , 所以A 中任意r +1个向量线性相关,有αj1,,αjr , β线性相关,满足极大无关组定义的条件, 所以αj1, αj2,, α jr 是向量组A 的极大无关组.8. 设向量组(I): α1,α2,,α s 的秩为r, αj1, αj2,, αjr 是(I)中的r 个向量,使得(I)中每个向量都可以被它们线性表出,证明αj1, αj2,, α jr 是(I)的极大无关组. 证明:设向量组(I)α1,α2,,αs ,R(A)=r; (II): αj1, αj2,, α jr 是已给向量组,取(I)的极大无关组(III) αk1,αk2,…,αkr , 由条件, (III)可由(II)线性表出, 于是r=R(III)R(II)r. 于是R(II)=r, 即αj1, αj2,, α jr 线性无关, 所以是(I)的极大无关组.9. 证明一个向量组的任何一个线性无关组都可以扩充成为一个极大无关组. 证明:设A 是一个n 维向量组,A 1是它的一个线性无关组, 1° 逐个检查A 中的向量i α2° a 、若i α可以由向量组A 1线性表示,则去掉i α,检查下一个αb 、若i α不可以由向量组A 1线性表示,则添加i α到A 1中将A 1扩充为A 2,回到检查第1个向量,重复1°、2°若干步后(∵有限步后,任意n+1个n 维向量也相关,必含停止),得到A 1,A 2 ,…A k , 而A k 不能再扩大,于是A k 是一个极大无关组,且A 1A k .10. 设α1=(1,-1,2,4), α2=(0,3,1,2), α3=(3,0,7,14), α4=(1,2,2,0), α5=(2,1,5,6). (1) 证明α1, α2线性无关.(2) 把α1, α2扩充成一个极大无关组.解(1):∵α1与α2的分量不成比例,故α1与α2线性无关 (2):解法1. 考虑α1, α2, α3, ∵3α1+α2 =α3 , 去掉α3.考虑α1, α2,α4,取它们的后三个分量124312280120-=≠,∴增加一个分量后仍然线性无关。

线性代数课后习题与答案

线性代数课后习题与答案

《线性代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式: (1)2345 (2)2163- (3)xxx x cos sin sin cos - (4)11123++-x x x x(5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)1014300211321221---(3)5000000004000300020001000 (4)dcb a 100110011001---.4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)6555655562.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a a b ab a -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)335111243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。

数值方法课后习题答案第3章

数值方法课后习题答案第3章

第三章直接法解线性方程组习题3-11. 写出列主元消去算法。

For k =1 to n-1 do1)消元:(1) 选主元:(2) 判别: , than stop(3) 换行: (j=k,k+1,...,n+1)(4) 计算乘数: (i=k+1,...,n)(5) 消元:(i=k+1,...,n; j=k+1,...,n+1) 2) 回代:(1) ,than stop(2) 回代:for k=n,n-1,...,1 do(3) 打印:print x j =a j,n+12. 用全主元高斯—约当消元法求下列方程的解3. 用全主元高斯—约当消去法求下列矩阵的逆矩阵4. 请用列全主元高斯—约当消去法求下列矩阵的逆矩阵6.如果在解方程组过程中,希望顺便求出系数矩阵A的行列式值det(A),用什么方法比较方便?需注意一些什么问题?如果用高斯—约当列主元消去法,如何求出det(A)?高斯消元法解方程时;主元素高斯消元法解方程时,注意换行列会改变行列式的符号;用高斯—约当列主元消去法解方程时,把列主元 记录下来,把换行的次数m记录下来,。

7. 设A x=b是线性方程组1) 用列元高斯约当消去法,求解此方程组。

2) 求系数矩阵的行列式。

3) 求系数矩阵的逆矩阵。

也是一个指标为k的初等下三角阵,其中I i,j 为排列阵:证明:只是m i,k与m j,k换了个位置。

9.试证明单位下三角阵的逆矩阵仍然是一个单位下三角阵。

证:证得 下三角阵的逆阵仍是下三角阵。

当A为单位下三角阵时, ,B也是单位下三角阵。

习题3-25. 设A为n阶非奇异阵,且有分解式 A=LU,其中L为单位下三角阵,U为上三角阵,求证:A的所有顺序主子式均不为零。

证明:U一定是非奇异阵,否则A=LU也奇异。

记A的顺序主子阵为A k ,L的顺序主子阵为L k ,U的顺序主子阵为U k ,由分块阵的乘法6. 设A对称正定,试证明A一定可以进行以下分解:A=UU T,其中U是上三角阵,若限定U的对角元为正的,此分解唯一。

线性代数第三章习题

线性代数第三章习题

矩阵的加法满足交换律和结合 律,即A + B = B + A,(A + B) + C = A + (B + C)。
数与矩阵的乘法
数与矩阵的乘法定义为该数与矩阵中每一个元素相乘,即kA = [kaij]m×n,其中k 是一个数,A是一个m×n的矩阵。
数与矩阵的乘法满足分配律和结合律,即k(A + B) = kA + kB,(k + l)A = kA + lA, k(lA) = (kl)A。
03
逆矩阵与矩阵的秩
逆矩阵的定义和性质
定义:设A为n阶方阵,若存在n阶方阵B, 使得AB=BA=I(I为单位矩阵),则称B 为A的逆矩阵,记为A^(-1)。
若A、B均可逆,则AB也可逆,且 (AB)^(-1)=B^(-1)A^(-1)。
若A可逆,则A的逆矩阵也可逆,且 (A^(-1))^(-1)=A。
应用实例
1
2
图像处理中的PCA(主成分分析)方法就利用了 特征值和特征向量的概念来进行数据降维和特征 提取。
3
在推荐系统中,可以利用特征值和特征向量的概 念来进行用户和物品的相似度计算,从而提高推 荐算法的准确性。
THANKS
感谢您的观看
线性代数第三章习
目录
CONTENTS
• 矩阵的基本概念和性质 • 行列式及其性质 • 逆矩阵与矩阵的秩 • 线性方程组与矩阵的应用 • 特征值与特征向量
01
矩阵的基本概念和
性质
矩阵的定义和表示
矩阵是一个由数值组成的矩形阵 列,其大小由行数和列数确定。
矩阵通常用大写字母表示,如A、 B、C等,而行列数通常用小写 字母m和n表示,其中m表示行

线性代数第三章课后习题

线性代数第三章课后习题

习题三(A )1. 用矩阵的初等变换把下列矩阵A 化为行阶梯形矩阵、行最简形矩阵及标准形矩阵:(1) 112332141022-⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)1111131320461135-⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭(3)24512122111212136363--⎛⎫⎪-- ⎪=⎪-- ⎪---⎝⎭2.设A 123012425⎛⎫⎪=- ⎪ ⎪⎝⎭,010(1,2)100001⎛⎫⎪= ⎪ ⎪⎝⎭E ,100(3,2(5))010051⎛⎫ ⎪= ⎪ ⎪⎝⎭E .试求(1,2)E A ;(1,2)AE ;(3,2(5))E A .3.用初等变换求下列方阵的逆矩阵:(1) A 101110012⎛⎫ ⎪=- ⎪ ⎪⎝⎭ (2)A 211124347--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭(3)A1111022200330004⎛⎫⎪⎪= ⎪ ⎪⎝⎭4.用初等变换解下列矩阵方程:(1) 设A 101110120⎛⎫ ⎪= ⎪ ⎪⎝⎭,102102-⎛⎫⎪= ⎪ ⎪⎝⎭B ,且AX =B ,求X .(2)设A 220213010⎛⎫⎪= ⎪ ⎪⎝⎭,且+AX =A X ,求X .5.设矩阵A 122324111222-⎛⎫⎪=-- ⎪ ⎪-⎝⎭,计算A 的全部三阶子式,并求()R A .6.在秩为r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?请举例说明.7.从矩阵A 中划掉一行得到矩阵B ,问A ,B 的秩的大小关系怎样? 请举例说明.8.求下列矩阵A 的秩:(1) 310211311344⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(2)1121224230610304-⎛⎫ ⎪- ⎪=⎪- ⎪-⎝⎭(3)12211248022423336064--⎛⎫⎪-⎪= ⎪-- ⎪--⎝⎭(4) 112205123λλλ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ (5)111111λλλ⎛⎫⎪= ⎪ ⎪⎝⎭9. 设有矩阵A101110112111022264μμ-⎛⎫⎪⎪=⎪⎪⎝⎭,若()3R=A,求μ的值.10.判断下列命题是否正确.(1) 如果线性方程组AX=0只有零解,那么线性方程组AX=B有唯一解;(2) 如果线性方程组AX=B有唯一解,那么线性方程组AX=0只有零解.11. 解下列齐次线性方程组:(1)12312312325502303570x x xx x xx x x+-=⎧⎪+-=⎨⎪+-=⎩(2)1234123412342202220430x x x xx x x xx x x x+++=⎧⎪+--=⎨⎪---=⎩(3)31243124312431242530420476023950xx x xxx x xxx x xxx x x-+-=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩(4)3124312412431242350240347045530xx x xxx x xx x xxx x x-+-+=⎧⎪-+-=⎪⎨--=⎪⎪-+-=⎩12. 解下列非齐次线性方程组:(1)123123123343322323x x xx x xx x x-+=⎧⎪+-=-⎨⎪-+-=-⎩(2)12341234123443222333244x x x xx x x xx x x x+-+=⎧⎪++-=-⎨⎪---+=⎩(3)3124312431243124235324434733749xx x xxx x xxx x xxx x x+++=⎧⎪++-=⎪⎨+++=⎪⎪++-=⎩(4)31231231231224523438214496xx xxx xxx xxx x-+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩13. 确定λ的值,使下列齐次线性方程组有非零解,并求其一般解.(1)123123123x x xx x xx x xλλλ++=⎧⎪++=⎨⎪++=⎩(2)123123123240356020x x xx x xx x x-+=⎧⎪-+=⎨⎪-+=⎩λ14.讨论下列非齐次线性方程组,当λ取何值时,方程组无解、有唯一解、有无穷多解?并在有无穷多解时求出一般解:(1)12312321231x x xx x xx x xλλλλλ++=⎧⎪++=⎨⎪++=⎩(2)212312312313422321x x xx x xx x x++=⎧⎪++=⎨⎪+-=⎩λλ15. 设有方程组112223334445551x axx axx axx axx ax-=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩,证明方程组有解的充分必要条件是51iia==∑.(B )1.设A 是n 阶可逆阵,互换A 的第i 行与第j 行(i j ≠)得到矩阵B ,求1-AB .2. (研2007数一、二、三)设矩阵0100001000010000⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为___ ____. 3. (研2010数一)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若AB =E ,则正确的是( )(A) ()R m =A ,()R m =B (B) ()R m =A ,()R n =B(C) ()R n =A ,()R m =B (D) ()R n =A ,()R n =B4. (研2015数一、二、三)设矩阵A 21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,21d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭b .若集合={1,2}Ω,则线性方程组Ax =b 有无穷多解的充分必要条件是( )(A) a ∉Ω,d ∉Ω (B) a ∉Ω,d ∈Ω (C) a ∈Ω,d ∉Ω (D) a ∈Ω,d ∈Ω5. (研2016数二、三)设矩阵111111a a a --⎛⎫ ⎪-- ⎪ ⎪--⎝⎭与110011101⎛⎫ ⎪- ⎪ ⎪⎝⎭等价,则a =____ ____.6.证明:()()R R R ⎛⎫=+ ⎪⎝⎭A O AB O B . 7.设A ,B 是n 阶非零矩阵,证明:若=AB O ,则()R n <A 及()R n <B .8.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且n m <.证明:||0=AB .。

第三章矩阵的初等变换与线性方程组习题含答案

第三章矩阵的初等变换与线性方程组习题含答案

第三章矩阵的初等变换与线性方程组习题含答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第三章矩阵的初等变换与线性方程组3.4.1 基础练习1.已知121011251-⎛⎫⎪= ⎪⎪-⎝⎭A,求()R A.2.已知32101032100000200000-⎛⎫⎪-⎪=⎪-⎪⎪⎝⎭B,求()R B.3.若矩阵,,A B C满足=A BC,则(). (A)()()R R=A B (B) ()()R R=A C(C)()()R R≤A B (D) ()max{(),()}R R R≥A B C4.设矩阵X满足关系2=+AX A X,其中423110123⎛⎫⎪= ⎪⎪-⎝⎭A,求X.5.设矩阵101210325⎛⎫⎪= ⎪⎪--⎝⎭A,求1()--E A.6.A是m n⨯矩阵,齐次线性方程组0=Ax有非零解的充要条件是 . 7.若非齐次线性方程组=Ax b中方程个数少于未知数个数,那么( ). (A) =Ax b必有无穷多解; (B) 0=Ax必有非零解;(C) 0=Ax仅有零解; (D) 0=Ax一定无解.8.求解线性方程组(1)12312312312333332x x xx x xx x x+-=⎧⎪+-=⎨⎪-+=⎩,(2)72315532151011536x y zx y zx y z++=⎧⎪-+=⎨⎪-+=⎩(3)12341234123420 20 2220 x x x xx x x xx x x x++-=⎧⎪++-=⎨⎪+++=⎩9.若方程组 12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ= .10.若12(1,0,2),(0,1,1)T T ==-αα都是线性方程组0=Ax 的解,则=A ( ).(A)()2,1,1- (B)201011-⎡⎤⎢⎥⎣⎦ (C)102011-⎡⎤⎢⎥-⎣⎦ (D)011422010-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦3.4.2 提高练习1.设A 为5阶方阵,且()3R =A ,则*()R A = .2.设矩阵12332354445037a a -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,以下结论正确的是( ). (A)5a =时,()2R =A (B) 0a =时,()4R =A (C)1a =时,()5R =A (D) 2a =时,()1R =A3.设A 是43⨯矩阵,且()2R =A ,而102020103⎛⎫⎪= ⎪ ⎪-⎝⎭B ,则()R =AB .4.设12243311t-⎛⎫⎪= ⎪ ⎪-⎝⎭A ,B 为3阶非零矩阵,且0=AB ,则t = . 5.设12312323k k k -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A , 问k 为何值,可使(1)()1R =A (2)()2R =A (3)()3R =A .6.设矩阵111111111111kk k k ⎛⎫⎪⎪= ⎪⎪⎪⎝⎭A ,且()3R =A ,则k = .7.设133143134⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,试将A 表示为初等矩阵的乘积. 8.设n 阶方阵A 的个行元素之和均为零,且()1R n =-A ,则线性方程组0=Ax 的 通解为 .9.设11121314212121213132333441424344a a a a a a a a a a a a aa a a ⎛⎫ ⎪ ⎪= ⎪⎪ ⎪⎝⎭A ,14131211242322213433323144434241a a a a aa a a a a a a a a a a ⎛⎫ ⎪ ⎪= ⎪⎪ ⎪⎝⎭B ,10001010000101000⎛⎫⎪⎪= ⎪⎪⎪⎝⎭P21000001001000001⎛⎫⎪⎪= ⎪⎪⎪⎝⎭P ,其中A 可逆,则1-=B .10.设n 阶矩阵A 与B 等价,则必有( ).(A )当(0)a a =≠A 时,a =B (B )当(0)a a =≠A 时,a =-B (C )当0≠A 时,0=B (D )当0=A 时,0=B11.设a b b b a b b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,若*()1R =A ,则必有( ).(A )a b =或20a b += (B )a b =或20a b +≠ (C )a b ≠或20a b += (D )a b ≠或20a b +≠12.齐次线性方程组2123123123000x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩的系数矩阵记为A ,若存在三阶矩阵0≠B ,使得0=AB ,则( ).(A )2λ=-且0=B (B )2λ=-且0≠B (C )1λ=且0=B (D )1λ=且0≠B13.设A 是三阶方阵,将A 的第一列与第二列交换得到B ,再把B 的第二列加到第三列得到C ,则满足=AQ C 的可逆矩阵Q 为( ).(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )011100001⎛⎫ ⎪ ⎪ ⎪⎝⎭14.已知12324369t ⎛⎫⎪= ⎪ ⎪⎝⎭Q ,P 为三阶非零矩阵,且0=PQ ,则( ).(A )6t =时,()1R =P (B )6t =时,()2R =P (C )6t ≠时,()1R =P (D )6t ≠时,()2R =P15.若线性方程组121232343414x x a x x a x x a x x a +=-⎧⎪+=⎪⎨+=-⎪⎪+=⎩有解,则常数1234,,,a a a a 应满足条件 .16.设方程组123111111112a x a x a x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭有无穷多个解,则a = .17.设n 阶矩阵A 与n 维列向量α,若()0TR ⎛⎫= ⎪⎝⎭AA αα,则线性方程组( ). (A )=Ax α必有无穷多解 (B )=Ax α必有唯一解(C )00T⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭A x y αα仅有零解 (D )00T ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭Ax y αα必有非零解.18.设A 为m n ⨯矩阵,B 为n m ⨯矩阵,则线性方程组()0=AB x ( ). (A )当n m >时仅有零解 (B )当n m >时必有非零解 (C )当m n >时仅有零解 (D )当m n >时必有非零解19.求λ的值,使齐次线性方程组 123123123(3)20(1)03(1)(3)0x x x x x x x x x λλλλλλ+++=⎧⎪+-+=⎨⎪++++=⎩有非零解,并求出通解.20.设 123123123(2)2212(5)4224(5)1x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩问λ为何值时,此方程组有唯一解,无解或无穷多解并在有无穷多解时,求其通解.21.问,a b 为何值时,线性方程组 123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解、无解、有无穷多解并求出有无穷多解时的通解.22.问λ为何值时,线性方程组131231234226423x x x x x x x x λλλ⎧+=⎪++=+⎨⎪++=+⎩有解,并求通解.23.已知3阶矩阵A 的第一行为(,,)a b c ,,,a b c 不全为零,矩阵12324636k ⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,k 为常数.若0=AB ,求线性方程组0=Ax 的通解.24.设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B . (1)证明B 可逆;(2)求1-AB .第三章参考答案3.4.1 基础练习1.()2R =A . 2.()3R =B . 3.因为()min{(),()}R R R ≤A B C 故选C .4.由已知(2)-=A E X A ,因为100386(2,)0102960012129r--⎛⎫ ⎪-−−→-- ⎪ ⎪-⎝⎭A E A 故1386(2)2962129---⎛⎫⎪=-=-- ⎪ ⎪-⎝⎭X A E A .5.100231342100⎛⎫- ⎪⎪ ⎪--- ⎪⎪- ⎪ ⎪⎝⎭. 6.()R n <A . 7.B . 8.(1)无解; (2)211x y z ⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; (3)12349,43x x c c R x ⎛⎫⎛⎫ ⎪- ⎪ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭. 9.有无穷多解的充分必要条件是系数矩阵的秩等于增广矩阵的秩且小于未知数的个数 得3λ=。

线性方程组向量组相关性习题课公开课获奖课件百校联赛一等奖课件

线性方程组向量组相关性习题课公开课获奖课件百校联赛一等奖课件

1 0 1
矩阵A
(
1 ,
2
,
3)
2
2
0 ,
3 5 2
1 0 1 初等行变换 1 0 1
A 2 2 0 ~ 0 2 2
3 5 2
0 0 0
R( A) 2 3,
故向量组 1, 2 , 3线性相关.
例2 设 1, 2, , r线性相关,证明 : 存在不全 为零的数t1, t 2, , t r,使对任何向量 都有
则向量b是向量组A的线性组合, 这时称向量b可经
向量组A :1,2 , ,s线性表出.
定义
设有两个向量组A
:
a
,
1
a
,
2
,
a
及B
m
:
b1,
b
,
2
,
b
,
s
若B组中的每个向量都能由向量组A
线性表示,则称向量组B能由向量组A线性表出.
若向量组A与向量组B能相互线性表出,则称这
两个向量组等价.
向量组线性表出性质 1.自反性,2.传递性
那么称向量组 A0是向量组A的一个极大线性 无关向量组(简称极大无关组);极大无关组所含向 量个数r称为向量组A的秩.
定理 矩阵旳秩等于它旳列向量组旳秩,也等于 它旳行向量组旳秩.
定理 设向量组B能由向量组A线性表达,则向量 组B旳秩不不小于向量组A旳秩.
推论1 等价旳向量组旳秩相等.
极大无关组旳性质
零解,则对任意向量 ,都有
k1 1 k2 2 kr r (k1t1 k2t2 kr tr) 0

k1( 1 t1 ) k 2( 2 t 2 )
k r( r t r ) 0

线性代数第三章习题与答案(东大绝版)

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1,3)T T T=--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-=+- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ααα1251613109491512561037⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=+-= ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭. 2.从以下方程中求向量α1233()2()5()-++=+αααααα,其中123(2,5,1,3),(10,1,5,10),(4,1,1,1).TT T ===-ααα 解 由方程得1233322550-++--=αααααα,1232104651112632532515118310124⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+-=+-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα故1234⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭α,即(1,2,3,4)T =α.3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα4.证明: 包含零向量的向量组线性相关.证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有12110α0αα00α0α0,0i i s k k -++++++++=≠而0,0,,0,,0,,0k 不全为0,故向量组线性相关.5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关.6.判断下列向量组的线性相关性(1) (1,1,0),(0,1,1,),(3,0,0,); (2) (2,0),(0,-1);(3) (-4,-5,2,6),(2,-2,1,3),(6,-3,3,9),(4,-1,5,6);(4) (1,0,0,2,5),(0,1,0,3,4),(0,0,1,4,7),(2,-3,4,11,12).解 (1)设有三个数123,,k k k ,使123(1,1,0)(0,1,1,) (3,0,0,)=(0,0,0)k k k ++则有方程组131223000k k k k k +=⎧⎪+=⎨⎪=⎩,因为系数行列式10311030010D =≠.方程组仅有零解,所以三个向量线性无关. (2)设有两个数12,k k 使12(2,0)(0,-1)=(0,0)k k + 则有方程组12200k k =⎧⎨-=⎩,由此解得120k k ==,所以两个向量线性无关.另外,也可由其分量不成比例看出两个向量线性无关. (3)设有四个数1234,,,k k k k ,使1234(-4,-5,2,6)(2,-2,1,3)(6,-3,3,9)(4,-1,5,6)=(0,0,0,0)k k k k +++,则有方程组1234123412341234426405230235063960k k k k k k k k k k k k k k k k +++=⎧⎪----=⎪⎨+++=⎪⎪+++=⎩,其系数行列式42645231021356396D ----==,所以方程组有非零解,向量组线性相关.(4) 设有四个数1234,,,k k k k ,使1234(1,0,0,2,5)(0,1,0,3,4)(0,0,1,4,7)(2,-3,4,11,12)=(0,0,0,0)k k k k +++则有方程组14243412341234203040234110547120k k k k k k k k k k k k k k +=⎧⎪-=⎪⎪+=⎨⎪+++=⎪⎪+++=⎩由前三个方程得1424342,3,4k k k k k k =-==-,代入第五个方程得4140k -=, 即40k =,从而1230k k k ===,所以向量组线性无关.7.设123α,α,α线性无关,证明:122331αα,αα,αα+++也线性无关. 证 设有三个数123,,k k k ,使()()()112223331αααααα0k k k +++++=, 则()()()131122233ααα0k k k k k k +++++=,因123α,α,α线性无关,故13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩,因系数行列式10111020011D ==≠,所以只有1230k k k ===, 由此知122331αα,αα,αα+++线性无关.8.设12α,α,,αn 线性无关,问向量组122311αα,αα,,αα,ααn n n -++++ 是线性相关,还是线性无关?并给出证明. 解 设有n 个数12,,,,n k k k 使()()()()112223111αααααααα0n n n n n k k k k --++++++++= ,则得方程组1122310000n n n k k k k k k k k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 其系数行列式11000011100000110001(1),000110000011n n D +==+-可见,当n 为奇数时,20n D =≠,方程组仅有零解,向量组线性无关, 当n 为偶数时,0n D =,方程组有非零解,向量组线性相关.9.设12α(,,,)(1,2,,)i i i in a a a i n == ,证明:向量组12α,α,,αn 线性相关的充分必要条件是det()0ij a =.证 必要性:设12α,α,,αn 线性相关,则存在不全为0的n 个数12,,,,n k k k 使1122ααα0n n k k k +++= ,即有方程组()11121211212222112200*0n n n nn n nn n a k a k a k a k a k a k a k a k a k +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 该方程组有非零解,故系数行列式0n D =,即det()0ij a =,充分性: 对于方程组(*)当det()0ij a =时,系数行列式0n D =,所以有非零解,即存在不全为0的12,,,,n k k k 使1122ααα0n n k k k +++= 成立,故12α,α,,αn 线性相关.10.设12α,α,,αn 是一组n 维向量.已知n 维标准单位向量组12e ,e ,,e n 能由它们线性表出,证明: 12α,α,,αn 线性无关.证 设12α(,,,)(1,2,,)i i i in a a a i n == ,则有1122αe e e ,i i i in n a a a =+++可见12α,α,,αn 也能由12e ,e ,,e n 线性表出,从而两个向量组等价. 因为12e ,e ,,e n 线性无关,所以12α,α,,αn 也线性无关.11.设12α,α,,αn 是一组n 维向量.证明:它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表出.证 必要性:设12α,α,,αn 线性无关,β为任一n 维向量,则12α,α,,αn ,β必线性相关.(个数大于维数),因此β可由12α,α,,αn 线性表出.充分性:设任一n 维向量β都可由12α,α,,αn 线性表出.因此12α,α,,αn 与12e ,e ,,e n 等价,从而12α,α,,αn 线性无关.12.判断下列向量是否线性相关,并求出一个极大线性无关组.(1)123α(1,2,1,4),α(9,100,10,4),α(2,4,2,8);T T T =-==--- (2) 123α(1,1,0),α(0,2,0),α(0,0,3);T T T ===(3) 1234α(1,2,1,3),α(4,1,5,6),α(1,3,4,7),α(2,1,1,0);T T T T ==---=---=- 解 (1)19221004A 1102448-⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭ 192082001900320-⎛⎫ ⎪ ⎪→ ⎪ ⎪-⎝⎭192010000000-⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭102010000000-⎛⎫⎪ ⎪→⎪ ⎪⎝⎭, 向量组的秩为2, 12α,α为一个极大线性无关组.(2) 100A 120003⎛⎫ ⎪= ⎪ ⎪⎝⎭100020003⎛⎫ ⎪→ ⎪ ⎪⎝⎭向量组的秩为3, 123α,α,α为一个极大线性无关组.(3) 14122131A 15413670⎛⎫ ⎪--⎪= ⎪--- ⎪--⎝⎭141209530953018106⎛⎫ ⎪--- ⎪→ ⎪--- ⎪---⎝⎭1412095300000000⎛⎫ ⎪--- ⎪→ ⎪ ⎪⎝⎭向量组的秩为2, 12α,α为一个极大线性无关组.13.求一个秩是4的方阵,它的两个行向量是(1,0,3,0,0),(1,1,0,0,0)--. 解 所求方阵可写成1030011000A 001000001000000⎛⎫ ⎪-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则1030001300A 00100000100000⎛⎫⎪- ⎪⎪→⎪⎪ ⎪⎝⎭显然(A)4R =.14.已知12α,α,,αs 的秩为r ,证明: 12α,α,,αs 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12α,α,,α,r i i i 为12α,α,,αs 中任意r 个线性无关的向量,因为向量组的秩为r ,故1212α,α,,α,α,(,,)r i i i i r i i i i ≠ 线性相关.可见12α,α,,αs 中的每个向量都可由12α,α,,α,r i i i 线性表出.因此, 12α,α,,α,r i i i 是12α,α,,αs 的一个极大线性无关组.15.用初等变换化下列矩阵为阶梯形,并判断其秩.(1)001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭; (2)1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(3)023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)1725314353759413254759413420253248⎛⎫⎪⎪⎪⎪⎝⎭.解 (1) 001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭131********r r ↔⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为3.(2) 1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭2131123403360336r r r r+-⎛⎫ ⎪→ ⎪ ⎪⎝⎭32123403360000r r -⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为2.(3)023*********-⎛⎫ ⎪- ⎪⎪--⎝⎭12011203430471r r ---⎛⎫⎪→- ⎪ ⎪--⎝⎭213134011200130039r r r r ++--⎛⎫ ⎪→-- ⎪ ⎪--⎝⎭323011*********r r ---⎛⎫⎪→-- ⎪ ⎪⎝⎭, 秩为2.(4)1725314353759413254759413420253248⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭213143317253143201330153015r r r r r r ---⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭433217253143201310020000r r r r --⎛⎫⎪⎪→⎪ ⎪⎝⎭1310022013172531430000r r ↔⎛⎫ ⎪⎪→ ⎪ ⎪⎝⎭2131217100200110253190000r r r r --⎛⎫ ⎪- ⎪→ ⎪ ⎪⎝⎭23100202531900110000r r ↔⎛⎫⎪ ⎪→ ⎪- ⎪⎝⎭,秩为3. 16.证明: 两个矩阵和的秩不超过这两个矩阵秩的和,即 (A B)(A)(B)R R R +≤+.证 设1A (α,,α),(A),n R r == 1α,,αr 为一个极大线性无关组,1B (β,,β),(B),n R s == 1β,,βs 为一个极大线性无关组, 1A B (r ,,r )n += .因为1r ,,r n 可由1α,,αn ,1β,,βn 线性表出,从而也可由1α,,αr ,1β,,βs 线性表出.故()1A B (r ,,r )n R R +=≤ ()11α,,α,β,,βr s R r s =+=(A)(B)R R +.17.设A 与B 可乘,且AB 0=,证明: (A)(B)A R R +≤的列数. 证法一 设A 为m n ⨯矩阵,B 为n l ⨯矩阵 由AB 0=,有11111111n l m mn n nl m n n l a a b b a a b b ⨯⨯⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 0000m l⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭ 比较等式两边对应元素,有111111111100n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩,11121211220,0n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩ ,11111100l n nl m lmn nl a b a b a b a b ++=⎧⎪⎨⎪++=⎩ . 可见B 的列向量组为上述l 个齐次线性方程组的解向量,因此有 (B)(A)R n R ≤-, 移项得(A)(B)R R n +≤(A 的列数).证法二 设A 为m n ⨯矩阵,B 为n l ⨯矩阵, 12(A),(B)R r R r ==,因为1(A)R r =,则A 的标准形可写成1E 000r ⎛⎫⎪⎝⎭,即存在可逆阵P,Q 使得 PAQ 1E 000r ⎛⎫=⎪⎝⎭.又设()111B Q B B r m n r m ⨯--⨯⎛⎫= ⎪ ⎪⎝⎭, 则10(AB)(PAB)(PAQQ B)R R R -===,但()111111B E 0B PAQQ B Q B B 000r m r r m n r m ⨯⨯---⨯⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 可见11(B )(PAQQ B)0r m R R -⨯==,又因为12(Q B)(B)R R r -==,所以()12(B )n r m R r -⨯=,而()1B n r m -⨯共1n r -行,因此12n r r -≥,即12r r n +≤或(A)(B)R R n +≤.习题 B1.证明: 12α,α,,αs (其中1α0≠)线性相关的充要条件是至少有一个α(1)i i s <≤可被121α,α,,αi - 线性表出.证 必要性:设12α,α,,αs 线性相关(1α0≠),则存在不全为0的s 个数12,,,s k k k 使1122ααα0s s k k k +++= ,设i k 是12,,,s k k k 中最后一个不为零的数,即0i k ≠,而10i s k k +=== ,则1122ααα0i i k k k +++= ,因为1α0≠,所以1i >,即1i s <≤,(否则120,0s k k k ≠=== 则1α0k =不能成立),于是1111αααi i i i ik k k k --=--- ,即αi 可由121α,α,,αi - 线性表出.充分性:如果1111αααi i i k k --=++ ,则11111ααα0αα0i i i i s k k --+++-+++= ,而11,,,1,0,,0i k k -- 不全为0,所以12α,α,,αs 线性相关.2.证明:一个向量组的任一线性无关组都可扩充为一个极大线性无关组. 证 设有向量组12α,α,,αn 秩为s ,12α,α,,αr i i i 是它的任意一个线性无关组,如果r s =,则它就是12α,α,,αn 的一个极大线性无关组.如果r s <,则12α,α,,αn 的其余向量中一定可以选出向量1αr i +,使12α,α,,αr i i i ,1αr i +线性无关(否则与12α,α,,αn 秩s r >矛盾),只要1r s +<,重复上述过程,直到r i s +=时为止.这样121α,α,,α,α,,αr r s i i i i i + 就是由12α,α,,αr i i i 扩充成的一个极大线性无关组.3.已知两向量组有相同的秩,且其中之一可被另一个线性表出,证明:这两个向量组等价. 证 设12A :α,α,,α;s 12B:β,β,,βt 为两个秩为r 的向量组, 1212α,α,,α;β,β,,βr r 分别为A,B 极大线性无关组,设B 可由A 线性表出,则有()()1212β,β,,βα,α,,αTr r K = ,其中K 为组合系数构成的r 阶方阵,因为1212α,α,,α;β,β,,βr r 线性无关,所以K 可逆,()()11212α,α,,αβ,β,,βr r K -= ,从而12α,α,,αr 可由12β,β,,βr 线性表出,从而可由12β,β,,βt 线性表出,又12α,α,,αs 可由12α,α,,αr 线性表出,所以12α,α,,αs 可由12β,β,,βt 线性表出,即A 可由B 线性表出,因此向量组A ,B 等价.4.设向量组12α,α,,αs 的秩为r ,在其中任取m 个向量12α,α,,αm i i i ,证明:{}12α,α,,αm i i i R r m s ≥+- .证 设12α,α,,αm i i i 的秩为t ,从它的一个极大线性无关组(含t 个向量)可扩充为12α,α,,αs 的一个极大线性无关组(含r 个向量),所扩充向量的个数为r t -个.但12α,α,,αs 中除了12α,α,,αm i i i 外,还有s m -个向量,故r t s m -≤-,即t r m s ≥+-.5.设n m ⨯阶矩阵A 的秩为r ,证明:存在秩为r 的n r ⨯阶矩阵P 及秩为r 的r m ⨯阶矩阵Q ,使A PQ =.证 因(A)R r =,故可经有限次初等行变换和初等列变换化为标准形,即存在m 阶可逆阵F 和n 阶可逆阵G ,使得 E 0GAF 00r ⎛⎫=⎪⎝⎭,即11E 0A GF ,00r--⎛⎫= ⎪⎝⎭记111212122G G G ,G G -⎛⎫= ⎪⎝⎭111212122F F F F F -⎛⎫= ⎪⎝⎭,其中1111G ,F 均为r 阶方阵,则111211121121222122G G F F E0E 0A G F GG F F 0000rr--⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111112212122G 0F F G 0F F ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=1111111221212122G F G F G F G F ⎛⎫ ⎪⎝⎭()11112121G F F G ⎛⎫= ⎪⎝⎭, 记1121G P G ⎛⎫=⎪⎝⎭,则P 为n r ⨯矩阵且(P )R r =(因1G -可逆,故其前r 列线性无关), ()1121Q F F =,则Q 为r m ⨯矩阵且(Q)R r =(因1F -可逆,故其前r 列线性无关),而A PQ =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推 论 :当m n时,n元非齐次线性方程组Ax b有唯一解的充要条件是A 0。
二、作业讲解
1.写出下列线性方程组的系数矩阵A和增广矩阵B.
(1)

x1 3x1

x2 x3 5 2x2 x3 3

x2 2x3 2
x1 x2 1
(2)

x1 2x2 4x3 4x4 1
解 1 1 1 1 1 1 1 1 1 1 1 0 2 2 3
2

4 1
1 3 2
1 1 4
1 1 4
4 61


0 0 0
1 0 0
3 0 0
3 0 0
2 0 0


1 0 9 1 1
增广矩阵A
b


1 5
2
5 3 4
2 6 2
3 1 1
11 1 6


0 0
1 0
7 1
7 0
2 1
2
2,
0 0
方程组同解于

x1 x2
1 9 7
2
x3

1 2
1 7
x3


0 0 1
1 0 0
1 1 0
101,增广矩阵B


0 0 1
1 0 0
1 1 0
0 1 1
111。
2.

x1
试问x2

x3


5 4 1
4 2t
3t

3t(t为任意常数)是否为线性方程组3xx11

x2 x2
a21x1 a22 x2 a2n xn
b2
,
am1x1 am2 x2 amnxn bm ,
其中x1, x2 , , xn为未知量,aij称为系数,bi称为常数项。
bi (i 1,2, m)全为零时,称为齐次线性方程组。 bi (i 1,2, m)不全为零时,称为非齐次线性方程组。
9

因为R(A) RA b,所以此时方程组无解 ;
当 1时,由11
1 1
1 2
2 1 1 0
1 0
0 1
1 1

5 5 4 1 0 0 0 0
因为R(A) RA b 2 3,所以此时方程组有无 穷组解,

a21x1 a22 x2 a2n xn
b2
,
am1x1 am2 x2 amn xn bm ,
Ax b
定 理 :n元非齐次线性方程组Ax b有解的充要条件是R(A) R(B),其中B A b
是增广矩阵。
定 理 :若n元非齐次线性方程组Ax b有解,且R(A) r,则 (1) Ax b有唯一解的充要条件是 r n; (2) Ax b有无穷多解的充要条件是 r n, 此时解中含有n r个自由未知量。


推 论 1:当m n时, (1) Ax 0仅有零解的充要条件为 A 0; (2) Ax 0有非零解的充要条件为 A 0。
推 论 2:当m n时,即方程个数小于未知量个数时,Ax 0必有有非零解。
3.非齐次线性方程组
a11x1 a12 x2 a1n xn b1,


0 0 0
1 0 0
3 0 0
3 0 0
2 0 0

原方程组同解于
x1 x2
3 2x3 2x4, 2 3x3 3x4,
取自由未知量
x3

t1,
x4

t2,
x1 3 2t1 2t2,
则方程组的通解为x2

2 3t1 x3 t1,

x3 x2


xn1 xn 1

xn xn

0 0


x1 x2 x3 xn1 0
解 当n 2时,齐次线性方程组的系数行列式
011 1
11 1 1
1 0 1 Dn 1 1 0

1
0 1 0
1 (n 1) 0 t2,
其中t1 , t2为任意常数。
取何值时,非齐次线性方程组
7.

x1 x2
x1 x2

x3
2x3

2 1
5x1 5x2 4x3 1
无解,有惟一解,有无穷多解?并在有无穷多解时,写出通解.
解 1 1 1 1
1 2 1 2 (4 5)( 1),
1 2 2
2 3 4
7 6 7



0 0 0
1 0 0
8 1 0
7 1526,
因为R(A) 4,所以,该齐次线性方 程组只有零解。
x 2 x3 xn1 xn 0
11.
判别下列齐次线性方程组(n

2)是否有非零解xx11
0
0
1
0
1
b3 b4
,
0 0 0 1 1 b4 0 0 0 1 1
b4


1
0
0
0
1
b5


0
0
0
0
0
b1

b2

b3

b4

b5

5
非齐次线性方程组有解 的充要条件为 R( A) R( A | b),即 bi 0。 i 1
x1 b1 b2 b3 b4 x5,
线性代数习题讲解
第三章 线性方程组
一、要点复习 二、作业讲解
一、要点复习
线性方程组
齐次线性方程组
仅有零解 有非零解
非齐次线性方程组
无解 有解
唯一解 无穷多解
1.线性方程组的基本概念
含有n个未知量m个方程的线性方程组
a11x1 a12 x2 a1n xn b1,

01,
5 10 1 5 0 0 0 0
方程组同解于x1
2x2 x4, x3 0,
取自由未知量 x2

t1, x4

t

2
x1 2t1 t2,
则方程组的通解为
x2 x3
t1, 0,
其中t1 , t2为任意常数。
x4 t2,
原方程组同解于x1x311,x2, 取自由未知量 x2 t,
则方程组的通解为
x1 x2
1
t, t,其中t为任意常数。
x3 1,
8.
x1 x2 b1

证明线性方程组
x2 x3 b2
5
x3 x4 b3 有解的充要条件 bi 0,在其有解时求其解.
x2 x2

2x3 3
0

4x1 x2 4x3 2
1 1 2 1 1 1 2 1 1 0 0 1
增广矩阵
2 1 4
1 2 1
2 0 4
0 3 2



0 0 0
1 0 0
2 4 0
2 8 0



线性方程组的矩阵表示:
a11 a12
系数矩阵A


a21 am1
a22 am2

增广矩阵B A
a11
b


a21 am1
a1n
x1
b1
a2n amn
,未知数向量x


x2 xn
x2 x3 1 x3 x4 1
x1 x4 1

(1)系数矩阵A


1 3
1 2
1 1
,增广矩阵B


1 3
1 2
1 1
5 3

0 1 2
0 1 2 2
1 1 0 0
1 1 0 0 1
(2)系数矩阵A

x4,
1 2
x

4




取自由未知量 x3 t1, x4 t2,
则方程组的通解为
x
x1

1
9 7
t1

1 2
t

2
2

2
1 7
t1

1 2
t

2
x3 t1,
其中t1
,
t
为任意常数。
2

x4

t

2
x1 x2 2x3 1
5.
求解非齐次线性方程组2x1x12
5 5 4 0 0 4 5
故当 4 且 1时,方程组有唯一解;
5
1 1 4 2 1 1 4



4 时, 5
由 1
5
4
5 5
5 2 4

1


0
1 0
1 5 0
5 6
5 0




2


3

x1 5x2
3x3 3x3 9x3
相关文档
最新文档