2019版高考数学(理)一轮复习全国经典版:第10章 计数原理、概率、随机变量及分布列 10-9a
2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.2排列

第一节课有 A5 数学课排在第四节课也有 A5 5种方法, 5种方法, 体育课排在第一节课且数学课排在第四节课有 A4 4种方法,
5 4 由排除法得这天课表的不同排法种数为 A6 - 2A + A 6 5 4=504.
故选 D.
3.某班级举办的演讲比赛中,共有 5 位选手参加,其 中 3 位女生、2 位男生.如果 2 位男生不能连续出场,且女 生甲不能排在第一个,那么出场顺序的排法种数为( A.90 B.60 C.48 D.36
2 百位.∴排成的三位奇数有 C2 A 3 2=6 个. 2 ②当选数字 2 时,再从 1,3,5 中取 2 个数字有 C3 种方
法.然后将选中的两个奇数数字选一个排在个位,其余 2
1 2 个数字全排列.∴排成的三位奇数有 C2 C 3 2A2=12 个.
∴由分类加法计数原理,共有 18 个符合条件的三位奇 数.故选 B.
解析 若大一的孪生姐妹乘坐甲车, 则时甲车中的另1 1 外 2 人分别来自不同年级,有 C2 3C2C2=12 种,若大一的孪
生姐妹不乘坐甲车,则有 2 名同学来自同一个年级,另外 2
1 1 1 名分别来自不同年级,有 C3 C2C2=12 种,所以共有 24 种乘
坐方式,故选 A.
8.在航天员进行的一项太空实验中,先后要实施 6 个 程序,其中程序 A 只能出现在第一步或最后一步,程序 B 和 C 实施时必须相邻, 请问实验顺序的编排方法共有( ) A.34 种 B.48 种 C.96 种 D.144 种 解析 由题意知程序 A 只能出现在第一步或最后一步,
4.(2018· 山西质量监测)A,B,C,D,E,F 六人围坐 在一张圆桌周围开会,A 是会议的中心发言人,必须坐最北 面的椅子,B,C 二人必须坐相邻的两把椅子,其余三人坐 剩余的三把椅子,则不同的座次有( ) A.60 种 B.48 种 C.30 种 D.24 种
2019版高考数学(理)高分计划一轮课件:第10章 计数原理、概率、随机变量及其分布 10-2

(3)甲、乙、丙、丁四个好朋友相互发微信,共有多少 条微信?此题属于组合问题.( × )
(4)若组合式 Cxn=Cmn ,则 x=m 成立.( × )
2.教材衍化 (1)(选修 A2-3P18 例 3)6 名同学排成一排,其中甲、乙 两人必须排在240 种 D.120 种
解 (1)从余下的 34 种商品中,选取 2 种有 C324=561 种,∴某一种假货必须在内的不同取法有 561 种.
(2)从 34 种可选商品中,选取 3 种,有 C334=5984 种. ∴某一种假货不能在内的不同取法有 5984 种. (3)从 20 种真货中选取 1 件,从 15 种假货中选取 2 件 有 C120C125=2100 种. ∴恰有 2 种假货在内的不同的取法有 2100 种.
冲关针对训练 (2018·武汉模拟)若从 1,2,3,…,9 这 9 个整数中同时取 4 个不同的数,其和为偶数,则不同的取法共有( ) A.60 种 B.63 种 C.65 种 D.66 种 解析 共有 4 个不同的偶数和 5 个不同的奇数,要使和 为偶数,则 4 个数全为奇数,或全为偶数,或 2 个奇数和 2 个偶数,∴共有不同的取法有 C45+C44+C25C24=66(种).故选 D.
①0 排在个位能被 5 整除的四位数有 A11·(C14C24)A33=144 个;
②0 排在十、百位,但 5 必须排在个位有 A12·A11(C14C13)·A22 =48 个;
③不含 0,但 5 必须排在个位有 A11·(C31C24)A33=108 个. 由分类加法计数原理得所求四位数共有 300 个.
方法技巧 1.求解有限制条件排列问题的主要方法
2.解决有限制条件排列问题的策略 (1)根据特殊元素(位置)优先安排进行分步,即先安排特 殊元素或特殊位置. (2)根据特殊元素当选数量或特殊位置由谁来占进行分 类. 提醒:(1)分类要全,以免遗漏. (2)插空时要数清插空的个数,捆绑时要注意捆绑后元 素的个数及要注意相邻元素的排列数. (3)用间接法求解时,事件的反面数情况要准确.
近年高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.4随机事件的概率课后作业理(20

2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.4 随机事件的概率课后作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.4 随机事件的概率课后作业理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.4 随机事件的概率课后作业理的全部内容。
10.4 随机事件的概率[基础送分提速狂刷练]一、选择题1.(2017·湖南十三校二模)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A。
错误! B.错误! C。
错误! D.错误!答案B解析分别记《爱你一万年》《十年》《父亲》《单身情歌》为A1,A2,A3,A4,从这四首歌中选出两首歌进行表演的所有可能结果为A1A2,A1A3,A1A4,A2A3,A 2A4,A3A4,共6个,其中A1未被选取的结果有3个,所以所求概率P=错误!=错误!。
故选B.2.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是()A.① B.②④ C.③ D.①③答案C解析从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C。
(新课标)2019届高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.3随机

A∩B=______ A∩B=______ P(A∪B)=P(A)+P(B)= _______
对立事件
拓展:“互斥事件”与“对立事件”的区别及联系:两个事件 A 与 B 是互 斥事件,有如下三种情况:①若事件 A 发生,则事件 B 就不发生;②若事件 B 发生,则事件 A 就不发生;③事件 A,B 都不发生.两个事件 A 与 B 是对立事 件,仅有前两种情况.因此,互斥未必对立,但对立一定互斥. 4.概率的几个基本性质 (1)概率的取值范围:____________. (2)必然事件的概率 P(E)=____________. (3)不可能事件的概率 P(F)=____________. (4)互斥事件概率的加法公式 ①如果事件 A 与事件 B 互斥,则 P(A∪B)=___________________. 推广: 如果事件 A1, A2, …, An 两两互斥(彼此互斥), 那么事件 A1+A2+… +An 发生的概率, 等于这 n 个事件分别发生的概率的和, 即 P(A1+A2+…+An) =____________________________. ②若事件 B 与事件 A 互为对立事件,则 P(A)=_______________.
有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、 西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( A.互斥事件但非对立事件 B.对立事件但非互斥事件 C.互斥事件也是对立事件 D.以上都不对 )
解:由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是 互斥事件,但不是对立事件.故选 A.
第十章 第一章
集合与常用逻辑用语 计数原理、概率、随机变量及其分布
10.3 随机事在条件 S 下,一定会发生的事件,叫做相对于条件 S 的 ____________. (2) 在条件 S 下,一定不会发生的事件,叫做相对于条件 S 的 ____________. 必然事件与不可能事件统称为相对于一定条件 S 的确定事件. (3)在条件 S 下可能发生也可能不发生的事件,叫做相对于条件 S 的__________. (4)____________和____________统称为事件, 一般用大写字母 A, B,C,…表示.
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-9a

[重点保分 两级优选练]A 级一、选择题1.已知ξ的分布列为ξ -1 0 1 P121316则在下列式中:①E (ξ)=-13;②D (ξ)=2327;③P (ξ=0)=13.正确的个数是( )A .0B .1C .2D .3 答案 C解析 E (ξ)=(-1)×12+1×16=-13,故①正确.D (ξ)=⎝ ⎛⎭⎪⎫-1+132×12+⎝ ⎛⎭⎪⎫0+132×13+⎝ ⎛⎭⎪⎫1+132×16=59,故②不正确.由分布列知③正确.故选C.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·广东茂名模拟)若离散型随机变量X 的分布列为X1则X 的数学期望E (X )=( ) A .2 B .2或12 C.12 D .1 答案 C解析 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.故选C.4.(2017·青岛质检)设随机变量ξ服从正态分布N (1,σ2),则函数f (x )=x 2+2x +ξ不存在零点的概率为( )A.12B.23C.34D.45 答案 A解析 函数f (x )=x 2+2x +ξ不存在零点的条件是 Δ=22-4×1×ξ<0,解得ξ>1.又ξ~N (1,σ2),所以P (ξ>1)=12,即所求事件的概率为12.故选A.5.(2018·山东聊城重点中学联考)已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套 答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.6.(2018·皖南十校联考)在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )A .1500B .1700C .4500D .8000 答案 A解析 因为学生的数学成绩X ~N (98,100),所以P (X ≥108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12(1-0.6826)=0.1587,故该学生的数学成绩大约排在全市第0.1587×9450≈1500名,故选A.7.(2017·银川一中一模)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,(a ,b ,c ∈(0,1)),已知他投篮得分的数学期望是2,则2a +13b 的最小值为( )A.323B.283C.143D.163 答案 D解析 由数学期望的定义可知3a +2b =2,所以2a +13b =12(3a +2b )·⎝ ⎛⎭⎪⎫2a +13b =12( 6+23+4b a +a b )≥12⎝ ⎛⎭⎪⎫6+23+4=163,当且仅当4b a =ab 即a =12,b =14时取得等号.故选D.8.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113 答案 C 解析 由已知得⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29,解得⎩⎪⎨⎪⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2. 又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.故选C.9.(2018·广州调研)已知随机变量x 服从正态分布N (μ,σ2),且P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-σ<x ≤μ+σ)=0.6826,若μ=4,σ=1,则P (5<x <6)等于( )A .0.1358B .0.1359C .0.2716D .0.2718 答案 B解析 由题知x ~N (4,1),作出相应的正态曲线,如图,依题意P (2<x ≤6)=0.9544,P (3<x ≤5)=0.6826,即曲边梯形ABCD 的面积为0.9544,曲边梯形EFGH 的面积为0.6826,其中A ,E ,F ,B 的横坐标分别是2,3,5,6,由曲线关于直线x =4对称,可知曲边梯形FBCG 的面积为0.9544-0.68262=0.1359,即P (5<x <6)=0.1359,故选B. 10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫712,1D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 根据题意,学生一次发球成功的概率为p ,即P (X =1)=p ,发球二次的概率P (X =2)=p (1-p ),发球三次的概率P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝⎛⎭⎪⎫0,12.故选B.二、填空题11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=______.答案 53解析 ∵P (X =0)=13×(1-p )2=112,∴p =12. 则P (X =1)=23×12×12+13×12×12×2=412=13, P (X =2)=23×12×12×2+13×12×12=512, P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可能看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16.∴成绩不低于120分的学生约为600×16=100人.13.(2018·沧州七校联考)2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.答案 180解析 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴.又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35.而P (ξ≥8)=0.5,所以P (ξ>9)=0.15.故耗油量大于9升的汽车大约有1200×0.15 =180辆.14.(2017·安徽蚌埠模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E (ξ)-E (η)=________元.答案 3解析 ξ的分布列为E (ξ)=15×(5+6+7+8+9)=7(元). η的分布列为E (η)=2×25+4×310+6×15+8×110=4(元), ∴E (ξ)-E (η)=7-4=3(元). 故答案为3.B 级三、解答题15.(2018·湖北八校第二次联考)某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x 、y 的值,并补全频率分布直方图; (2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X ,求X 的分布列及数学期望.解 (1)由题意知,[25,30)内的频率为0.01×5=0.05,故x =100×0.05=5.因[30,35)内的频率为1-(0.05+0.35+0.3+0.1)=1-0.8=0.2,故y =100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图略.(2)∵年龄从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴抽取的20人中,年龄在[35,40)内的人数为7. X 可取0,1,2,P (X =0)=C 213C 220=78190,P (X =1)=C 113C 17C 220=91190,P (X =2)=C 27C 220=21190,故X 的分布列为故E(X)=91190×1+21190×2=133190.16.新生儿Apgar评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;(2)用这16名新生儿的Apgar评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X表示抽到评分不低于9分的新生儿数,求X的分布列及数学期望.解(1)设A i表示所抽取的3名新生儿中有i名的评分不低于9分,“至多有1名新生儿的评分不低于9分”记为事件A,则由表格中数据可知P(A)=P(A0)+P(A1)=C312C316+C14C212C316=121140.(2)由表格数据知,从本年度新生儿中任选1名,评分不低于9分的概率为416=1 4,由题意知随机变量X的所有可能取值为0,1,2,3,且P (X =0)=⎝ ⎛⎭⎪⎫343=2764;P (X =1)=C 13⎝ ⎛⎭⎪⎫141⎝ ⎛⎭⎪⎫342=2764; P (X =2)=C 23⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫341=964;P (X =3)=C 33⎝ ⎛⎭⎪⎫143=164.所以X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=0.75 ⎝ ⎛⎭⎪⎫或E (X )=3×14=0.75.17.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的数学期望和方差.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A-1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.故X 的数学期望为E (X )=3×15=35, 方差为D (X )=3×15×45=1225.18.(2018·江淮十校联考)某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N (120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.(1)试估算该校高三年级数学的平均成绩;(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X ,求X 的期望.附:若X ~N (μ,σ2),则P (μ-3σ<X <μ+3σ)=0.9974.解 (1)由频率分布直方图可知[125,135)的频率为1-10×(0.01+0.024+0.03+0.016+0.008)=0.12,该校高三年级数学的平均成绩为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112(分).(2)由于1310000=0.0013,由正态分布得P (120-3×5<X <120+3×5)=0.9974,故P (X ≥135)=1-0.99742=0.0013,即0.0013×10000=13,所以前13名的成绩全部在135分以上,由频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0.08=4人,而在[125,145)的学生有50×(0.12+0.08)=10人,所以X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 26C 14C 310=12, P (X =2)=C 16C 24C 310=310,P (X =3)=C 34C 310=130, X 的分布列为数学期望值为E (X )=0×16+1×12+2×310+3×130=1.2.。
全国通用近年高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时作业六十四10.1分类加法计

(全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十四10.1 分类加法计数原理与分步乘法计数原理理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十四10.1 分类加法计数原理与分步乘法计数原理理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十四10.1 分类加法计数原理与分步乘法计数原理理的全部内容。
课时分层作业六十四分类加法计数原理与分步乘法计数原理一、选择题(每小题5分,共35分)1。
从甲地到乙地,每天飞机有5班,高铁有10趟,动车有6趟,公共汽车有12班。
某人某天从甲地前往乙地,则其出行方案共有( )A。
22种 B.33种C。
300种D。
3 600种【解析】选B.由分类加法计数原理知共有5+10+6+12=33种出行方案.2。
用数字0,1,2,3组成三位数的个数为()A.34B。
43C。
3×42 D.4×32【解析】选C.因为0不能在首位,所以首位有3种排法,十位和个位各有4种排法,故共有3×4×4=3×42个三位数。
3。
(2018·洛阳模拟)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16 C。
13 D.10【解析】选C。
分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4。
2019版高考数学(理)高分计划一轮课件:第10章 计数原理、概率、随机变量及其分布 10-2

解 (1)站成两排(前 3 后 4),共有 A77=5040 种不同的 排法.
(2)第一步,从甲、乙、丙三人选一个加到前排,有 3 种,第二步,前排 3 人形成了 4 个空,任选一个空加一人, 有 4 种,第三步,后排 4 人形成了 5 个空,任选一个空加 一人有 5 种,此时形成 6 个空,任选一个空加一人,有 6 种,根据分步计数原理有 3×4×5×6=360 种方法.
(3)甲、乙、丙、丁四个好朋友相互发微信,共有多少 条微信?此题属于组合问题.( × )
(4)若组合式 Cxn=Cmn ,则 x=m 成立.-3P18 例 3)6 名同学排成一排,其中甲、乙 两人必须排在一起的不同排法有( ) A.720 种 B.360 种 C.240 种 D.120 种
方法技巧 1.组合问题的常见题型及解题思路 (1)常见题型:一般有选派问题、抽样问题、图形问题、 集合问题、分组问题等. (2)解题思路:①分清问题是否为组合问题;②对较复 杂的组合问题,要搞清是“分类”还是“分步”,一般是先 整体分类,然后局部分步,将复杂问题通过两个原理化归为 简单问题.见本例(4).
解 7 位同学站成一排,共有 A77种不同的排法; 甲、乙和丙三个同学都相邻的排法共有 A55A33=720 种. 故共有 A77-A55A33=4320 种不同的排法.
[结论探究 3] (1)若将 7 人站成两排,前排 3 人,后排 4 人,共有多少种不同的排法?
(2)若现将甲、乙、丙三人加入队列,前排加 1 人,后 排加 2 人,其他人保持相对位置不变,则有多少种不同的 加入方法?
3.排列数、组合数的公式及性质
4.常用结论 (1)①Amn =(n-m+1)Amn -1; ②Amn =n-n mAmn-1; ③Amn =nAmn--11. (2)①nAnn=Ann+ +11-Ann; ②Amn+1=Amn +mAmn -1. (3)1!+2·2!+3·3!+…+n·n!=(n+1)!-1.
全国通用近年高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时作业六十七10.4随机事件的

(全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十七10.4 随机事件的概率理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十七10.4 随机事件的概率理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十七10.4 随机事件的概率理的全部内容。
课时分层作业六十七随机事件的概率一、选择题(每小题5分,共35分)1.抛一枚骰子,记“正面向上的点数是1”为事件A,“正面向上的点数是2”为事件B,“正面向上的点数是奇数”为事件C,“正面向上的点数是偶数"为事件D,则下列说法正确的是( )A。
A与B对立B.A与C互斥C.B与C互斥D。
C与D互斥但不对立【解析】选C.由互斥事件、对立事件的定义知C正确,A,B,D都不正确.2。
若A,B为对立事件,则()A.P(A+B)<1B.P(AB)=1C。
P(AB)=P(A)·P(B) D.P(A+B)=1【解析】选D。
由对立事件的定义可知:P(A+B)=1,P(AB)=0 .因此D选项正确.3。
从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164, 179,149,158,159,175。
根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任意抽取一人,估计该生的身高在155.5 cm~170.5 cm之间的概率约为( )A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块四 模拟演练·提能增分[A 级 基础达标]1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后尚余子弹数目的均值为( )A .2.44B .3.376C .2.376D .2.4答案 C解析 X =k 表示第(4-k )次命中目标, P (X =3)=0.6, P (X =2)=0.4×0.6, P (X =1)=0.42×0.6, P (X =0)=0.43×(0.6+0.4),∴E (X )=3×0.6+2×0.4×0.6+1×0.42×0.6=2.376.2.[2018·长沙检测]已知随机变量X 服从正态分布N (1,σ2),若P (ξ>2)=0.15,则P (0≤ξ≤1)=( )A .0.85B .0.70C .0.35D .0.15 答案 C解析 P (0≤ξ≤1)=P (1≤ξ≤2)=0.5-P (ξ>2)=0.35.故选C. 3.随机变量X 的分布列如下:其中a ,b ,c 成等差数列.若E (X )=13,则D (X )的值是( ) A.49 B.59 C.23D.95解析 a +b +c =1.又∵2b =a +c ,故b =13,a +c =23.由E (X )=13,得13=-a +c ,故a =16,c =12.D (X )=⎝ ⎛⎭⎪⎫-1-132×16+⎝ ⎛⎭⎪⎫0-132×13+⎝ ⎛⎭⎪⎫1-132×12=59.故选B.4.签盒中有编号为1、2、3、4、5、6的六支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的数学期望为( )A .5B .5.25C .5.8D .4.6答案 B解析 由题意可知,X 可以取3,4,5,6,P (X =3)=1C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.∴E (X )=3×120+4×320+5×310+6×12,得E (X )=5.25.5.为了了解某地区高三男生的身体发育状况,抽查了该地区1000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X (kg)服从正态分布N (μ,22),且正态曲线如图所示.若体重大于58.5 kg 小于等于62.5 kg 属于正常情况,则这1000名男生中体重属于正常情况的人数是( )A .997B .954C .819D .683解析 由题意,可知μ=60.5,σ=2,故P (58.5<X ≤62.5)=P (μ-σ<X ≤μ+σ)=0.6826,从而体重属于正常情况的人数是1000×0.6826≈683.6.已知随机变量ξ的分布列为P (ξ=m )=13,P (ξ=μ)=a ,若E (ξ)=2,则D (ξ)的最小值等于________.答案 0解析 由13+a =1,得a =23,又E (ξ)=2, ∴m 3+2μ3=2,m =6-2μD (ξ)=13(m -2)2+23(μ-2)2=2μ2-8μ+8=2(μ-2)2, ∴μ=2时,D (ξ)最小值=0.7.[2018·南宁模拟]某高校进行自主招生的面试程序如下:共设3道题,每道题答对给10分,答错倒扣5分(每道题都必须答,但相互不影响),设某学生答对每道题的概率为23,则该学生在面试时得分的期望值为________.答案 15解析 记学生面试的得分为随机变量η,则η的可能取值为-15,0,15,30,则有P (η=-15)=⎝ ⎛⎭⎪⎫133=127,P (η=0)=C 13×⎝ ⎛⎭⎪⎫132×23=627,P (η=15)=C 23×13×⎝ ⎛⎭⎪⎫232=1227,P (η=30)=⎝ ⎛⎭⎪⎫233=827.所以该学生面试得分的数学期望E (η)=(-15)×127+0×627+15×1227+30×827=15.8.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可以看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16,∴成绩不低于120分的学生约为600×16=100(人).9.[2018·江西师大附中模拟]已知某校的数学专业开设了A ,B ,C ,D 四门选修课,甲、乙、丙3名学生必须且只需选修其中一门.(1)求这3名学生选择的选修课互不相同的概率;(2)若甲和乙要选同一门课,求选修课A 被这3名学生选修的人数X 的分布列和数学期望.解 (1)3名学生选择的选修课所有不同选法有43=64种;各人互不相同的选法有A 34种,故互不相同的概率P =A 3443=38.(2)选修课A 被这3名学生选修的人数X 的可能取值为0,1,2,3, P (X =0)=3242=916,P (X =1)=342=316, P (X =2)=342=316,P (X =3)=142=116. 所以X 的分布列为数学期望E (X )=0×916+1×316+2×316+3×116=34.10.袋中有1个白球和4个黑球,每次从中任取1个球,每次取出的黑球不再放回,直到取出白球为止.记取球次数为ξ.(1)求ξ的概率分布; (2)求ξ的数学期望及方差.解 (1)ξ的所有可能取值为1,2,3,4,5,并且有 P (ξ=1)=15=0.2,P (ξ=2)=45×14=0.2, P (ξ=3)=45×34×13=0.2, P (ξ=4)=45×34×23×12=0.2, P (ξ=5)=45×34×23×12×11=0.2. 因此ξ的分布列是(2)E (ξ)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3, D (ξ)=(1-3)2×0.2+(2-3)2×0.2+(3-3)2×0.2+(4-3)2×0.2+(5-3)2×0.2=2.[B 级 知能提升]1.甲、乙两人独立地从六门选修课程中任选三门进行学习,记两人所选课程相同的门数为X ,则E (X )为( )A .1B .1.5C .2D .2.5答案 B解析 X 可取0,1,2,3,P (X =0)=C 36C 36×C 36=120,P (X =1)=C 16×C 25×C 23C 36×C 36=920,P (X =2)=C 26×C 14×C 13C 36×C 36=920,P (X =3)=C 36C 36×C 36=120,故E (X )=0×120+1×920+2×920+3×120=1.5.2.[2018·山东聊城联考]已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.3.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.设X 为该毕业生得到面试的公司个数.若P (X =0)=112,则D (X )=________.答案 1318解析 由题意,知13×(1-p )2=112,即p =12,所以P (X =1)=23×⎝ ⎛⎭⎪⎫1-122+13×12×⎝ ⎛⎭⎪⎫1-12+13×⎝ ⎛⎭⎪⎫1-12×12=13,P (X =2)=23×12×⎝ ⎛⎭⎪⎫1-12+23×⎝ ⎛⎭⎪⎫1-12×12+13×12×12=512,P (X =3)=23×⎝ ⎛⎭⎪⎫122=16,所以E (X )=0×112+1×13+2×512+3×16=53,所以D (X )=112×⎝⎛⎭⎪⎫0-532+13×⎝⎛⎭⎪⎫1-532+512×⎝⎛⎭⎪⎫2-532+16×⎝⎛⎭⎪⎫3-532=1318.4.[2018·宁夏模拟]某次数学测验共有10道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分.某考生每道题都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道题能排除两个错误选项,另2道只能排除一个错误选项,于是该生做这4道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(1)求该考生本次测验选择题得50分的概率;(2)求该考生本次测验选择题所得分数的分布列和数学期望. 解 (1)设选对一道“能排除2个选项的题目”为事件A ,选对一道“能排除1个选项的题目”为事件B ,则P (A )=12,P (B )=13.该考生选择题得50分的概率为P (A )·P (A )·P (B )·P (B )=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132=136.(2)该考生所得分数X =30,35,40,45,50, P (X =30)=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-132=19, P (X =35)=C 12⎝ ⎛⎭⎪⎫122·⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122·C 12·13×23=13,P (X =40)=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫232+C 12·⎝ ⎛⎭⎪⎫122·C 12·13×23+⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132=1336, P (X =45)=C 12⎝ ⎛⎭⎪⎫122·⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫122·C 12·13×23=16,P (X =50)=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132=136.该考生所得分数X 的分布列为所以E (X )=30×19+35×13+40×1336+45×16+50×136=1153分. 5.[2018·湖北武汉模拟]某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N (168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm 和184 cm 之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.(1)由频率分布直方图估计该校高三年级男生平均身高状况; (2)求这50名男生身高在172 cm 以上(含172 cm)的人数; (3)在这50名男生身高在172 cm 以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.参考数据: 若ξ~N (μ,σ2),则 P (μ-σ<ξ≤μ+σ)=0.6826,P (μ-2σ<ξ≤μ+2σ)=0.9544, P (μ-3σ<ξ≤μ+3σ)=0.9974.解 (1)由频率分布直方图,经过计算该校高三年级男生平均身高为⎝⎛⎭⎪⎫162×5100+166×7100+170×8100+174×2100+178×2100+182×1100×4=168.72.(2)由频率分布直方图知,后3组频率为(0.02+0.02+0.01)×4=0.2,人数为0.2×50=10,即这50名男生身高在172 cm 以上(含172 cm)的人数为10.(3)∵P (168-3×4<ξ≤168+3×4)=0.9974, ∴P (ξ≥180)=1-0.99742=0.0013. ∴0.0013×100000=130.∴全市前130名男生的身高在180 cm 以上,这50人中180 cm 以上的有2人.随机变量ξ可取0,1,2,于是P (ξ=0)=C 28C 210=2845,P (ξ=1)=C 18C 12C 210=1645,P (ξ=2)=C 22C 210=145,∴E (ξ)=0×2845+1×1645+2×145=25.。