2021高考数学计数原理

合集下载

2021年高考数学高分秘籍 计数原理

2021年高考数学高分秘籍 计数原理

2021年高考数学高分秘籍计数原理年级:姓名:计数原理1.要排出某理科班一天中语文、数学、物理、英语、生物、化学6堂课的课程表,要求语文课排在上午(前4节),生物课排在下午(后2节),不同排法种数为()A.144 B.192C.360 D.720【答案】B【解答】:根据题意,分2步进行分析:①,要求语文课排在上午(前4节),生物课排在下午(后2节),则语文课有4种排法,生物课有2种排法,故这两门课有4×2=8种排法;②,将剩下的4门课全排列,安排在其他四节课位置,有A44=24种排法,则共有8×24=192种排法,故选:B.两个计数原理解题的方法:(1)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.2.有5名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学不能相邻,则不同的站法有()A.8种B.16种C.32种D.48种【答案】B【解答】:根据题意,假设有1、2、3、4、5,共5个位置,分3步进行分析:①,甲必须站在正中间,将甲安排在3号位置,②,在1、2、4、5中一个位置任选1个,安排乙,有4种情况,由于乙、丙两位同学不能相邻,则丙有2种安排方法,③,将剩下的2名同学全排列,安排在剩下的2个位置,有A22=2种安排方法,则有1×4×2×2=16种安排方法;故选:B.1.利用两个原理解决应用问题时最易忽视判断对完成的事件是分类完成还是分步完成.2.有特殊元素时,用元素优先法;有特殊位置时,用位置优先法.1.有5名学生站成一排照相,其中甲、乙两人必须站在一起的排法有()A.A32⋅A22种B.3A22种C.2A33种D.A44⋅A22种【答案】D【解答】:根据题意,分2步分析:①,由于甲、乙两人必须站在一起,将甲乙2人看成一个整体,考虑其顺序,有A22种情况,②,将这个整体与其余3人全排列,有A44种情况,则甲、乙两人必须站在一起的排法A22A44种排法;故选:D.求解排列、组合问题常用的解题方法(1)元素相邻的排列问题——“捆绑法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法;(5)分组分配问题①平均分组问题分组数计算时要注意除以组数的阶乘.②不平均分组问题实质上是组合问题.2.一次考试中,要求考生从试卷上的9个题目中选6个进行解答,其中至少包含前5个题目中的3个,则考生答题的不同选法的种数是A.40 B.74C.84 D.200【答案】B【解析】由题意,考生从试卷上的9个题目中选6个进行作答,要求至少包含前5个题目中的3个,包含三种情况:前5个题目中恰好包含3个,共有C53C43=40种;前5个题目中恰好包含4个,共有C54C42=30种;前5个题目中恰好包含5个,共有C55C41=4种,由分类计数原理,可得共有40+30+4=74种不同的选法,故选B.【名师点睛】本题主要考查了分类计数原理与组合的应用其中解答中认真审题,合理分类,利用排列、组合的知识求解每种情况的结果是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.对于复杂问题的排列、组合问题,要注意分类讨论思想的运用,分类时按某一标准进行,切勿因分类标准不定造成漏解或多解.)5的展开式中x4的系数为()3.(x2+2xA.10 B.20C.40 D.80【答案】C)5的展开式的通项为:【解答】:由二项式定理得(x2+2x)r=2r C5r x10−3r,T r+1=C5r(x2)5﹣r(2x由10﹣3r=4,解得r=2,∴(x 2+2x )5的展开式中x 4的系数为22C 52=40.故选:C .4.(1+x ﹣x 2)10展开式中x 3的系数为( ) A .10 B .30C .45D .210【答案】B【解答】:(1+x ﹣x 2)10=[1+(x ﹣x 2)]10的展开式的通项公式为T r+1=C 10r (x ﹣x 2)r. 对于(x ﹣x 2)r,通项公式为T m+1=C r m •xr ﹣m.(﹣x 2)m,令r+m=3,根据0≤m ≤r ,r 、m 为自然数,求得{r =2m =1,或{r =3m =0.∴(1+x ﹣x 2)10展开式中x 3项的系数为−C 102C 21+C 103C 30=﹣90+120=30.故选:B .5.若(x 2+1x 2+2)n展开式中各项系数之和为64,则展开式中的常数项是( ) A .10 B .20C .30D .40【答案】B【解答】:(x 2+1x 2+2)n=(x +1x )2n ,由(x 2+1x 2+2)n 展开式中各项系数之和为64,得22n=64, ∴2n=6.则(x +1x )2n =(x +1x )6,其展开式的通项为T r+1=C 6r ⋅x 6−r ⋅(1x)r =C 6r ⋅x 6−2r .取6﹣2r=0,得r=3.∴展开式中的常数项是C 63=20.故选:B .【名师点睛】本题主要考查二项展开式中指定项的系数,熟记二项式定理即可,属于基础题型.1.赋值法解决二项展开式中所有项的系数和问题,如(1-2x)7=a0+a1x+a2x2+…+a7x7.令x=0,可得a0,令x=1,可得a0+a1+…+a7值,令x=-1,可得a0-a1+a2-a3+…-a7值,若(1-2x)7展开式变为(1-2x)7=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7,再求相关系数和时,x赋值要变化.2.几个二项式积展开式中某项的系数的求法多用搭配法.1.李雷和韩梅梅两人都计划在国庆节的7天假期中,到“东亚文化之都﹣﹣泉州”“二日游”,若他们不同一天出现在泉州,则他们出游的不同方案共有()A.16种B.18种C.20种D.24种2.现有4种不同颜色对如图所示的四个部分进行涂色,要求有公共边界的两块不能用同一种颜色,则不同的涂色方法共有()A.24种B.30种C.36种D.48种3.甲、乙、丙、丁四位同学高考之后计划去A、B、C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区,乙不去B社区,则不同的安排方法种数为()A.8 B.7C.6 D.54.景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的面走到山顶后,接着从另一面下山,则不同走法的种数是()A.6 B.10C.12 D.205.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()种A.480 B.360C.240 D.1206.上海某小学组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()A.A62×A54种B.A62×54种C.C62×A54种D.C62×54种7.有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有()A.120种B.150种C.240种D.260种8.(1﹣x)(1+x)5展开式中x项的系数是()A.4 B.6C.8 D.129.已知二项式(1+1x−2x)4,则展开式的常数项为()A.﹣1 B.1C.﹣47 D.4910.在(x﹣2y)5的展开式中,所有项的系数之和等于()A.32 B.﹣32C.1 D.﹣111.已知(x﹣1)(ax+1)6展开式中x2的系数为0,则正实数a=()A.1 B.25C.23D.212.在(x﹣2)10展开式中,二项式系数的最大值为 a,含x7项的系数为b,则ba=()A.8021B.2180C.−2180D.−802113.已知:x(x−2)8=a0+a1(x−1)+a2(x−1)2+⋯+a9(x−1)9,则a6=()A.﹣28 B.﹣448C.112 D.44814.(2x﹣1x )5(x+1x)的展开式中的常数项为()A.20 B.﹣20C.40 D.﹣4015.(1+√x)6的展开式中有理项系数之和为()A.64 B.32C.24 D.1616.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)17.4名同学去参加3 个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社会团体,则共有种结果.18.将一个4×4正方形棋盘中的8个小正方形方格染成红色,使得每行、每列都恰有两个红色方格,则有种不同的染色方法.19.(2x﹣3y)2(x+y)8的展开式中,含x3y7的项的系数为.)n(n∈N+)的展开式中第5项的系数与第3项的系数的比是10:1.20.已知(√x−2x2(1)求展开式中各项系数的和;(2)求展开式中含x32的项;(3)求展开式中系数的绝对值最大的项.)n(n∈N*)展开式中,前三项的二项式系数和是56,求:21.已知二项式(x2+12√x(Ⅰ)n的值;(Ⅱ)展开式中的常数项.22.在(√x +12⋅√x 4)n的展开式中,前三项的系数成等差数列.(Ⅰ)求n 的值;(Ⅱ)求展开式中二项式系数和(用数字作答);23.已知(1+3x 2)n的展开式中,各项系数和比它的二项式系数和大992.求展开式中二项式系数最大的项.1.C 【解答】:任意相邻两天组合一起,一共有6种情况,如①②,②③,③④,④⑤,⑤⑥,⑥⑦,若李雷选①②或⑥⑦,则韩梅梅有4种选择,选若李雷选②③或③④或④⑤或⑤⑥,则韩梅梅有3种选择,故他们不同一天出现在泉州,则他们出游的不同方案共有2×(4+6)=20, 故选:C .2.D 【解答】:根据题意,设需要涂色的四个部分依次分①、②、③、④, 对于区域①,有4种颜色可选,有4种涂色方法,对于区域②,与区域①相邻,有3种颜色可选,有3种涂色方法, 对于区域③,与区域①②相邻,有2种颜色可选,有2种涂色方法,对于区域④,与区域②③相邻,有2种颜色可选,有2种涂色方法,则不同的涂色方法有4×3×2×2=48种;故选:D.3.B【解答】:根据题意,分2种情况讨论:①,乙和甲一起去A社区,此时将丙丁二人安排到B、C社区即可,有A22=2种情况,②,乙不去A社区,则乙必须去C社区,若丙丁都去B社区,有1种情况,若丙丁中有1人去B社区,先在丙丁中选出1人,安排到B社区,剩下1人安排到A或C社区,有2×2=4种情况,则不同的安排方法种数有2+1+4=7种;故选:B.4.C【解答】:根据题意,分2种情况讨论:①,从山的南面上山,从北面下山,则上山的道路有2种情况,下山的道路有3种情况,此时有2×3=6种走法,②,从山的北面上山,从南面下山,则上山的道路有3种情况,下山的道路有2种情况,此时有2×3=6种走法,故一共有6+6=12种不同的走法;故选:C.5.C【解答】:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个小盒,其余的小球各单独放入一个盒子,分2步进行分析:①、先将5个小球分成4组,有C52=10种分法;②,将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种;故选:C.6.D【解答】:根据题意,分2步进行分析:①,在6个年级中任选2个,去参观甲博物馆,有C62种选法,②,剩下4个年级中每个年级都可以在剩下的5个博物馆中任选1个参观,都有5种选法,则剩下4个年级有5×5×5×5=54种选法,则一共有C62×54种方案;故选:D.7.B【解答】:根据题意,取出的5个球有三种颜色且数字不同,分2步进行分析:①,先把取出的5个球分成3组,可以是3,1,1,也可以是1,2,2;若分成3,1,1的三组,有C53C21C11A22=10种分组方法;若分成1,2,2的三组,有C51C42C22A22=15种分组方法;则共有10+15=25种分组方法,②,让三组选择三种不同颜色,共有A33=6种不同方法则共有25×6=150种不同的取法;故选:B.8.A【解答】:(1﹣x)(1+x)5展开式中x项的系数:二项式(1+x)5由通项公式T r+1=C5r(x)5−r当(1﹣x)提供常数项时:r=4,此时x项的系数是C54=5,当(1﹣x)提供一个x时:r=5,此时x项的系数是﹣1×C55=﹣1合并可得(1﹣x)(1+x)5展开式中x项的系数为4.故选:A.9.B【解答】:二项式(1+1x −2x)4=[1+(1x−2x)]4=1+4(1x ﹣2x)+6(1x−2x)2+4(1x−2x)3+(1x−2x)4,∴二项式展开式中的常数项产生在1,6(1x −2x)2,(1x−2x)4中;分别是1,6×2•1x •(﹣2x),C42•(1x)2•(﹣2x)2;它们的和为1﹣24+24=1.故选:B.10.D【解答】:令x=1,y=1,可得(x﹣2y)5的展开式中,所有项的系数之和等于﹣1,故选:D.11.B【解答】:∵(ax+1)6的展开式中含x,x2的项分别为C65ax,C64a2x2,∴(x﹣1)(ax+1)6展开式中x2的系数为6a﹣15a2=0,解得:a=25(a>0).故选:B.12.D【解答】:由题意,a=C105=252,含x7项的系数为b=C103⋅(−2)3=﹣960,∴ba =﹣8021,故选:D.13.A【解答】:令t=x﹣1,则(t+1)(t−1)8=a0+a1t+a2t2+⋯+a9t9,故a6=C83(−1)3+C82(−1)2=−28,故选:A.14.C【解答】:根据题意,(2x﹣1x)5的展开式的通项为T r+1=C5r(2x)5﹣r(﹣1x)r=(﹣1)r×25﹣r×C5r×x5﹣2r,当r=2时,有T3=(﹣1)2×8×C52×x=80x,当r=3时,有T4=(﹣1)3×4×C53×1x =﹣40x,则(2x﹣1x )5(x+1x)的展开式中的常数项为80x×1x+(﹣40x)×x=40;故选:C.15.B【解答】:(1+√x)6的展开式的通项公式为 T r+1=C6r•x r2,令r2为整数,可得r=0,2,4,6,故展开式中有理项系数之和为C60+C62+C64+C66=25=32,故选:B.16.1260【解答】:从1,3,5,7,9中任取2个数字有C52种方法,从2,4,6,0中任取2个数字不含0时,有C32种方法,可以组成C52⋅C32⋅A44=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有C31⋅C31⋅C52⋅A33=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.17.54【解答】:根据题意,先计算4名同学去参加3 个不同的社团组织的情况数目,4个同学中每人可以在3 个不同的社团组织任选1个,即每人有3种不同的选法,则4人有3×3×3×3=81种情况,再计算甲乙参加同一个社团组织的情况数目,若甲乙参加同一个社团组织,甲乙两人有3种情况,剩下的2人每人有3种不同的选法,则剩下的2人有3×3=9种情况,则甲乙参加同一个社团组织的情况有3×9=27种;则甲乙两位同学不参加同一个社团组织的情况有81﹣27=54种;故答案为:54.18.90【解答】:第一行染2个红色方格有C42种染法;第一行染好后,有如下三种情况:①第二行的红色方格均与第一行的红色方格同列,这时其余行都只有1种染法;②第二行染的红色方格与第一行的红色方格均不同列,这时第三行有C42种染法,第四行的染法随之确定;③第二行染的红色方格恰有一个与第一行的红色方格同列,而第一、第二这两行染好后,第三行的红色方格必然有一个与上面的红色方格均不同列,这时第三行的染法有2种,第四行染法随之确定.因此,共有染法为:6×(1+6+4×2)=90(种).故答案为:9019.200【解答】:(2x﹣3y)2(x+y)8=(4x2﹣12xy+9y2)(x+y)8,(x+y)8的通项公式:T r+1=C8r•x8﹣r•y r.①令r=7,则4x2•C87•x•y7=32x3y7;②令r=6,则﹣12xy•C86•x2•y6=﹣336x3y7;③令r=5,则9y2•C85•x3•y5=504x3y7.综上可得:展开式中x3y7项的系数为32﹣336+504=200.故答案为:200.20.【解答】:(1)∵(√x−2x2)n展开式的通项是T r+1=C n r(√x)n﹣r(﹣2x2)r=C n r(﹣2)r x n−5r2,∴T5=C n4(﹣2)4x n2−10,T3=C n2(﹣2)2x n2−5,∴C n4(﹣2)4:C n2(﹣2)2=10:1,∴n2﹣5n﹣24=0,解得n=8或n=﹣3(舍去),令x=1,可得展开式中各项系数的和为1;(2)展开式的通项是T r+1=C8r(﹣2)r x8−5r2,令8−5r 2=32,解得r=1,∴展开式中含x 32的项为T 2=﹣16x 32,(3)展开式中的第r 项,第r+1项,第r+2项的系数的绝对值分别为C 8r ﹣12r ﹣1,C 8r 2r ,C 8r+12r+1,若第r+1项的系数的绝对值最大,则有C 8r ﹣12r ﹣1≤C 8r 2r ,且C 8r 2r ,≥C 8r+12r+1,解得5≤r ≤6,故系数绝对值最大项分别为第6项或第7项,即T 6=﹣1792x −172,T 7=﹣1792x ﹣11.21.【解答】:(Ⅰ)C n 0+C n 1+C n 2=56, ⇒1+n+n(n−1)2=56⇒n 2+n ﹣110=0⇒n=10,n=﹣11(舍去).(Ⅱ) (x 2+12√x )10展开式的第r+1项是C 10r (x 2)10−r (12√x )r =C 10r (12)r x 20−5r2,20﹣5r2=0⇒r=8,故展开式中的常数项是C 108(12)8=45256.22.【解答】解:(Ⅰ)(√x +12⋅√x 4)n的展开式中前三项的系数分别为C n 0,C n 1•12,C n 2•14,由题意前三项的系数成等差数列知 C n 1=C n 0+14C n 2,求得n=8,或 n=1(舍去).(Ⅱ)展开式中二项式系数和2n =28=256.23.【解答】:令x=1,则展开式中各项系数和为(1+3)n=22n, 又∵展开式中二项式系数和为2n, ∴22n﹣2n=992,即n=5.∵n=5,展开式共6项,二项式系数最大的项为第三、四两项,∴T 3=C 52×13×(3x 2)2=90x 4, T 4=C 53×12×(3x 2)3=270x 6.。

高中数学:《计数原理》(理)知识点串讲

高中数学:《计数原理》(理)知识点串讲

《计数原理》(理)知识点串讲一、基本计数原理1.分类加法计数原理做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的办法,在第二类办法中有2m 种不同的办法,…在第n 类办法中有n m 种不同的办法.那么完成这件事共有12n N m m m =+++种不同的办法.2.分步乘法计数原理做一件事,完成它需要分成n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法,…,做第n 个步骤有n m 种不同的方法,那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.说明:①分类加法计数原理和分步乘法计数原理的共同点是把一个原始事件分解成若干个分事件来完成.②两个原理的区别在于一个与分类有关,一个与分步有关,如果完成一件事情有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能独立完成这件事情,可类比物理中的“并联”电路来理解;如果完成一件事情需要分成n 个步骤,各个步骤都是相依的、不可缺少的,一个步骤只能完成事情的一部分,必须依次完成所有的步骤,才能完成这件事情,可类比物理中的“串联”电路来理解.③运用两个基本原理解题时,应善于从语言的差异与变化中弄清面临怎样的“一件事”,弄清事件之间的关系是相依还是相斥,然后按照恰当的“对象”进行分类或分步,合理的设计相应的做事方式.分类要做到“不重不漏”,分步要做到“步骤完整”.这两个原理是解决排列组合问题的理论基础.二、排列与组合1.排列一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.说明:①排列的定义中包括两个基本内容:一是“取出元素”;二是“按照一定的顺序排列”.②只有取出的元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素不完全相同,或元素完全相同而顺序不同的排列属于不同排列.如1,2,3与2,3,4是不同排列;1,2,3与1,3,2也是不同排列.③排列中元素的有序性是判断一个具体问题是不是排列问题的标准,也是与组合问题的根本区别.例如:从1,2,3,5这四个数中每次任取两个数相加(或相乘),可得到多少个不同的和(积)?因为加法(乘法)满足交换律,它们的和(积)与顺序无关,如3+5=5+3,因此不是排列问题.如果从四个数中任取两个数相减(相除),一共有多少个不同的差(商)?因为减法(除法)不满足交换律,35355353⎛⎫-≠-≠ ⎪⎝⎭,取出的两个数就与顺序有关了,属于排列问题.2.排列数(1)定义:从n 个不同元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出()m m n ≤个元素的排列数,用符号mn A 表示.说明:排列和排列数是两个不同的概念:一个排列是取出的m 个元素按照一定顺序排成的一个具体的排列,是具体的“一件事”;排列数是一个数,是所有的具体排列的数目. 如:从1、2、3中每次任取出两个元素,组成一个两位数.所有的排列有12,13,23,21,31,32.其中每一个数都是一个排列,而排列数是236card()A B ==,{}121323213132B ,,,,,.(2)排列数公式:!(1)(2)(1)()()!m n n A n n n n m n m m n n m =---+=∈N -,,≤. 说明:规定0!1=;乘积形式多用于数字计算,阶乘形式多用于证明恒等式;排列数性质:11m m n n A nA --=;111m m m n n n A mA A ---=+.3.组合一般地,从n 个不同元素中,任意取出()m m n ≤个元素并成一组,叫做从n 个不同元素中取出()m m n ≤个元素的组合.说明:如果两个组合中的元素完全相同,不管它们的顺序如何都是相同的组合.组合的定义中包含两个基本内容:一是取出元素;二是并成一组,并成一组表示将元素合在一起与元素取出的顺序无关.取出的元素是否有顺序,是区分排列和组合的根本依据.4.组合数(1)定义:从n 个不同元素中,任意取出()m m n ≤个元素的所有的组合的个数,叫做从n 个不同元素中取出()m m n ≤个元素的组合数,用符号C m n 表示.(2)组合数公式(1)(1)C !m n n n n m m --+=,C m m n n m mA A =. 5.组合数的性质性质1:C C m n m n n -=;性质112:C C C m m m n n n -+=+. 说明:性质1突出了从n 个不同元素中取出m 个元素与从n 个不同元素中取出n m -个元素是一一对应关系,当2n m <时,不计算C m n 而改为计算C n m n -.性质2中注意它的变形公式的应用,如1212(1)C C C (1)m m m n n n n n n m m m -----==-,11C C mm n n m n --=等.6.解排列组合问题的方法(1)先要判断是组合问题还是排列问题,按照元素的性质分类,按照事件的发生过程分步,不重不漏.借助树形图,框图等形的工具直观帮助解题.总体上有三种方法:直接法(先安排特殊元素和特殊位置),间接法(正难则反),分类讨论法.(2)排列组合问题的16字方针,12个技巧.方针是:分类相加、分步相乘、有序排列、无序组合;技巧是:相邻问题捆绑法(莫忘松绑),不相邻问题插空法,多排问题直排法,定序问题可能法,定位问题优先法,有序分配问题先整体后局部分步法,多元问题分类法,构造模型处理法,至少、至多问题间接法,选排问题先选后排法,局部与整体问题排除法,复杂问题转化法.(3)分组问题的求法:设有m n 个元素,平均分成n 组,每组m 个,则有(1)(2)C C C C mm m mm n n m n m mnn A --种分法;平均分成n 组,再分配到n 个位置,有(1)(2)C C C C mm m m mn n m n m m--种分法.若不平均分组或不平均分组再分配,如:6个元素分成3组,一组1个,二组2个,三组3个,则有123653C C C ;若再将这3组分配给3个位置,则有12336533C C C A 种分法.三、二项式定理1.二项展开式在011222()C C C C C n n n n r n r r n n n n n n na b a a b a b a b b ---+=++++++中,右边的多项式叫做()n a b +的二项展开式,其中各项的系数C (012)r n r n =,,,,叫做二项式系数.式中的C r n r r n a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项;1r n r r r n T C a b -+=(0r n ≤≤,r ∈N ,n +∈N ),此公式称为二项展开式的通项公式. 说明:①其右端展开式共有1n +项.②通项公式1(0)r n r r r n T C a b r n r n -++=∈∈N N ,,≤≤表示的是第1(0)r r n +≤≤项.③a 与b 的位置不能互换,对于任意实数a 与b ,上面的等式恒成立.④二项式系数指01r n n n n n C C C C ,,,,,,二项展开式的系数与a b ,前面的系数有关.2.杨辉三角杨辉三角是我国古代数学的研究成果,它给我们提供了一种研究问题的数学模型,从不同的角度观察研究模型,就可以得到二项式系数的性质:一是对称性,结合公式m n m n n C C -=理解;二是增减性与最大值,如果二项式的幂指数是偶数,中间一项的二项式系数最大,最大为2nnC ;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,最大为1122n n n n C C -+=;三是各项的二项式系数的和等于2n ,即012r n n n n n n C C C C +++++=,它表明集合S 含有n 个元素,那么它的所有的子集(包括空集)的个数为2n 个.另外,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即1350242n n n n n n n C C C C C C -+++=+++=.3.二项展开式的应用(1)利用通项公式1(0)r n r r r n T C a b r n r n -++=∈∈N N ,,≤≤求指定项、特征项(常数项,有理项等)或特征项的系数.(2)近似计算,当a 与1相比较很小且n 不大时,常用近似公式(1)1n a na ±≈±,使用公式时要注意a 的条件以及对计算精确度的要求.(3)整除性问题与求余数问题,对被除式进行合理的变形,把它写成恰当的二项式的形式,使其展开后的每一项含有除式的因式或只有一、二项不能整除.(4)求展开式的各项的系数和,对形如()n ax b +,2()()n ax bx c a b c ++∈R ,,的式子求其展开式的各项的系数和常用赋值法,即只需令1x =即可,奇数项的系数和为(1)(1)2f f +-,偶数项的系数和为(1)(1)2f f --. (5)最大系数与系数最大项的求法,如求()()nax b a b +∈R ,,展开式的系数最大的项,一般采用待定系数法,设展开式的各项系数分别为121n A A A +,,,,设第r 项的系数最大,应有11r r r r A A A A -+⎧⎨⎩,,≥≥,由此解出r 即可.。

新高考数学 第10章 第1讲 分类加法计数原理与分步乘法计数原理

新高考数学  第10章 第1讲 分类加法计数原理与分步乘法计数原理

第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
考点二
分步乘法计数原理——师生共研
例2 (1)如图,小明从街道的E处出发,先到F处与小红会合,再
一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选
择的最短路径条数为
( B)
A.24
B.18
C.12
D.9
第十章 计数原理、概率、随机变量及其分布
返回导航
分类加法计数原理和分步乘法计数原理的区别 分类加法计数原理针对“分类”问题,其中各种方法相互独立,用 其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步” 问题,各个步骤相互联系、相互依存,只有各个步骤都完成了才算完成 这件事.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
5.(2021·全国高考)将5名北京冬奥会志愿者分配到花样滑冰、短道
速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每
个项目至少分配1名志愿者,则不同的分配方案共有
( C)
A. 60种
B. 120种
C. 240种
[解析] C14A55=480 或 A25A44=480.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
3.(选择性必修3P27T17改编)如图所示的五个区域中,现有四种颜 色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,
则不同的涂色方法种数为
( C)
A.24种
D.324
第十章 计数原理、概率、随机变量及其分布

2021年高考理科数学二轮复习专题五计数原理、统计与概率

2021年高考理科数学二轮复习专题五计数原理、统计与概率

2021年高考理科数学二轮复习专题五计数原理、统计与概率(一)、计数原理一、排列数与组合数1、排列数:计算公式:2、组合数:①计算公式:()()()()()()121!1221!!mm nn mmn n n n mA nCA m m m m n m---+===--⋅-②组合数的性质:性质1:;性质2:(连续两个组合数的和)二、排列组合与两个基本原理的应用(一)、排列问题1、位置限制:解法:①先考虑限制元素,再考虑无限制的元素(加法原理)②多种限制:用二分法或枚举法2、排队限制:元素间排队的方式有限制①相邻:捆绑法(勿忘内部的排列);②互不相邻:插板法(先排无关元素再插入限制元素)③注意分类讨论以及正难则反(二)、组合问题1、分配问题: k个对象所得元素确定,即将n个不同的元素按不同数量分别分给则共有2、分组问题:将元素按一定数量方案分成k组,注意用除法,即,(t为数量一样的堆数)3、先分组再分配问题:k对象所得元素不确定,注意用乘法。

即。

(分给k个人)【典例1】①将6本书分给甲2本,乙3本,丙1本:(分配问题)②将6本书分成3堆,每堆2本:(分组问题)③将6本书分给甲乙丙,一个人4本,其他两人各一本:(先分组再分配)三、二项式定理(一)基本特征1、展开有n+1项,每项中a、b的指数和为n。

2、通项公式:第r+1项(二)常见题型1、求指定项(有理项、常数项等):通项公式2、求所以项二项式系数..的和:①二项式系数;奇数项与偶数项二项式系数之和相等。

.....、系数②系数:常用特值带入法(令x=0或1或-1)3、系数最值问题:①二项式系数:越中间,二项式系数越大。

(n为奇数,展开有偶数个项,中间两项二项式系数最大、n为偶数,展开有奇数个项,中间项二项式系数最大)②系数:写出通项,列出不等式组4、三项式展开式求指定项:组合的应用:每个括号里必须且只能选一个,根据组合得到答案。

5、求余数:将目标数写出接近除数的和或差的形式,然后计算【典例2】设已知均为整数(),若和被除所得的余数相同,则称和对模同余,记为,若,且a≡b(mod10),则b的值可以是(A)A.2011 B.2012 C .xx D.xx(二)、概率一、概率的基本性质与运算1、互斥事件与对立事件:①A 、B 为互斥事件是A 、B 为对立事件的必要不充分条件②若A 、B 为互斥事件则;③若A 、B 为对立事件则()()()()()1,1P A B P A P B P A P B ⋃==+=-即(正难则反)2、独立事件: A 、B 为独立事件,则3、条件概率:在A 事件发生的情况下,B 事件发生的概率为4、几何概型与古典概型:①古典概型:②几何概型:()()()A m P A n ==构成事件的区域的长度角度、面积、体积全部事件构成的区域的长度角度、面积、体积(常与线性规划结合) 二、随机变量及其分布列1、数学期望与方差的计算方法:①数学期望:;方差:②数学期望与方差的性质:;2、常见随机变量的概率分布:(三)、统计一、抽样方法二、用样本估计总体——统计数据的分析与应用1、茎叶图:①图像特征(读图):中间列为数据的十位数,两边为各组数据的个位数②优点:便于看出中位数以及集中程度2、频率分布直方图:①特征:纵轴:;柱形面积:对应的频率;所有柱形面积=1②频率分布直方图中数据信息的获取:A 、众数:最高柱形的中点横坐标B 、中位数:将所有柱形面积平分成一半的点的横坐标C 、平均数:每条柱形的中点×对应柱形的面积(频率)D 、方差:()()2×-每条柱形中点平均数对应柱形面积频率三、统计案例1、连续型随机变量——正态分布①正态分布表示:::数学期望;②图像特征:A 、关于直线对称;B 、越大(小),数据越分散(集中),图像越矮胖(高瘦) ③应用:利用对称性或查表获得对应概率。

2021高考数学一轮复习第十章计数原理概率随机变量及其分布102排列与组合课件理20

2021高考数学一轮复习第十章计数原理概率随机变量及其分布102排列与组合课件理20
位中任选 3 个空位安排男生,有 A53种方法,共有 A44·A35=1 440(种).
2021高考数学一轮复习第十章计数原理
2021/4/17
概率随机变量及其分布102排列与组合课
14
件理20
悟·技法
求解排列应用问题的 6 种主要方法
直接法
把符合条件的排列数直接列式计算
优先法 优先安排特殊元素或特殊位置
A66种排列方法,共有 5×A66=3 600(种). 解法二 (特殊位置优先法)首尾位置可安排另 6 人中的两人,有
A26种排法,其他有 A55种排法,共有 A26A55=3 600(种). (4)(捆绑法)将女生看作一个整体与 3 名男生一起全排列,有 A44种
方法,再将女生全排列,有 A44种方法,共有 A44·A44=576(种). (5)(插空法)先排女生,有 A44种方法,再在女生之间及首尾 5 个空
解析:分两步进行,第一步,先从 1,3,5,7 中选 3 个进行排列,有 A34=24 种排法;第二步,将 2,4,6 这 3 个数插空排列,有 2A33=12 种 排法.由分步乘法计数原理得,这样的六位数共有 24×12 =288(个).
答案:288
2021高考数学一轮复习第十章计数原理
2021/4/17
2021高考数学一轮复习第十章计数原理
2021/4/17
概率随机变量及其分布102排列与组合课
4
件理20
2.组合与组合数 (1)组合的定义:一般地,从 n 个⑥_不__同__的元素中取 m(m≤n)个元 素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合. (2)组合数的定义:从 n 个⑦_不__同__元素中取出 m(m≤n)个元素的 ⑧_所__有__不__同__组__合____的个数,叫做从 n 个不同元素中取出 m 个元素的 组合数,用符号 Cmn 表示.

高考数学二轮复习计数原理与概率

高考数学二轮复习计数原理与概率

6
x
3 2
k
,k≤6,k∈N,
由 6-32k=0,解得k=4,
则 T5=(-1)4×32×C46=135,
√A.144种
C.672种
B.336种 D.1 008种
选取的 3 个名称中含有祝融的共有 C29种不同的情况. 分析选取的 3 个名称的不同情况有 A33种, 其中祝融是第 3 个被分析的情况有 A22种, 故祝融不是第 3 个被分析的情况有 C29(A33-A22)=144(种).
(2)(2022·广东联考)现要安排甲、乙、丙、丁四名志愿者去国家高山滑雪
√D.P(A|C)=P(B|C)
由题知,从 10 个数中随机地抽取 3 个数,共有 C310=120(种)可能情况, 对于A选项,“恰好抽的是2,4,6”和“恰好抽取的是6,7,8”为互斥事 件,则P(AB)=0,而P(A)P(B)≠0,故A选项错误; 对于 B 选项,P(C)=CC31290=13260=130,故 B 选项错误; 对于 C 选项,P(AB)=0,P(C)=130,故 C 选项错误; 对于 D 选项,由于 P(AC)=P(BC)=C129=316,故由条件概率公式得 P(A|C) =P(B|C),故 D 选项正确.
跟踪演练2 (1)(2022·淄博模拟)若(1-x)8=a0+a1(1+x)+a2(1+x)2+…+
a8(1+x)8,则a6等于
A.-448
B.-112
√C.112
D.448
(1-x)8=(x-1)8=[(1+x)-2]8 =a0+a1(1+x)+a2(1+x)2+…+a8(1+x)8, a6=C28×(-2)2=112.
③P(B)=12;④B 与 A1 相互独立.
A1,A2,A3中任何两个事件都不可能同时发生,因此它们两两互斥,

高中数学计数原理(解析版)

高中数学计数原理(解析版)

热点11 计数原理【命题趋势】计数原理包含排列组合与二项式定理,在高考数学中通常是以选择题的形式呈现.另外在解答题中与统计概率相结合比较普遍.高考中通常难度不是很大,主要考查是排列与组合的先后顺序或者是有条件限制的排列与组合.二项式定理也是高考考查的一个重点,主要考查二项式定理的展开.本专题通过列举排列组合与二项式定理常见的考题类型,总结此些类型题目的解题方法以及易错点,能够让你在高考中遇到计数原理类型的题目能够迎刃而解.【满分技巧】捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.对于二项式定理的应用,只要会求对应的常数项以及对应的n项即可,但是应注意是二项式系数还是系数.【考查题型】选择题【限时检测】(建议用时:35分钟)1.(2021·全国高三专题练习)()()()()()234511111x x x x x -----的展开式中各项的指数之和再减去各项系数乘以各项指数之和的值为( ) A .0 B .55 C .90 D .120【答案】C【分析】()()()()()234511111x x x x x -----151413109876521x x x x x x x x x x x =--+++---++-,所以,()()()()()234511111x x x x x -----的展开式中各项的指数之和为15141310987652190++++++++++=,展开式中各项系数乘以各项指数之和为1514131098765210--+++---++=, 因此,所求结果为90090-=. 故选:C.2.(2021·山东高三专题练习)已知()20121nn n px b b x b x b x -=+++⋅⋅⋅+,若123,4b b =-=,则p =( ) A .1 B .12C .13D .14【答案】C【分析】()1npx -展开式的通项为:()()()11n rrrr rr n n T C px C px -+=⋅⋅-=⋅-,故()113n b C p pn =⋅-=-=-,()2222142n n n b C p p -=⋅==,解得9n =,13p =. 故选:C.3.(2021·山东高三专题练习)2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院A ,医生乙只能分配到医院A 或医院B ,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( ) A .18种 B .20种 C .22种 D .24种【答案】B【分析】根据医院A 的情况分两类:第一类:若医院A 只分配1人,则乙必在医院B ,当医院B 只有1人,则共有2232C A 种不同 分配方案,当医院B 有2人,则共有1222C A 种不同分配方案,所以当医院A 只分配1人时, 共有2232C A +122210C A =种不同分配方案;第二类:若医院A 分配2人,当乙在医院A 时,共有33A 种不同分配方案,当乙不在A 医院, 在B 医院时,共有1222C A 种不同分配方案,所以当医院A 分配2人时, 共有33A +122210C A =种不同分配方案; 共有20种不同分配方案. 故选:B4.(2021·全国高三专题练习)某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD (边长为2个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走了几个单位,如果掷出的点数为()1,2,,6i i =⋅⋅⋅,则棋子就按逆时针方向行走i 个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到起点A 处的所有不同走法共有( )A.21种B.22种C.25种D.27种【答案】D【分析】由题意,正方形ABCD的周长为8,抛掷三次骰子的点数之和为8或16,①点数之和为8的情况有:1,1,6;1,2,5;1,3,4;2,2,4;2,3,3,排列方法共有13311 3333321C A A C C++++=种;②点数之和为16的情况有:4,6,6;5,5,6,排列方法共有11336C C+=种.所以,抛掷三次骰子后棋子恰好又回到起点A处的所有不同走法共有21627+=种.故选:D.5.(2021·山东高三专题练习)已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有()A.240种B.360种C.480种D.600种【答案】C【解析】:用分类讨论的方法解决:如图中的6个位置:①当领导丙在位置1时:不同的排法有55120A=种::当领导丙在位置2时:不同的排法有143472C A=种::当领导丙在位置3时:不同的排法有2323233348A A A A+=种::当领导丙在位置4时:不同的排法有2323233348A A A A +=种::当领导丙在位置5时:不同的排法有143472C A =种::当领导丙在位置1时:不同的排法有55120A =种:由分类加法计数原理可得不同的排法共有480种: 故选C:6.(2021·山东高三专题练习)某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .240种 B .288种 C .192种 D .216种【答案】D【详解】最前排甲,共有55A 120=种;最前排乙,最后不能排甲,有种,根据加法原理可得,共有种,故选D .7.(2020·全国高三专题练习(理))某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有( ) A .72种 B .48种 C .36种 D .24种【答案】C【分析】首先可将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,共有336A =种排法,再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),共有236A =种排法,则后六场开场诗词的排法有6636⨯=种, 故选:C.8.(2020·全国高三专题练习(理))为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( ) A .12B .13C .14D .16【答案】D【分析】记第i 名民工选择的项目属于基础设施类、民生类、产业建设类 分别为事件i A ,i B ,i C ,1,2,3i =.由题意,事件i A ,i B ,i C ,1,2,3i =相互独立,则301()602i P A ==,201()603i P B ==,101()606i P C ==,1,2,3i =, 故这3名民工选择的项目所属类别互异的概率是331111()62366i i i P A P A B C ==⨯⨯⨯=.故选:D.9.(2020·全国高三专题练习(理))在()()()()()2345111111x x x x x ++++++++++的展开式中,含2x 项的系数是( ) A .10 B .15 C .20D .25【答案】C【分析】解法一:()21x +中含2x 的项为222C x ,()31x +中含2x 的项为223C x ,()41x +中含2x 的项为224C x ,()51x +中含2x 的项为225C x ,则含2x 项的系数为2222234520C C C C +++=.故选:C .解法二:由等比数列求和公式知:()()()()()()6234511111111x x x x x x x+-++++++++++=,()31x +中含3x 的系数为3620C =,∴原式含2x 项的系数为20.故选:C .10.(2020·全国高三专题练习(理))若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=( ) A .284 B .356 C .364 D .378【答案】C【分析】令x =1,则a 0+a 1+a 2+…+a 12=36, ① 令x =-1,则a 0-a 1+a 2-…+a 12=1, ② ①②两式左右分别相加,得2(a 0+a 2+…+a 12)=36+1=730,所以a 0+a 2+…+a 12=365,再令x =0,则a 0=1, 所以a 2+a 4+…+a 12=364. 故选:C.11.(2020·山西高三月考(理))如图所示的是古希腊数学家阿基米德的墓碑上刻着的一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为荣的发现.设圆柱的体积与球的体积之比为m ,圆柱的表面积与球的表面积之比为n ,则621m x nx ⎛⎫- ⎪⎝⎭的展开式中的常数项是( )A .15B .-15C .1354D .1354-【答案】A【分析】:设球的半径为R ,则圆柱的底面半径为R ,高为2R ,所以圆柱的体积23122V R R R ππ=⨯=,球的体积3243V R π=,所以313223423V R m V R ππ===.又圆柱的表面积为2212226S R R R R πππ=⨯+=,球的表面积为224S R π=,所以21226342S R n S R ππ===,1m n =,662211m x x nx x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,展开式的通项()123161rr rr T C x-+=-,令1230r -=,解得4r =,其常数项为()42426115C x x ⎛⎫-= ⎪⎝⎭. 故选:A12.(2020·江西吉安市·白鹭洲中学高三期中(理))已知随机变量()2~1,X N σ,且()()0P X P X a ≤=≥,则()43221ax x x ⎛⎫+⋅+ ⎪⎝⎭的展开式中2x 的系数为( )A .40B .120C .240D .280【答案】D【分析】根据正态曲线的性质可知,012a +=⨯,解得2a =,()312x +的展开式的通项公式为132rr rr T C x +=⋅,{}0,1,2,3r ∈,422x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()243814422s s s s s s s s T C x c x -+--++=⋅=⋅,{}0,1,2,3,4s ∈, 令两式展开通项之积x 的指数为382r s -+=,可得33r s =⎧⎨=⎩或02r s =⎧⎨=⎩,∴()432212x x x ⎛+⋅⎫+ ⎪⎝⎭的展开式中2x 的系数为333300223434222225624280C C C C ⋅⋅⋅+⋅⋅⋅=+=,13.(2020·湖南长沙市·高三月考)某单位有6名员工,2020年国庆节期间,决定从6人中留2人值班,另外4人分别去张家界、南岳衡山、凤凰古城、岳阳楼旅游.要求每个景点有1人游览,每个人只游览一个景点,且这6个人中甲、乙不去衡山,则不同的选择方案共有( ) A .120种 B .180种 C .240种 D .320种【答案】C【分析】以人为对象,分类讨论:甲不值班乙值班:31343372C C A =;甲值班乙不值班:31343372C C A =;甲乙都不值班;21342372C C A =;甲乙都值班;4424A =.故不同的选择方案72727224240N =+++=. 故选:C14.(2020·全国高三专题练习(理))中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种 B .50种 C .60种 D .90种【答案】B【分析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1121020C C ⋅=若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1131030C C ⋅=所以共有203050+=种 故选B15.(2020·湖北武汉市·华中师大一附中高三其他模拟(理))2020年湖北抗击新冠肺炎期间,全国各地医护人员主动请缨,支援湖北,某地有3名医生、6名护士来到武汉,他们被随机分到3家医院,每家医院1名医生、2名护士,则医生甲和护士乙分到同一家医院的概率为( ) A .16B .12C .18D .13【答案】D【分析】3名医生平均分成3组,有1种分法,6名护士平均分成3组有226433156156C C A ⨯==种分法,3名医生、6名护士分到3家医院,每家医院1名医生、2名护士的分配方法有333315540A A ⨯⨯=(种),医生甲和护士乙分到同一家医院的分配方法有211224532222180C C C A A A ⨯⨯⨯=(种),则医生甲和护士乙分到同一家医院的概率为18015403=. 故选:D .16.(2020·全国高三其他模拟(理))公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.141592631415927π<<.,为纪念数学家祖冲之在圆周率研究上的成就,某教师在讲授概率内容时要求学生从小数点后的6位数字1,4,1,5,9,2中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为( ) A .15B .17C .45D .67【答案】D【分析】由题意从小数点后的6位数字中随机选取两个数字做为小数点后的前两位,可分为以下情况:①选出两个1,共可组成1个数字;②选出一个1,共可组成12428C A ⋅=个不同数字;③没有选出1,共可组成2412A =个不同数字;所以共可组成181221++=个不同的数字;其中小于等于3.14的数字有:3.11、3.12、3.14,共3个,则大于3.14的数字个数为18, 故所求概率186217P ==. 故选:D.17.(2020·全国高三专题练习(理))某学校实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求理、化必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( ). A .444种 B .1776种 C .1440种 D .1560种【答案】B【分析】理、化、生、史、地、政六选三,且理、化必选,所以只需在生、史、地、政中四选一,有14C 4=(种).对语文、外语排课进行分类,第1类:语文、外语有一科在下午第一节,则另一科可以安排在上午四节课中的任意一节,剩下的四科可全排列,有114244192C C A =(种);第2类:语文、外语都不在下午第一节,则下午第一节可在除语、数、外三科的另三科中选择,有133C =(种),语文和外语可都安排在上午,即上午第一、三节,上午第一、四节,上午第二、四节3种,也可一科在上午任一节,一科在下午第二节,有14C 4=(种),其他三科可以全排列,有()12332334252C A A +=(种).综上,共有()41922521776⨯+=(种). 故选:B18.(2020·全国高三专题练习)函数261()()=-f x x x的导函数为()f x ',则()f x '的展开式中含2x 项的系数为( ) A .20 B .20-C .60D .60-【答案】D【分析】函数()f x 导函数为25211()6()(2)f x x x x x '=-+, 则251()x x-的展开式的通项公式为251031551()()(1)r rr r r r r T C x C x x--+=-=-, 令1031r -=,则3r =,此时含x 项为335(1)10C x x -=-,再令1034r -=,则2r,此时含4x 项为22445(1)10C x x -=,所以含2x 的项为4221(10210)660x x x x x -⨯+⨯⨯=-, 故含2x 项的系数为60-, 故选:D .19.(2020·湖南郴州市·高三二模(理))中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种. A .408 B .120 C .156 D .240【答案】A【分析】解:根据题意,首先不做任何考虑直接全排列则有66720A =(种),当“乐”排在第一节有55120A =(种),当“射”和“御”两门课程相邻时有2525240A A =(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有242448A A =(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有72012024048408--+=(种),故选:A .20.(2020·全国高三专题练习)6331x x ⎛⎫⎫⎪⎪⎭⎭展开式中的常数项为( ) A .66- B .15C .15-D .66【答案】C61x ⎫⎪⎭展开式的通项公式为()363216611rrrr rrr T C C x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,而3323323x x x---=-,故要想产生常数项,则333122r r -=⇒=或33302r r -=⇒= ,则所求常数为()106621315C C ⨯⨯--⨯=-. 故选:C .。

2021_2022学年新教材高中数学第五章计数原理1计数原理课件北师大版选择性必修第一册202105

2021_2022学年新教材高中数学第五章计数原理1计数原理课件北师大版选择性必修第一册202105

(2)完成一件事需要分成 A,B 两个步骤,在实行 A 步骤时有 m1 种方法,在实行 B 步骤时有 m2 种方法,即 card(A)=m1,card(B)=m2,那么完成这件事的不同方法 种数就是 card(A·B)=card(A)·card(B)=m1·m2.这就是当 n=2 时的分步乘计数原 理.当 n>2 时可类似得出.
2.分步乘法计数原理
完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2 步有m2种不同的方法……做第n步有mn种不同的方法,那么,完成这件事共有N =_m_1_·__m_2·__…__·__m_n_种方法.(也称“乘法原理”)
【思考】 分步乘法计数原理有什么特点? 提示:①完成一件事需要经过n个步骤; ②完成每一步有若干种方法,且每一步对其他步没有影响; ③把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.
【解析】(1)需要老师、男同学、女同学各 1 人,则分 3 步,第一步选老师,有 3 种不同的选法;第二步选男同学,有 8 种不同的选法;第三步选女同学,有 5 种 不同的选法.共有 3×8×5=120 种不同的选法; (2)第一步选老师有 3 种不同的选法,第二步选学生有 8+5=13 种不同的选法, 共有 3×13=39 种不同的选法.
(2)完成“组成无重复数字的四位数”这件事,可以分四步:第一步,从 1,2,3,4 中选取一个数字做千位数字,有 4 种不同的选取方法;第二步,从 1,2,3,4 中剩余的三个数字和 0 共四个数字中选取一个数字做百位数字,有 4 种不同的选 取方法;第三步,从剩余的三个数字中选取一个做十位数字,有 3 种不同的选取 方法;第四步,从剩余的两个数字中选取一个数字做个位数字,有 2 种不同的选 取方法.由分步乘法计数原理,可以组成不同的四位数共有 N=4×4×3×2=96 个.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由(1+x)6 通项公式可得 .
可知 r=2 时,可得展开式中 x2 的系数为

可知 r=4 时,可得展开式中 x2 的系数为

(1 )(1+x)6 展开式中 x2 的系数为:15+15=30. 故选:C.
2.【2015 年新课标 1 理科 10】(x2+x+y)5 的展开式中,x5y2 的系数为(
6.【2018 年新课标 1 理科 15】从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则
不同的选法共有
种.(用数字填写答案)
【解答】解:方法一:直接法,1 女 2 男,有 C21C42=12,2 女 1 男,有 C22C41=4
根据分类计数原理可得,共有 12+4=16 种,
8.【2014 年新课标 1 理科 13】(x﹣y)(x+y)8 的展开式中 x2y7 的系数为 【解答】解:(x+y)8 的展开式中,含 xy7 的系数是:8. 含 x2y6 的系数是 28, ∴(x﹣y)(x+y)8 的展开式中 x2y7 的系数为:8﹣28=﹣20. 故答案为:﹣20
.(用数字填写答案)

A.10
B.#43;y)5 的展开式的通项为 Tr+1

令 r=2,则(x2+x)3 的通项为 令 6﹣k=5,则 k=1, ∴(x2+x+y)5 的展开式中,x5y2 的系数为 故选:C.
, 30.
3.【2013 年新课标 1 理科 09】设 m 为正整数,(x+y)2m 展开式的二项式系数的最大值为 a,(x+y)2m+1 展
考题分析与复习建议
本专题考查的知识点为:排列与组合,二项式定理等.以理解和应用两个基本原理为主,常以 实际问题为载体,突出分类讨论思想,注重分析问题、解决问题能力的考查,常与排列、组合 知识交汇;两个计数原理在高考中单独命题较少,一般是与排列组合结合进行考查,历年考题 主要以选择填空题型出现,重点考查的知识点为:排列与组合,二项式定理,预测明年本考点 题目会比较稳定,备考方向以知识点排列与组合,二项式定理为重点较佳.
D.8 种
【解答】解:第一步,为甲地选一名老师,有 2 种选法;
第二步,为甲地选两个学生,有 6 种选法;
第三步,为乙地选 1 名教师和 2 名学生,有 1 种选法
故不同的安排方案共有 2×6×1=12 种 故选:A.
5.【2011 年新课标 1 理科 08】
的展开式中各项系数的和为 2,则该展开式中常数项为
最新高考模拟试题
1.用 0,l,2,3,4 可以组成数字不重复的两位数的个数为(
A.15
B.16
C.17
【答案】B
【解析】
) D.18
解:若个位数是 0 ,则有 C14 4 种,
若个位数不是 0 ,则有 A42 12 种, 则共有 4 12 16 种,
故选:B.
2. 2x2 x 1 5 的展开式中 x2 的系数为( )
开式的二项式系数的最大值为 b,若 13a=7b,则 m=(

A.5
B.6
C.7
D.8
【解答】解:∵m 为正整数,由(x+y)2m 展开式的二项式系数的最大值为 a,以及二项式系数的性质可得
a

同理,由(x+y)2m+1 展开式的二项式系数的最大值为 b,可得 b

再由 13a=7b,可得 13
7
,即 13
7

即 13=7 故选:B.
,即 13(m+1)=7(2m+1),解得 m=6,
4.【2012 年新课标 1 理科 02】将 2 名教师,4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践
活动,每个小组由 1 名教师和 2 名学生组成,不同的安排方案共有(

A.12 种
B.10 种
C.9 种
系数为 (1)5 22 C55C53 (1)4 2C54C54 (1)3C58C55 0 .
A.400
B.120
C.80
D.0
【答案】D
【解析】
∵ 2x2 x 1 5 (x 1)5 (2x 1)5 ,二项展开式 (x 1)5 的通项为 C5r x5r (1)r ,二项展开式 (2x 1)5 的通
项式为 C5k (2x)5k,(x 1)5 (2x 1)5 的通项为 (1)r 25k C5rC5k x10(kr) ,所以 k r 8 ,所以展开式中 x2 的
方法二,间接法:C63﹣C43=20﹣4=16 种, 故答案为:16
7.【2016 年新课标 1 理科 14】(2x )5 的展开式中,x3 的系数是 10 .(用数字填写答案)
【解答】解:(2x )5 的展开式中,通项公式为:Tr+1
25﹣r

令 5 3,解得 r=4
∴x3 的系数 2 10. 故答案为:10.


A.﹣40
B.﹣20
C.20
【解答】解:令二项式中的 x 为 1 得到展开式的各项系数和为 1+a
∴1+a=2
D.40
∴a=1 ∴
∴展开式中常数项为
的 的系数和

展开式的通项为 Tr+1=(﹣1)r25﹣rC5rx5﹣2r
令 5﹣2r=1 得 r=2;令 5﹣2r=﹣1 得 r=3 展开式中常数项为 8C52﹣4C53=40 故选:D.
历年高考真题汇编
1.【2017 年新课标 1 理科 06】(1 )(1+x)6 展开式中 x2 的系数为(

A.15
B.20
C.30
【解答】解:(1 )(1+x)6 展开式中:
D.35
若(1 )=(1+x﹣2)提供常数项 1,则(1+x)6 提供含有 x2 的项,可得展开式中 x2 的系数:
若(1 )提供 x﹣2 项,则(1+x)6 提供含有 x4 的项,可得展开式中 x2 的系数:
专题 13 计数原理
历年考题细目表
题型
单选题 单选题 单选题 单选题 单选题 填空题 填空题 填空题
年份
2017 2015 2013 2012 2011 2018 2016 2014
考点
二项式定理 二项式定理 二项式定理 排列与组合 二项式定理 排列与组合 二项式定理 二项式定理
试题位置
2017 年新课标 1 理科 06 2015 年新课标 1 理科 10 2013 年新课标 1 理科 09 2012 年新课标 1 理科 02 2011 年新课标 1 理科 08 2018 年新课标 1 理科 15 2016 年新课标 1 理科 14 2014 年新课标 1 理科 13
相关文档
最新文档