2020-2021学年江西省南昌市新建区第五中学九年级(上)期中数学试卷 解析版
2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每题4分,共40分)1.(4分)下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2B.y=3(x﹣1)2C.y=3(x﹣1)2+2D.y=2x22.(4分)下列四组线段中,不是成比例线段的是()A.a=3 b=6 c=2 d=4B.a=1 b=√2c=√6d=2√3C.a=4 b=6 c=5 d=10D.a=2 b=√5c=√15d=2√33.(4分)若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线的开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.当x≥2时,y随x增大而增大4.(4分)如图,反比例函数y=kx的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1B.x≥2C.x<0或0<x≤1D.x<0或x≥2 5.(4分)如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A .①②④B .①③④C .②③④D .①②③ 6.(4分)如图,反比例函数y =2x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC的面积为( )A .2B .4C .5D .87.(4分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A ′的坐标是( ) A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1) 8.(4分)已知抛物线y =12(x ﹣1)2+k 上有三点A (﹣2,y 1),B (﹣1,y 2),C (2,y 3),则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 3>y 1D .y 2>y 1>y 3 9.(4分)a ≠0,函数y =a x 与y =﹣ax 2+a 在同一直角坐标系中的大致图象可能是( )A .B .C .D .10.(4分)如图所示,已知点E,F分别是△ABC中AC、AB边的中点,BE,CF相交于点G,S△EFG=1,则四边形BCEF的面积是()A.7B.8C.9D.10二、填空题(每题5分,共20分)11.(5分)反比例函数y=m−1x的图象在第一、三象限,则m的取值范围是.12.(5分)赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=−125x2,当水面离桥拱顶的高度DO是4米时,这时水面宽度AB为米.13.(5分)如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.14.(5分)如图,点A的坐标为(1,1),点C是线段OA上的一个动点(不运动至O,A 两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,若以B,E,F为顶点的三角形与△OFE相似,B 点的坐标是.15.(8分)已知函数y=3x2﹣2x﹣1,求出此抛物线与坐标轴的交点坐标.16.(8分)装卸工人往一辆大型运货车上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图:(1)求y与x之间的函数关系式;(2)货车到达目的地后开始卸货,如果以1.5t/min的速度卸货,需要多长时间才能卸完货物?四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图所示,小明从路灯下向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高是1.6米,那么路灯离地面的高度AB是多少米?18.(8分)如图,已知反比例函数y=6x的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)直接写出不等式6x≥kx+b的解集.19.(10分)如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°.AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)图中共有对相似而不全等的三角形;(2)选取其中一对进行证明.20.(10分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0)(1)求抛物线的解析式和顶点E坐标;(2)该抛物线有一点D,使得S△DBC=S△EBC,求点D的坐标.六、(本题满分12分)21.(12分)如图是3×5的网格,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点的图形叫做格点图.(1)图1中的格点△ABC与△DEF相似吗?请说明理由;(2)请在图2中选择适当的位似中心作△A1B1C1与△ABC位似,且相似比不为1;(3)请在图3中画一个格点△A2B2C2与△ABC相似(注意:△A2B2C2与△ABC、△DEF、△A1B1C1都不全等).七、(本题满分12分)22.(12分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?八、(本题满分14分)23.(14分)已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE 于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.。
2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(本题12个小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4B.3和﹣4C.3和﹣1D.3和12.(3分)二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1)B.(2,2)C.(1,2)D.(1,3)3.(3分)用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)2=±√5 4.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)5.(3分)如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC =3:5,则AB的长为()A.√91cm B.8cm C.6cm D.4cm6.(3分)如图,AB是⊙O的直径,点C在⊙O上,则∠ACB的度数为()A.30°B.45°C.60°D.90°7.(3分)如图,∠A是⊙O的圆周角,∠A=50°,则∠BOC的度数为()A .40°B .50°C .90°D .100°8.(3分)如图,△OAB 绕点O 逆时针旋转80°到△OCD 的位置,已知∠AOB =45°,则∠AOD 等于( )A .55°B .45°C .40°D .35°9.(3分)4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是( )A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张10.(3分)在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A .x (x ﹣1)=10B .x(x−1)2=10C .x (x +1)=10D .x(x+1)2=1011.(3分)抛物线y =(x +2)2﹣3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位12.(3分)函数y =ax 2与y =ax +b (a >0,b >0)在同一坐标系中的大致图象是( )A.B.C.D.二、填空题(本题5个小题,每小题3分,共15分)13.(3分)若x2=16,则x=.14.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根0,则a值为.15.(3分)若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为.16.(3分)等腰三角形、等边三角形、矩形、正方形和圆这五个图形中,既是轴对称图形又是中心对称图形的个数是.17.(3分)如图,半圆的直径AB=.三、解答题(本题4个小题,每小题6分,共24分)18.(6分)用因式分解法解方程:4x2﹣81=0.19.(6分)解方程:2x2﹣5x﹣3=0.20.(6分)如图,已知△ABC和点O.画出△ABC关于点O对称的△A′B′C′.21.(6分)当k为何值时,方程x2﹣6x+k﹣1=0,(1)两根相等;(2)有一根为0.四、解答题22.(7分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次的降价,现在售价每盒16元,则该药品平均每次降价的百分率是多少?23.(7分)如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C'顺时针旋转90°,得到△A″B″C′,请你画出△A′B′C′和△A″B″C′,求出A′A″̂的长?24.(8分)已知:如图,∠P AC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,求圆心O到AP的距离及EF的长.25.(10分)如图所示,已知二次函数经过点B(3,0),C(0,3),D(4,﹣5)(1)求抛物线的解析式;(2)求△ABC的面积;(3)若P是抛物线上一点,且S△ABP=12S△ABC,这样的点P有几个请直接写出它们的坐标.26.(13分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?。
江西省南昌市第五中学实验学校2023-2024学年九年级上学期期中数学试题

江西省南昌市第五中学实验学校2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....下列说法正确的是(.为了解一批灯泡的使用寿命,应采用普查的方式.抛掷两枚质量均匀的硬币,出现两面都是正面的概率为1 3.某种彩票中奖的概率是张这种彩票一定会中奖1000.在一定条件下大量重复试验时,某个事件发生的频率稳定在0.6该事件发生的概率为.如图,AC是O的直径,上的两点,连接AB,BC,80D∠=︒,则ACB∠A.40︒BA .先增大再减小6.如图,二次函数y 其对称轴为=1x -,以下结论:①③抛物线一定经过点实数根.其中正确结论的个数是(A .0个二、填空题7.抛物线()1y x =+8.如图,A 、B 、C 、则这个正多边形的边数为9.设m ,n 分别为一元二次方程10.我国古代数学名著《九章算术》记载:田几何?”注释:宛田是指扇形形状的田,12.在平面直角坐标系中,已知点上,BD=1,点P是y轴上一动点,三、问答题13.(1)计算:2 41 12⎛⎫-- ⎪⎝⎭(2)如图将ABC绕点A逆时针旋转得到1AB=,求BD的长.四、作图题14.作图题:在⊙O中,点D是劣弧AB的中点,仅用无刻度的直尺画线的方法,按要求完下列作图:在图(1)中作出∠C的平分线;在图(2)中画一条弦,平分△ABC 的面积.a________,b=________,c=________ (1)填空:=(1)求ODC ∠的度数.(2)若2OB =,3OC =,求21.10月1日晚省会南昌举办了以江畔,热闹非凡,礼赞盛世中华,憧憬美好未来.九年级学生思晨也在父母的陪同下前往指定区域观看并在现场也燃放一种手持烟花,弹的飞行路径视为同一条抛物线,出的第一枚花弹的飞行高度飞行时间/s t 00.51飞行高度/mh 29.516(1)求第一枚花弹的飞行高度围)(2)当第一枚花弹到达最高点时,求第二枚花弹到达的高度;(3)为了安全,要求花弹爆炸时的高度不低于第二枚花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求.六、证明题22.课本再现(1)在圆周角和圆心角的学习中,我们知道了:圆内接四边形的对角互补.课本中先从四边形一条对角线为直径的特殊情况来论证其正确性,再从对角线是非直径的一般情形进一步论证其正确性,这种数学思维方法称为“由特殊到一般”如图1,四边形ABCD 为O 的内接四边形,AC 为直径,则B D ∠=∠=__________度,BAD BCD ∠+∠=__________度.(2)如果O 的内接四边形ABCD 的对角线AC 不是O 的直径,如图2、图3,请选择一个图形证明:圆内接四边形的对角互补.知识运用(3)如图4,等腰三角形ABC 的腰AB 是O 的直径,底边和另一条腰分别与O 交于点,D E .点F 是线段CE 的中点,连接DF ,求证:DF 是O 的切线.七、问答题(1)正方形ABCD 的边长为;(2)当点P 由点A 运动到点B 时,过点P 作PM 上运动时53PA AM =,OPQ △的面积S 与时间图2所示),求:①点P ,Q 两点的运动速度为______;②S 关于t 的函数关系式为______;。
2020-2021学年江西省某校九年级上学期期中数学试卷 (解析版)

2020-2021学年江西省某校九年级第一学期期中数学试卷一、选择题1.(3分)下列函数是y关于x的反比例函数的是()A.y=B.y=C.y=﹣D.y=﹣2.(3分)下列事件中,是必然事件的是()A.打开电视刚好在播放广告B.抛出的铁球会落地C.早上的太阳从西边升起D.雨后有彩虹3.(3分)关于抛物线y=﹣x2+2x﹣3,下列说法正确的是()A.开口方向向上B.顶点坐标为(1,﹣2)C.与x轴有两个交点D.对称轴是直线x=﹣1 4.(3分)如图,菱形OABC的边长为4,且点A、B、C在⊙O上,则劣弧的长度为()A.B.C.D.5.(3分)关于反比例函数y=﹣,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象位于第二、四象限D.若点M(a,b)在其图象上,则ab=﹣36.(3分)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是()A.36πB.60πC.96πD.100π7.(3分)已知某二次函数,当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小,则该二次函数的解析式可以是()A.y=2(x+1)2B.y=﹣2(x+1)2C.y=2(x﹣1)2D.y=﹣2(x﹣1)28.(3分)如图,在等边△ABC中,点O在边AB上,⊙O 过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线二、填空题(共6小题,每小题3分,共18分)9.(3分)现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是.10.(3分)已知点A、B关于原点对称,若点A的坐标为(1,2),则点B坐标是.11.(3分)如图,正五边形ABCDE内接于⊙O,点F在上,则∠CFD=度.12.(3分)如图,将线段AB绕点O顺时针旋转60°,得到线段CD.若∠BOC=105°,则∠AOD=.13.(3分)关于x的一元二次方程x2+mx﹣5=0有一根是x =﹣1,则另外一根是.14.(3分)在矩形ABCD中,AB=4,BC=6,若点P是矩形ABCD上一动点,要使得∠APB=60°,则AP的长为.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)解下列一元二次方程.(1)2x2+3=7x;(2)(x+4)2=5(x+4).16.(6分)某种气球内充满了一定质量的气体.当温度不变时,气球内气体的压强P/(kPa)是气球体积V/(m3)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当气球内气体的气压大于120 kPa时,气球将爆炸.为了安全起见,气球体积应该不小于多少立方米?17.(6分)复工复学后,为防控冠状病毒,学生进校园必须戴口罩,测体温.某校开通了两种不同类型的测温通道共三条.分别为:红外热成像测温(A通道)和人工测温(B通道和C通道).在三条通道中,每位同学都可随机选择其中的一条通过,周五有甲、乙两位同学进校园.(1)求甲同学进校园时,从人工测温通道通过的概率;(2)请用列表或画树状图的方法求甲、乙两位同学从不同类型测温通道通过的概率.18.(6分)仅用无刻度的直尺,按要求画图(保留画图痕迹,不写作法).(1)如图①,画出⊙O的一个内接矩形;(2)如图②,AB是⊙O的直径,CD是弦,且AB∥CD,画出⊙O的内接正方形.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.20.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠ABC=30°,求图中阴影部分的面积.21.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=60°,∠ACB=25°,求∠FGC的度数.五、解答题(本大题共2小题,每小题9分,共18分)22.(9分)如图,△ABC内接于⊙O,AB为直径,∠BAC=60°,延长BA至点P使AP=AC,作CD平分∠ACB交AB 于点E,交⊙O于点D.连结PC,BD.(1)求证:PC为⊙O的切线;(2)求证:BD=PA;(3)若PC=6,求AE的长.23.(9分)如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B.(1)求b和k的值;(2)请求出点B的坐标,并观察图象,直接写出关于x 的不等式x+b>的解集;(3)若点P在y轴上一点,当PA+PB最小时,求点P的坐标.六、探究题(本大题共1小题,共12分)24.(12分)已知抛物线y n=﹣(x﹣a n)2+b n,(n为正整数,且0<a1<a2<…<a n)的顶点坐标为B n,与x轴的交点为A(0,0)和A n(∁n,0),∁n=C n﹣1+2,当n=1时,第1条抛物线y1=﹣(x﹣a1)2+b1与x轴的交点为A(0,0)和A1(2,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式.(2)抛物线y3的顶点B3坐标为;依此类推,第n 条抛物线y n的顶点坐标B n为;所有抛物线的顶点坐标满足的函数关系式是;(3)探究:①是否存在抛物线y n,使得△AA n B n为等腰直角三角形?若存在,请求出抛物线的表达式;若不存在,请说明理由.②若直线x=m(m>0)与抛物线y,y2,…,y n,y n+1分别交于C1,C2,…,∁n,C n+1,则线段C n﹣1∁n与∁n C n+1的长有何数量关系?并说明理由.参考答案一.选择题(共8小题,每小题3分,共24分,每小题只有一个正确选项)1.(3分)下列函数是y关于x的反比例函数的是()A.y=B.y=C.y=﹣D.y=﹣【分析】直接利用反比例函数的定义分别判断得出答案.解:A、y=是y与x+1成反比例,故此选项不合题意;B、y=,是y与x2成反比例,不符合反比例函数的定义,故此选项不合题意;C、y=﹣,符合反比例函数的定义,故此选项符合题意;D、y=﹣是正比例函数,故此选项不合题意.故选:C.2.(3分)下列事件中,是必然事件的是()A.打开电视刚好在播放广告B.抛出的铁球会落地C.早上的太阳从西边升起D.雨后有彩虹【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.解:A、打开电视刚好在播放广告是随机事件;B、抛出的铁球会落地是必然事件;C、早上的太阳从西边升起是不可能事件;D、雨后有彩虹是随机事件;故选:B.3.(3分)关于抛物线y=﹣x2+2x﹣3,下列说法正确的是()A.开口方向向上B.顶点坐标为(1,﹣2)C.与x轴有两个交点D.对称轴是直线x=﹣1 【分析】根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵抛物线y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴该抛物线的开口向下,顶点坐标是(1,﹣2),对称轴是直线x=1,故选项A、D不符合题意,选项B符合题意;当y=0时,△=22﹣4×(﹣1)×(﹣3)=﹣8<0,则该抛物线与x轴没有交点,故选项C不符合题意;故选:B.4.(3分)如图,菱形OABC的边长为4,且点A、B、C在⊙O上,则劣弧的长度为()A.B.C.D.【分析】连接OB,根据菱形性质求出OB=OC=BC,求出△BOC是等边三角形,求出∠COB=60°,根据弧长公式求出即可.解:连接OB,∵四边形OABC是菱形,∴OC=BC=AB=OA=4,∴OC=OB=BC,∴△OBC是等边三角形,∴∠COB=60°,∴劣弧的长为=π,故选:D.5.(3分)关于反比例函数y=﹣,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象位于第二、四象限D.若点M(a,b)在其图象上,则ab=﹣3【分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断.解:∵反比例函数y=﹣中﹣3<0,∴图象在二、四象限内y随着x的增大而增大,图象关于原点对称,∴A、C正确,不符合题意;B错误,符合题意;∵若点M(a,b)在其图象上,∴﹣=b,∴ab=﹣3,∴D选项正确,不符合题意,故选:B.6.(3分)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是()A.36πB.60πC.96πD.100π【分析】首先求得底面周长,即展开得到的扇形的弧长,然后利用扇形面积公式即可求解.解:底面周长是:2×6π=12π,则圆锥的侧面积是:×12π×10=60π.故选:B.7.(3分)已知某二次函数,当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小,则该二次函数的解析式可以是()A.y=2(x+1)2B.y=﹣2(x+1)2C.y=2(x﹣1)2D.y=﹣2(x﹣1)2【分析】先利用二次函数的性质得到抛物线开口向上,对称轴为直线x=1,然后对各选项进行判断.解:∵当x<1时,y随x的增大而减小;当x>1时,y 随x的增大而增大,∴抛物线开口向上,对称轴为直线x=1,∴抛物线y=2(x﹣1)2满足条件.故选:C.8.(3分)如图,在等边△ABC中,点O在边AB上,⊙O 过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线【分析】A、如图1,连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,如图2,过O作OH⊥AC于H,根据三角函数得到OH=AO≠OB,于是得到C选项错误;D、如图2根据等边三角形的性质和等量代换即可得到D选项正确.解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.二、填空题(共6小题,每小题3分,共18分)9.(3分)现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是.【分析】找出所有的可能情况组合以及能构成三角形的情况数,即可求出所求的概率.解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;能组成三角形的结果有2个(2、6、7,4、6、7,),则能构成三角形的概率为=.故答案为:.10.(3分)已知点A、B关于原点对称,若点A的坐标为(1,2),则点B坐标是(﹣1,﹣2).【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.解:∵点A、B关于原点对称,若点A的坐标为(1,2),∴点B坐标是(﹣1,﹣2).故答案是:(﹣1,﹣2).11.(3分)如图,正五边形ABCDE内接于⊙O,点F在上,则∠CFD=36 度.【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;解:如图,连接OC,OD.∵五边形ABCDE是正五边形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案为:36.12.(3分)如图,将线段AB绕点O顺时针旋转60°,得到线段CD.若∠BOC=105°,则∠AOD=15°.【分析】利用旋转不变性解决问题即可.解:∵∠BOD=∠AOC=60°,∴∠AOD=∠BOD+∠AOC﹣∠BOC=120°﹣105°=15°,故答案为15°.13.(3分)关于x的一元二次方程x2+mx﹣5=0有一根是x =﹣1,则另外一根是 5 .【分析】根据根与系数的关系作答.解:设方程的另一根为x2,则﹣1•x2=﹣5.故x2=5.故答案是:5.14.(3分)在矩形ABCD中,AB=4,BC=6,若点P是矩形ABCD上一动点,要使得∠APB=60°,则AP的长为4或4或8 .【分析】取CD中点P,连接AP,BP,由勾股定理可求AP =BP=4,即可证△APB是等边三角形,可得∠APB=60°,过点A,点P,点B作圆与AD交于点P′,与BC交于点P″,即这样的P点一共3个,分别求出AP的长即可.解:如图,取CD中点P,连接AP,BP,∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=6,∠D=∠C=90°,∵点P是CD中点,∴CP=DP=2,∴AP===4,BP===4,∴AP=PB=AB,∴△APB是等边三角形,∴∠APB=60°,过点A,点P,点B作圆与AD交于点P′,与BC交于点P″,连接BP′,AP″,此时∠AP′B=∠APB=60°,∠AP″B=60°,∴AP′==4,AP″==8,故答案为:4或4或8.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)解下列一元二次方程.(1)2x2+3=7x;(2)(x+4)2=5(x+4).【分析】(1)整理为一般式,再利用因式分解法求解即可;(2)利用因式分解法求解即可.解:(1)整理,得:2x2﹣7x+3=0,∴(x﹣3)(2x﹣1)=0,则x﹣3=0或2x﹣1=0,解得x1=3,x2=0.5;(2)∵(x+4)2﹣5(x+4)=0,∴(x+4)(x﹣1)=0,则x+4=0或x﹣1=0,解得x1=﹣4,x2=1.16.(6分)某种气球内充满了一定质量的气体.当温度不变时,气球内气体的压强P/(kPa)是气球体积V/(m3)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当气球内气体的气压大于120 kPa时,气球将爆炸.为了安全起见,气球体积应该不小于多少立方米?【分析】(1)设函数解析式为P=,把点(1.6,60)的坐标代入函数解析式求出k值,即可求出函数关系式;(2)依题意P≤120,即≤120,解不等式即可.解:(1)设P与V的函数关系式为P=,则=60,解得k=96,∴函数关系式为P=;(2)当P>120KPa时,气球将爆炸,∴P≤120,即≤120,解得V≥0.8(m3).故为了安全起见,气体的体积应不小于0.8(m3).17.(6分)复工复学后,为防控冠状病毒,学生进校园必须戴口罩,测体温.某校开通了两种不同类型的测温通道共三条.分别为:红外热成像测温(A通道)和人工测温(B通道和C通道).在三条通道中,每位同学都可随机选择其中的一条通过,周五有甲、乙两位同学进校园.(1)求甲同学进校园时,从人工测温通道通过的概率;(2)请用列表或画树状图的方法求甲、乙两位同学从不同类型测温通道通过的概率.【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.解:(1)∵共有三个通道,分别是红外热成像测温(A通道)和人工测温(B通道和C通道),∴从人工测温通道通过的概率是;(2)根据题意画树状图如下:共有9种等可能的情况数,其中甲、乙两位同学从不同类型测温通道通过的有4种情况,则甲、乙两位同学从不同类型测温通道通过的概率是.18.(6分)仅用无刻度的直尺,按要求画图(保留画图痕迹,不写作法).(1)如图①,画出⊙O的一个内接矩形;(2)如图②,AB是⊙O的直径,CD是弦,且AB∥CD,画出⊙O的内接正方形.【分析】(1)根据对角线相等且互相平分的四边形是矩形,画出圆的两条直径,即可得到⊙O的一个内接矩形;(2)根据对角线相等且互相垂直平分的四边形是正方形,画出圆的一条直径,使其与AB互相垂直,即可得到⊙O的内接正方形.解:(1)如图所示,过O作⊙O的直径AC与BD,连接AB,BC,CD,DA,则四边形ABCD即为所求;(2)如图所示,延长AC,BD交于点E,连接AD,BC交于点F,连接EF并延长交⊙O于G,H,连接AH,HB,BG,GA,则四边形AHBG即为所求.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.【分析】(1)由方程有两个不相等的实数根知△>0,列不等式求解可得;(2)将k=1代入方程,由韦达定理得出x1+x2=﹣3,x1x2=1,代入到x12+x22=(x1+x2)2﹣2x1x2可得.解:(1)∵方程有两个不相等的实数根,∴△=(2k+1)2﹣4k2=4k+1>0,解得:k>﹣;(2)当k=1时,方程为x2+3x+1=0,∵x1+x2=﹣3,x1x2=1,∴x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7.20.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠ABC=30°,求图中阴影部分的面积.【分析】(1)根据圆周角定理得到∠ADB=90°,根据平行线的性质得到∠AEO=∠ADB=90°,即OC⊥AD,于是得到结论;(2)连接CD,OD,根据等腰三角形的性质得到∠OCB=∠ABC=30°,即可求得∠AOC=∠OCB+∠ABC=60°,根据垂径定理得出=,从而得出∠COD=∠AOC=60°,求得∠AOD=120°,根据扇形和三角形的面积公式即可得到结论.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,又∵OC为半径,∴AE=ED,(2)解:连接CD,OD,∵OC=OB,∴∠OCB=∠ABC=30°,∴∠AOC=∠OCB+∠ABC=60°,∵OC⊥AD,∴=,∴∠COD=∠AOC=60°,∴∠AOD=120°,∵AB=6,∴BD=3,AD=3,∵OA=OB,AE=ED,∴OE==,∴S阴影=S扇形AOD﹣S△AOD=﹣×=3π﹣.21.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=60°,∠ACB=25°,求∠FGC的度数.【分析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF =BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°﹣60°×2=60°,那么∠FAG=60°.由△ABC ≌△AEF,得出∠F=∠C=25°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=85°.【解答】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=60°,∴∠BAE=180°﹣60°×2=60°,∴∠FAG=∠BAE=60°.∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=60°+25°=85°.五、解答题(本大题共2小题,每小题9分,共18分)22.(9分)如图,△ABC内接于⊙O,AB为直径,∠BAC=60°,延长BA至点P使AP=AC,作CD平分∠ACB交AB 于点E,交⊙O于点D.连结PC,BD.(1)求证:PC为⊙O的切线;(2)求证:BD=PA;(3)若PC=6,求AE的长.【分析】(1)连接OC,根据三角形的内角和和切线的判定定理即可得到结论;(2)连结AD.根据角平分线的定义得到∠ACD=∠BCD=45°.求得AD=BD.推出△ACO为等边三角形,根据等边三角形的性质即可得到结论;(3)根据勾股定理即可得到结论.解:(1)连接OC,∵∠BAC=60°,且OA=OC,∴∠OCA=∠OAC=60°.∵AP=AC,且∠P+∠PCA=∠BAC=60°,∴∠P=∠PCA=30°.∴∠PCO=∠PCA+∠ACO=90°.∴PC为切线;(2)连结AD.∵CD平分∠ACB,且∠ACB=90°,∴∠ACD=∠BCD=45°.∴AD=BD.∵在Rt△ADB中,AD2+BD2=AB2.∴AD=BD=AB,又∵OA=OC,∠CAO=60°,∴△ACO为等边三角形,∴AC=CO=AO.∴PA=AC=AO=AB.∴BD=PA;(3)∵∠PCE=∠PCA+∠ACD=75°,∠P=30°,∴∠PEC=75°,∴PC=PE=6.又在Rt△PCO中,OP=OA+PA=2OC,PO2=PC2+CO2,∴CO=6,PO=12.∴OE=OP﹣PE=12﹣6,∴AE=OA﹣OE=OC﹣OE=6﹣(12﹣6)=6﹣6.23.(9分)如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B.(1)求b和k的值;(2)请求出点B的坐标,并观察图象,直接写出关于x 的不等式x+b>的解集;(3)若点P在y轴上一点,当PA+PB最小时,求点P的坐标.【分析】(1)根据待定系数法即可求得;(2)联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.(3)作点A关于y轴对称点A′,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y 的值,即可得出结论.解:(1)∵一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2),把A(﹣1,2)代入两个解析式得:2=×(﹣1)+b,2=﹣k,解得:b=,k=﹣2;(2)联立一次函数解析式与反比例函数解析式成方程组:,解得:或,∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).观察函数图象可知:关于x的不等式x+b>的解集x为﹣4<x<﹣1或x>0.(3)作点A关于y轴的对称点A′,连接A′B交y轴于点P,此时点P即是所求,如图所示.∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,∴,解得:,∴直线A′B的解析式为y=x+.令x=0,则y=,∴点P的坐标为(0,).六、探究题(本大题共1小题,共12分)24.(12分)已知抛物线y n=﹣(x﹣a n)2+b n,(n为正整数,且0<a1<a2<…<a n)的顶点坐标为B n,与x轴的交点为A(0,0)和A n(∁n,0),∁n=C n﹣1+2,当n=1时,第1条抛物线y1=﹣(x﹣a1)2+b1与x轴的交点为A(0,0)和A1(2,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式.(2)抛物线y3的顶点B3坐标为(3,9);依此类推,第n条抛物线y n的顶点坐标B n为[(n+1,(n+1)2] ;所有抛物线的顶点坐标满足的函数关系式是y=x2;(3)探究:①是否存在抛物线y n,使得△AA n B n为等腰直角三角形?若存在,请求出抛物线的表达式;若不存在,请说明理由.②若直线x=m(m>0)与抛物线y,y2,…,y n,y n+1分别交于C1,C2,…,∁n,C n+1,则线段C n﹣1∁n与∁n C n+1的长有何数量关系?并说明理由.【分析】(1)将点A、A1的坐标代入抛物线表达式得:,解得,进而求解;(2)同理可得:a3=3,b3=9,故点B的坐标为(3,9),依此推出:点B[(n+1,(n+1)2],进而求解;(3)①点A(0,0),点A n(2n,0)、点B n(n,n2),则△AA n B n为等腰直角三角形,则AA n2=2AB n2,即(2n)2=2(n2+n4),即可求解;②y Cn﹣1=﹣(m﹣n+1)2+(n﹣1)2,y Cn=﹣(m﹣n)2+n2,则C n﹣1∁n=y Cn﹣y Cn﹣1=﹣(m﹣n)2+n2+(m﹣n+1)2﹣(n﹣1)2=2m,进而求解.解:(1)A1(2,0),则C1=2,则C2=2+2=4,将点A、A1的坐标代入抛物线表达式得:,解得,则点A2(4,0),将点A、A2的坐标代入抛物线表达式,同理可得:a2=2,b2=4;故y2=﹣(x﹣a2)2+b2=﹣(x﹣2)2+4;(2)同理可得:a3=3,b3=9,故点B的坐标为(3,9),依此推出:点B[(n+1,(n+1)2],故所有抛物线的顶点坐标满足的函数关系式是:y=x2,故答案为:(3,9);[(n+1,(n+1)2];y=x2;(3)①存在,理由:∵点A(0,0),点A n(2n,0)、点B n(n,n2),∴△AA n B n为等腰直角三角形,则AA n2=2AB n2,即(2n)2=2(n2+n4),解得:n=1(不合题意的值已舍去),抛物线的表达式为:y=﹣(x﹣1)2+1;②∵y Cn﹣1=﹣(m﹣n+1)2+(n﹣1)2,y Cn=﹣(m﹣n)2+n2,∴C n﹣1∁n=y Cn﹣y Cn﹣1=﹣(m﹣n)2+n2+(m﹣n+1)2﹣(n﹣1)2=2m,m,同理可得∁n C n+1=2故C n﹣1∁n=∁n C n+1.。
2020-2021九年级数学上期中试卷含答案(5)

2020-2021九年级数学上期中试卷含答案(5)一、选择题1.用配方法解方程2410x x -+=,配方后的方程是 ( )A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x +=2.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣43.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +<4.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120° 5.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1B .-1C .±1D .2 6.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4) B .(-3,4)C .(3,-4)D .(2,4) 7.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .8.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 9.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( ) A . B . C . D .10.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120° 11.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( )A .2017B .2018C .2019D .2020 12.下列事件中,属于必然事件的是( )A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上二、填空题13.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .14.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.15.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.16.关于x的方程ax²-(3a+1)x+2(a+1)=0有两个不相等的实数根x1,x2,且x1-x1x2+x2=1-a,则a=17.已知点C在以AB为直径的半圆上,连结AC、BC,AB=10,BC:AC=3:4,阴影部分的面积为_____.18.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b____c(用“>”或“<”号填空)19.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是.20.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为_____.三、解答题21.已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC·AD=AB·AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.22.为响应市政府关于“垃圾不落地⋅市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为“A:非常了解;B :比较了解;C :了解较少;D :不了解.”四种,并将调查结果绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有______名;()3已知“非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.23.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?24.如图,ABO V 与CDO V 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE . 求证:FD=BE .25.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据配方法可以解答本题.【详解】x 2−4x +1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B .【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.2.D解析:D【解析】试题分析:抛物线y=x 2+2x ﹣3与x 轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项B ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项C ,y 的最小值是﹣4,该选项错误;选项D ,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.3.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 5.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,故选:B .【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0. 6.A解析:A【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.7.D解析:D【解析】【分析】Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3,∴∠AOB=∠A=45°,∵CD ⊥OB ,∴CD ∥AB ,∴∠OCD=∠A ,∴∠AOD=∠OCD=45°,∴OD=CD=t ,∴S △OCD =12×OD×CD=12t 2(0≤t≤3),即S=12t 2(0≤t≤3). 故S 与t 之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象; 故选D .【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.8.B解析:B【解析】【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决.【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ≠; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.9.C解析:C【解析】【分析】根据题意,利用分类讨论的方法,讨论k >0和k <0,函数y=kx 2与y=kx+k 的图象,从而可以解答本题.【详解】当k >0时,函数y=kx 2的图象是开口向上,顶点在原点的抛物线,y=kx+k 的图象经过第一、二、三象限,是一条直线,故选项A 、B 均错误,当k <0时,函数y=kx 2的图象是开口向下,顶点在原点的抛物线,y=kx+k 的图象经过第二、三、四象限,是一条直线,故选项C 正确,选项D 错误,故选C .【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.C解析:C【解析】【分析】首先连接OA ,OB ,由⊙O 是正方形ABCD 的外接圆,即可求得∠AOB 的度数,又由圆周角定理,即可求得∠APB 的度数.【详解】连接OA ,OB ,∵⊙O 是正方形ABCD 的外接圆,∴∠AOB=90°,若点P 在优弧ADB 上,则∠APB=12∠AOB=45°; 若点P 在劣弧AB 上, 则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C .11.B解析:B【解析】【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案.【详解】解:∵设a b ,是方程220190x x +-=的两个实数根,∴把x a =代入方程,得:22019a a +=,由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=;故选:B.【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值.12.C解析:C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 任意数的绝对值都是正数是随机事件,错误;B. 两直线被第三条直线所截,内错角相等是随机事件,错误;C. 如果a、b都是实数,那么a+b=b+a是必然事件,正确;D. 抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;故选D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题13.【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°得到△BDE∴△ABC≌△BDE∠CBD=60°∴BD=BC=12cm∴△BCD为等边三角形∴CD=BC=BD=12cm在Rt△ACB中AB解析:【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,=13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为42.考点:旋转的性质.14.P>Q【解析】∵抛物线的开口向下∴a<0∵∴b>0∴2a-b<0∵∴b+2a=0x=-1时y=a-b+c <0∴∴3b -2c >0∵抛物线与y 轴的正半轴相交∴c >0∴3b+2c>0∴P=3b -2cQ=b解析:P >Q【解析】∵抛物线的开口向下,∴a <0, ∵02b a-> ∴b >0,∴2a-b <0, ∵02b a-= ∴b+2a=0, x=-1时,y=a-b+c <0. ∴102b bc --+< ∴3b-2c >0, ∵抛物线与y 轴的正半轴相交,∴c >0,∴3b+2c >0,∴P=3b-2c ,Q=b-2a-3b-2c=-2a-2b-2c ,∴Q-P=-2a-2b-2c-3b+2c=-2a-5b=-4b <0∴P >Q ,故答案是:P >Q .【点睛】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.15.【解析】试题分析:解:连接OD∵CD 是⊙O 切线∴OD⊥CD∵四边形ABCD 是平行四边形∴AB∥CD∴AB⊥OD∴∠AOD=90°∵OA=OD∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD .∵CD 是⊙O 切线,∴OD ⊥CD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD=90°,∵OA=OD ,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.16.-1【解析】试题分析:根据根与系数的关系得出x1+x2=-bax1x2=ca整理原式即可得出关于a的方程求出即可试题解析:∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1解析:-1【解析】试题分析:根据根与系数的关系得出x1+x2=-,x1x2=,整理原式即可得出关于a的方程求出即可.试题解析:∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,∴x1+x2=,x1x2=,依题意△>0,即(3a+1)2-8a(a+1)>0,即a2-2a+1>0,(a-1)2>0,a≠1,∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,∴x1-x1x2+x2=1-a,∴x1+x2-x1x2=1-a,∴-=1-a,解得:a=±1,又a≠1,∴a=-1.考点:1.根与系数的关系;2.根的判别式.17.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB=10BC:AC=3:4可以求得ACBC的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB为直径解析:252π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积,根据AB=10,BC:AC=3:4,可以求得AC,BC的长,再根据半圆的面积公式和直角三角形的面积公式进行计算.【详解】∵AB为直径,∴∠ACB=90°,∵BC:AC=3:4,∴sin∠BAC=35,又∵sin∠BAC=BCAB,AB=10,∴BC=35×10=6,AC=43×BC=43×6=8,∴S阴影=S半圆﹣S△ABC=12×π×52﹣12×8×6=252π﹣24.故答案为:252π﹣24.【点睛】本题考查求阴影部分的面积,解题关键在于能找到阴影部分的面积与半圆的面积、直角三角形的面积,三者的关系.18.<【解析】试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3则它的对称轴是x=a抛物线开口向上所以在对称轴右边y随着x的增大而增大点A点B均在对称轴右边且a+1<a+2所以b<解析:<【解析】试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3,则它的对称轴是x=a,抛物线开口向上,所以在对称轴右边y随着x的增大而增大,点A点B均在对称轴右边且a+1<a+2,所以b<c.19.;【解析】【分析】先求出小琳所在班级的女生人数再根据概率公式计算可得【详解】∵小琳所在班级的女生共有40×60=24人∴从小琳所在班级的女生当中随机抽取一名女生参加小琳被抽到的概率是故答案为解析:1 24;【解析】【分析】先求出小琳所在班级的女生人数,再根据概率公式计算可得.【详解】∵小琳所在班级的女生共有40×60%=24人,∴从小琳所在班级的女生当中随机抽取一名女生参加,小琳被抽到的概率是1 24.故答案为1 24.20.18°【解析】【分析】设圆心为O连接OCODBD根据已知条件得到∠COD==72°根据圆周角定理即可得到结论【详解】设圆心为O连接OCODBD∵五边形ABCDE 为正五边形∴∠COD==72°∴∠CB解析:18°【解析】【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠COD=3605︒=72°,根据圆周角定理即可得到结论.【详解】设圆心为O,连接OC,OD,BD.∵五边形ABCDE为正五边形,∴∠COD=3605︒=72°,∴∠CBD=12∠COD=36°.∵F是CD弧的中点,∴∠CBF=∠DBF=12∠CBD=18°.故答案为:18°.【点睛】本题考查了正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系是解题的关键.三、解答题21.(1)证明见解析;(2)AC=4.【解析】【分析】(1)连接DE,由题意可得∠ADE=90°,∠ABC=90°,又∠A是公共角,从而可得△ADE ∽△ABC,由相似比即可得;(2)连接OB,由BD是切线,得OD⊥BD,有E为OB中点,则可得OE=BE=OD,从而可得∠OBD=∠BAC=30°,所以AC=2BC=4;【详解】(1)连接DE ,∵AE 是直径,∴∠ADE=90o ,∴∠ADE=∠ABC ,在Rt △ADE 和Rt △ABC 中,∠A 是公共角,∴△ADE ∽△ABC ,∴,即AC·AD=AB·AE (2)连接OD ,∵BD 是圆O 的切线,则OD ⊥BD ,在Rt △OBD 中,OE=BE=OD∴OB=2OD ,∴∠OBD=30°,同理∠BAC=30°,在Rt △ABC 中,AC=2BC=2×2=4.考点:1.圆周角定理;2.相似三角形的判定与性质;3.切线的性质;4.30°的直角三角形的性质.22.(1)20(2)500(3)12【解析】【分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校“非常了解”与“比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校“非常了解”与“比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61 122 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.23.每件衬衫应降价20元.【解析】【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得x1=10,x2=20.∵“扩大销售量,减少库存”,∴x1=10应舍去,∴x=20.答:每件衬衫应降价20元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.24.详见解析【解析】【分析】根据中心对称得出OB=OD ,OA=OC ,求出OF=OE ,根据SAS 推出△DOF ≌△BOE 即可.【详解】证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB=OD ,OA=OC .∵AF=CE ,∴OF=OE .∵在△DOF 和△BOE 中,OB OD DOF BOE OF OE =⎧⎪∠=∠⎨⎪=⎩,∴△DOF ≌△BOE (SAS ).∴FD=BE .25.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.。
2020-2021九年级数学上期中试卷(含答案)(4)

2020-2021九年级数学上期中试卷(含答案)(4)一、选择题1.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .42.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④ 3.用配方法解方程210x x +-=,配方后所得方程是( )A .213()24x -= B .213()24x += C .215()24x += D .215()24x -= 4.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1B .3C .5D .7 5.已知()222226x y y x +-=+,则22x y +的值是( ) A .-2B .3C .-2或3D .-2且3 6.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A.45°B.60°C.45°或135°D.60°或120°7.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,则P′A∶PB=( )A.1∶2B.1∶2C.3∶2D.1∶38.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是()A.120B.19100C.14D.以上都不对9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A.1 B.2 C.3 D.410.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD 11.如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是()A.30ºB.35ºC.25ºD.60º12.如果反比例函数2 ayx-=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>2二、填空题13.已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.若1211+x x=﹣1,则k的值为_____.14.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.15.如图,将正六边形ABCDEF放置在直角坐标系内,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C的坐标是_____.16.已知点C在以AB为直径的半圆上,连结AC、BC,AB=10,BC:AC=3:4,阴影部分的面积为_____.17.要为一幅矩形照片配一个镜框,如图,要求镜框的四条边宽度都相等,且镜框所占面积是照片本身面积的四分之一,已知照片的长为21cm,宽为10cm,求镜框的宽度.设镜框的宽度为xcm,依题意列方程,化成一般式为_____.18.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.19.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交»AB于点E,以点O为圆心,OC的长为半径作»CD交OB于点D,若OA=2,则阴影部分的面积为 .20.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b <a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有_____.(填序号)三、解答题21.小明和小亮进行摸牌游戏,如图,他们有四张除牌面数字不同外、其他地方完全相同的纸牌,牌面数字分别为4,5,6,7,他们把纸牌背面朝上,充分洗匀后,从这四张纸牌中摸出一张,记下数字放回后,再次重新洗匀,然后再摸出一张,再次记下数字,将两次数字之和做为对比结果.若两次数字之和大于11,则小明胜;若两次数字之和小于11,则小亮胜.(1)请你用列表法或树状图列出这个摸牌游戏中所有可能出现的结果.(2)这个游戏公平吗?请说明理由.22.(2016内蒙古包头市)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.23.如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD是⊙O的切线;(2)若半径OB=2,求AD的长.24.(1)解方程:x2﹣2x﹣8=0;(2)解不等式组3(2)1 112x xx--<⎧⎪⎨-<⎪⎩25.如图,在ABC∆中,90B∠=︒,5cmAB=,7cmBC=,点P从点A开始沿AB 边向点B以1cm/s的速度移动,同时,点Q从点B开始沿BC边向点C以2cm/s的速度移动(到达点C,移动停止).(1)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于210cm?(2)在(1)中,PQB∆的面积能否等于27cm?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵抛物线与y轴交于正半轴,∴c>0,①正确;∵对称轴为直线x=﹣1,∴x <﹣1时,y 随x 的增大而增大,∴y 1>y 2②错误;∵对称轴为直线x=﹣1, ∴﹣2b a=﹣1, 则2a ﹣b=0,③正确;∵抛物线的顶点在x 轴的上方, ∴244ac b a>0,④错误; 故选B.2.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.3.C解析:C【解析】【分析】本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次项系数化为1,然后左右两边同时加上一次项系数一半的平方.【详解】解:2x +x=12x +x+14=1+14 215()24x +=. 故选C【点睛】 考点:配方的方法.4.C解析:C【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.5.B解析:B【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.6.C解析:C【解析】【分析】首先连接OA ,OB ,由⊙O 是正方形ABCD 的外接圆,即可求得∠AOB 的度数,又由圆周角定理,即可求得∠APB 的度数.【详解】连接OA ,OB ,∵⊙O 是正方形ABCD 的外接圆,∴∠AOB=90°,若点P 在优弧ADB 上,则∠APB=12∠AOB=45°; 若点P 在劣弧AB 上, 则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C .7.B解析:B【解析】【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.8.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=, 故选C . 点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.9.B解析:B【解析】分析:∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <0;故①错误。
2020-2021九年级数学上期中试卷(含答案)(1)

2020-2021九年级数学上期中试卷(含答案)(1)一、选择题1.下列事件中,属于必然事件的是( )A .随时打开电视机,正在播新闻B .优秀射击运动员射击一次,命中靶心C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形2.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1) 3.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >04.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A .16B .29C .13D .235.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2) 6.已知()222226x y y x +-=+,则22x y +的值是( ) A .-2 B .3 C .-2或3 D .-2且37.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 8.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=219.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .1∶2B .1∶2C .3∶2D .1∶3 10.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个 11.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41 B .-35 C .39 D .45二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知、是方程的两个根,则代数式的值为______. 15.若圆锥的底面周长为4π,母线长为6,则圆锥的侧面积等于________.(结果保留π)16.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.17.如图,Rt ABC ∆中,已知90C =∠,55B ∠=,点D 在边BC 上,2BD CD =.把线段BD 绕着点D 逆时针旋转α(0180α<<)度后,如果点B 恰好落在Rt ABC ∆的边上,那么α=__________.18.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________.19.已知圆锥的母线长为5cm ,高为4cm ,则该圆锥的侧面积为_____ cm ²(结果保留π).20.如图,O 是ABC 的外接圆,30C ∠=,2AB cm =,则O 的半径为________cm .三、解答题21.已知:如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M 为它的顶点.(1)求抛物线的解析式;(2)求△MCB 的面积MCB S. (3)在坐标轴上,是否存在点N ,满足△BCN 为直角三角形?如存在,请直接写出所有满足条件的点N .22.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元23.甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由.24.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O 的半径.25.三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意.故选D.点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.2.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.3.B解析:B【解析】【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号.【详解】∵抛物线开口向下,∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2b a>0, ∴b >0, ∵抛物线与y 轴的交点在x 轴上方,∴c >0,故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.4.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P (一红一黄)=26=13.故选C . 5.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2,∴Rt △AOB 中,AB 52=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D .【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.6.B解析:B【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.7.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =1lr 2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB=11lr=22×6×3=9.故选D.【点睛】本题考查扇形面积的计算.8.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x2-8x=5,∴x2-8x+16=5+16,即(x-4)2=21,故选D.【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.9.B解析:B【解析】【分析】【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵BP=BP′,∠ABP=∠CBP′,AB=BC,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=3x,根据勾股定理,PP,∴PP PB=,解得PB=2x,∴P′A:PB=x:2x=1:2.故选B.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P′A、P′C以及P′B2倍转化到同一个直角三角形中是解题的关键.10.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.11.B解析:B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.12.C解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把22a3ab8b2a++-变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a,b为方程2x5x10--=的两个实数根,∴a2-5a-1=0,a+b=5,ab=-1,∴22a3ab8b2a++-=2(a2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2=39.故选:C.【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1、x2,则x1+x2=ba-,x1·x2=ca;熟练掌握韦达定理是解题关键.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5整理解析:【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.【详解】∵a,b是方程x2-x-3=0的两个根,∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5=2a2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.15.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键解析:12π【解析】【分析】底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积12lr=列式进行计算即可得解.【详解】解:圆锥的侧面积11641222==⨯⨯=lrππ.故答案为:12π.【点睛】本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键.16.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;23 解析:34【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34. 故其概率为:34. 【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比. 17.或【解析】【分析】分两种情况:①当点落在AB 边上时②当点落在AB 边上时分别求出的值即可【详解】①当点落在AB 边上时如图1∴DB=DB′∴∠B=∠DB′B=55°∴∠BDB′=180°-55°-55°解析:70或120【解析】【分析】分两种情况:①当点B 落在AB 边上时,②当点B 落在AB 边上时,分别求出α的值,即可.【详解】①当点B 落在AB 边上时,如图1,∴DB=DB ′,∴∠B=∠DB ′B=55°,∴α=∠BDB ′=180°-55°-55°=70°;②当点B 落在AB 边上时,如图2,∴DB=DB ′=2CD ,∵90C =∠,∴∠CB ′D=30°,∴α=∠BDB ′=30°+90°=120°.故答案是:70或120.【点睛】本题主要考查等腰三角形的性质和直角三角形的性质定理,画出图形分类讨论,是解题的关键.18.【解析】【分析】画出树状图得出所有情况让从左向右恰好成上中下的情况数除以总情况数即为所求的概率【详解】画树状图如图:共有6个等可能的结果从上到下的顺序恰好为上册中册下册的结果有1个∴从上到下的顺序恰解析:1 6【解析】【分析】画出树状图得出所有情况,让从左向右恰好成上、中、下的情况数除以总情况数即为所求的概率.【详解】画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个,∴从上到下的顺序恰好为“上册、中册、下册”的概率为16,故答案为:16.【点睛】本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm母线长5cm 根据勾股定理得圆锥的底面半径为3cm所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm ,母线长5cm ,根据勾股定理得圆锥的底面半径为3cm ,所以圆锥的侧面积=π×3×5=15πcm ².故答案为:15π.【点睛】本题考查圆锥的计算.20.2【解析】【分析】作直径AD 连接BD 得∠ABD=90°∠D=∠C=30°则AD=4即圆的半径是2(或连接OAOB 发现等边△AOB)【详解】作直径AD 连接BD 得:∠ABD=90°∠D=∠C=30°∴A解析:2【解析】【分析】作直径AD ,连接BD ,得∠ABD =90°,∠D =∠C =30°,则AD =4.即圆的半径是2.(或连接OA ,OB ,发现等边△AOB .)【详解】作直径AD ,连接BD ,得:∠ABD =90°,∠D =∠C =30°,∴AD =4,即圆的半径是2.【点睛】本题考查了圆周角定理.能够根据圆周角定理发现等边三角形或直角三角形是解题的关键.三、解答题21.(1)y=﹣x 2+4x+5(2)15(3)存在,(0,0)或(0,﹣5)或(﹣5,0)【解析】【分析】(1)把A (﹣1,0),C (0,5),(1,8)三点代入二次函数解析式,解方程组即可. (2)先求出M 、B 、C 的坐标,根据MCB MCE OBC MEOB S S S S 梯形﹣﹣即可解决问题. (3)分三种情①C 为直角顶点;②B 为直角顶点;③N 为直角顶点;分别求解即可.【详解】(1)∵二次函数y=ax 2+bx+c 的图象经过A (﹣1,0),C (0,5),(1,8),则有:085a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得145a b c =-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为y=﹣x 2+4x+5.(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得顶点M (2,9)如图1中,作ME ⊥y 轴于点E ,可得MCB MCE OBC MEOB S S S S =梯形﹣﹣=12(2+5)×9﹣12×4×2﹣12×5×5=15. (3)存在.如图2中,∵OC=OB=5,∴△BOC 是等腰直角三角形,①当C 为直角顶点时,N 1(﹣5,0).②当B 为直角顶点时,N 2(0,﹣5).③当N 为直角顶点时,N 3(0,0).综上所述,满足条件的点N 坐标为(0,0)或(0,﹣5)或(﹣5,0).考点:1、二次函数,2、三角形的面积,3、直角三角形的判定和性质22.王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.23.(1) 12;(2)公平,理由见解析【解析】【分析】本题考查了概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【详解】方法一画树状图:由上图可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.∴P(和为奇数)= 12.方法二列表如下:由上表可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.∴P (和为奇数)= 12; (2)∵P (和为奇数)=12,∴P (和为偶数)= 12,∴这个游戏规则对双方是公平的. 【点睛】 本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)证明见解析;(2)352r =. 【解析】【分析】(1)连接OD ,由OD=OB ,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r ,利用锐角三角函数定义求出AB 的长,再利用勾股定理列出关于r 的方程,求出方程的解即可得到结果.【详解】(1)证明:连接OD ,OB OD =,3B ∴∠=∠,1B ∠=∠,13∴∠=∠,在Rt ACD ∆中,1290∠+∠=︒,()41802390∴∠=︒-∠+∠=︒,OD AD ∴⊥,则AD 为圆O 的切线;(2)设圆O 的半径为r ,在Rt ABC ∆中,tan 4AC BC B ==,根据勾股定理得:224845AB =+=45OA r ∴=,在Rt ACD ∆中,1tan 1tan 2B ∠==, tan 12CD AC ∴=∠=,根据勾股定理得:22216420AD AC CD =+=+=,在Rt ADO ∆中,222OA OD AD =+,即()224520r r -=+, 解得:35r =. 【点睛】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.25.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A 通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B 通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A 通道通过的情况数有1种,所以都选择A 通道通过的概率为18, 故答案为:18; (2)∵共有8种等可能的情况,其中至少有两辆汽车选择B 通道通过的有4种情况, ∴至少有两辆汽车选择B 通道通过的概率为4182=. 【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.。
2020-2021学年度九年级(上)期中数学试卷 (附答案)

2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每小题只有一个正确选项,每小题3分,共18分)1.(3分)如下图所示,下列四组图形中,左边图形与右边图形成中心对称的是()A.B.C.D.2.(3分)如图,A、B、C三点在圆O上,∠B=36°,则∠AOC的度数为()A.36°B.54°C.72°D.90°3.(3分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)4.(3分)如图,⊙O的直径为10,弦AB的长为8,点P在AP上运动,则OP的最小值是()A.2B.3C.4D.55.(3分)已知函数y=x2+bx+c的图象与x轴只有一个交点,(x1,2017)、(x2,2017)是该函数图象上的两个点,则当x=x1+x22时,函数值y=()A.﹣2017B.c C.0D.c﹣20176.(3分)下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7,根据表中所提供的信息,以下判断正确的是()①a >0;②9<m<16;③k≤9;④b2≤4a(c﹣k)x…x1x2x3x4x5x6x7…y…16m9k9m16…A.①②B.③④C.①②④D.①③④二、填空题(共6小题,每小题3分,共18分)7.(3分)函数y=√3−x中,自变量x的取值范围是.8.(3分)如图,将正三角形绕其对称中心O旋转后,恰好能与原来的正三角形重合,那么旋转的角度至少是度.9.(3分)已知一元二次方程x2﹣4x+2=0的两根分别是x1,x2,那么(1+x1)(1+x2)的值是.10.(3分)如图,将△ABC绕点A逆时针方向旋转到△ADE的位置,点B落在AC边上的点D处,设旋转角为α(0°<α<90°).若∠B=125°,∠E=30°,则∠α=°.11.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围为.12.(3分)如图所示的是二次函数y=ax2+bx+c的图象,有下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0或x≤﹣2.其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、本大题共6小题,每小题6分,共30分)13.x 2﹣2x ﹣15=0.14.(6分)如图,在⊙O 中,AB̂=AC ̂,∠A =40°,求∠D 的度数.15.(6分)如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的14.若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽.16.(6分)如图,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B ′落到BC 边上,∠B =50°.求∠CB ′C ′的度数.17.(6分)已知二次函数y=ax2﹣4x+c的图象经过点A(﹣1,﹣1)和B(3,﹣9).(1)求该二次函数的解析式;(2)填空:该抛物线的对称轴是;顶点坐标是;当x=时,y随x的增大而减小.18.(6分)如图,△ABC是⊙O的内接三角形,∠BAD是它的个外角,OP⊥BC交⊙O于点P,仅用无刻度的直尺分别按下列要求画图.(1)在图1中,画出△ABC的角平分线AF;(2)在图2中,画出△ABC的外角∠BAD的角平分线AG.四、(本大题共3小题,每小题8分,共24分)19.(8分)已知关于x的一元二次方程ax2﹣(a+2)x+2=0.(1)不解方程,判别方程的根的情况;(2)方程有两个不相等的正整数根时,求整数a的值.20.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC 交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.21.(8分)如图,△OBD中,OD=BD,△OBD绕点O逆时针旋转一定角度后得到△OAC,此时B,D,C三点正好在一条直线上,且点D是BC的中点.(1)求∠COD度数;(2)求证:四边形ODAC是菱形.五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(9分)如图,在平面直角坐标系xOy中,直线y=12x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=−32且经过A、C两点,与x轴的另一交点为点B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接P A,PC.求△P AC的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点.(1)如图1,试证CD=BE时,△AMN是等边三角形;(2)当把△ADE绕点A旋转到图2的位置时CD=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年江西省南昌市新建五中九年级(上)期中数学试
卷
一、选择题(每小题3分,共24分)
1.下列方程中,一定是关于x的一元二次方程的是()
A.ax2+bx+c=0B.2(x﹣x2)﹣1=0
C.x2﹣y﹣2=0D.mx2﹣3x=x2+2
2.若关于x的一元二次方程(m﹣1)x2+2x﹣2=0没有实数根,则实数m的取值范围是()A.m<B.m>C.m>且m≠1D.m≠1
3.下列四组图形中,左边的图形与右边的图形成中心对称的有()
A.1组B.2组C.3组D.4组
4.在同一坐标系中,二次函数y=ax2+bx与一次函数y=ax﹣a的图象可能是()A.B.
C.D.
5.把抛物线y=2x2向左平移1个单位,则所得抛物线的解析式是()A.y=2(x﹣1)2B.y=2(x+1)2C.y=2x2﹣1D.y=2x2+1
6.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间满足函数解析式y=﹣x2+x+,由此可知该生此次实心球训练的成绩为()
A.6米B.8米C.10米D.12米
7.对于二次函数y=a(x+k)2+k(a≠0)而言,无论k取何实数,其图象的顶点都在()A.x轴上B.直线y=x上C.y轴上D.直线y=﹣x上8.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()
A.3B.5C.4或5D.3或5
二、填空题(每小题3分,共18分)
9.已知m、n是方程x2﹣2x﹣5=0的两个根,那么m2+mn+2n=.
10.如果抛物线y=x2﹣6x+c的顶点到x轴的距离是3,那么c的值等于.
11.在平面直角坐标系中,将点P(﹣3,2)绕点Q(﹣1,0)顺时针旋转90°,所得到的对应点P′的坐标为.
12.将抛物线y=﹣x2﹣2x﹣3向右平移三个单位,再绕原点O旋转180°,则所得抛物线的解析式.
13.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=2,若其与x轴的一个交点为(5,0),则由图象可知,不等式ax2+bx+c<0的解集是.
14.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2.下列结论:①4a+b=0;②9a+c>3b;③当x>﹣1时,y的值随x值的增大而增大;④当函数值y<0时,自变量x的取值范围是x<﹣1或x>5;⑤8a+7b+2c>0.其中正确的结论是.
三、简答题(共56分)
15.(6分)用指定方法解方程:
(1)2x2+4x﹣3=0(配方法解)
(2)5x2﹣8x=﹣2(公式法解)
16.(6分)如图,P是正方形ABCD内一点,△ABP绕着点B旋转后能到达△CBE的位置.(1)旋转的角度是多少度?
(2)若BP=3cm,求线段PE的长.
17.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC绕点O逆时针旋转90°得到的△A1B1C1;
(2)请画出△ABC以点O为对称中心的中心对称图形△A2B2C2;
(3)在x轴上求作一点P,使△P AB的周长最小,请画出△P AB,并直接写出点P的坐标.
18.(6分)已知关于x的一元二次方程x2+2(m+1)x+m2﹣8=0
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=24﹣2x1x2,求实数m的值.19.(9分)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y (件),日销售利润为w(元).
(1)求y与x的函数关系式.
(2)要使日销售利润为720元,销售单价应定为多少元?
(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售所获利润最大,并求出此时的利润率.
20.(9分)如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,点C是抛物线与y轴的交点.
(1)求抛物线的解析式和顶点坐标;
(2)当0<x<3时,求y的取值范围;
(3)在抛物线的对称轴上是否存在点M,使△BCM是等腰三角形?若存在请直接写出点M坐标,若不存在请说明理由.
21.(6分)已知△ABC为等边三角形.
(1)如图,P为△ABC外一点,∠BPC=120°,连接P A,PB,PC,求证:PB+PC=P A;
(2)如图,P为△ABC内一点,若P A=12,PB=5,PC=13,求∠APB的度数.
22.(7分)在直角坐标系xOy中,定义点C(a,b)为抛物线L:y=ax2+bx(a≠0)的特征点坐标.
(1)已知抛物线L经过点A(﹣2,﹣2)、B(﹣4,0),求出它的特征点坐标;
(2)若抛物线L1:y=ax2+bx的位置如图所示:
①抛物线L1:y=ax2+bx关于原点O对称的抛物线L2的解析式为;
②若抛物线L1的特征点C在抛物线L2的对称轴上,试求a、b之间的关系式;
③在②的条件下,已知抛物线L1、L2与x轴有两个不同的交点M、N,当一点C、M、
N为顶点构成的三角形是等腰三角形时,求a的值.
2020-2021学年江西省南昌市新建五中九年级(上)期中数学试
卷
参考答案与试题解析
一、选择题(每小题3分,共24分)
1.下列方程中,一定是关于x的一元二次方程的是()
A.ax2+bx+c=0B.2(x﹣x2)﹣1=0
C.x2﹣y﹣2=0D.mx2﹣3x=x2+2
【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行解答即可.
【解答】解:A、不是一元二次方程,故此选项错误;
B、是一元二次方程,故此选项正确;
C、不是一元二次方程,故此选项错误;
D、不是一元二次方程,故此选项错误;
故选:B.
2.若关于x的一元二次方程(m﹣1)x2+2x﹣2=0没有实数根,则实数m的取值范围是()A.m<B.m>C.m>且m≠1D.m≠1
【分析】由方程无实数根得出△=22﹣4(m﹣1)×(﹣2)<0,且m﹣1≠0,解之可得答案.
【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣2=0没有实数根,
∴△=22﹣4(m﹣1)×(﹣2)<0,且m﹣1≠0,
解得m<,
故选:A.
3.下列四组图形中,左边的图形与右边的图形成中心对称的有()
A.1组B.2组C.3组D.4组
【分析】欲分析两个图形是否成中心对称,主要把一个图形绕一个点旋转180°,观察是否能和另一个图形重合即可.
【解答】解:根据中心对称的概念,知②③④都是中心对称.
故选:C.
4.在同一坐标系中,二次函数y=ax2+bx与一次函数y=ax﹣a的图象可能是()A.B.
C.D.
【分析】本题可由一次函数y=ax﹣a的图象经过点(1,0)进行判断.
【解答】解:由一次函数y=ax﹣a=a(x﹣1)可知,直线经过点(1,0),故A可能是正确的,
故选:A.
5.把抛物线y=2x2向左平移1个单位,则所得抛物线的解析式是()A.y=2(x﹣1)2B.y=2(x+1)2C.y=2x2﹣1D.y=2x2+1
【分析】抛物线平移不改变a的值.
【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,那么新抛物线的顶点为(﹣1,0),可设新抛物线的解析式为y=2(x﹣h)2+k,代入得y=2(x+1)2.
故选:B.
6.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间满足函数解析式y=﹣x2+x+,由此可知该生此次实心球训练的成绩为()
A.6米B.8米C.10米D.12米
【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【解答】解:当y=0时,即y=﹣x2+x+=0,
解得,x=﹣2(舍去),x=10.
故选:C.
7.对于二次函数y=a(x+k)2+k(a≠0)而言,无论k取何实数,其图象的顶点都在()A.x轴上B.直线y=x上C.y轴上D.直线y=﹣x上【分析】根据顶点式解析式写出顶点坐标,然后求解即可.
【解答】解:顶点坐标为(﹣k,k),
所以,顶点的横坐标与纵坐标互为相反数,
所以,图象的顶点都在直线y=﹣x上.
故选:D.
8.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()
A.3B.5C.4或5D.3或5
【分析】应该分情况讨论,因为不知道在三角形中哪一个是作为斜边存在的.所以有三种情况,即:①若AC为斜边,则32=x2+(9﹣x)2,即x2﹣9x+36=0,方程无解;
②若AB为斜边,则x2=(9﹣x)2+32,且满3<x<6,
③若BC为斜边,则(9﹣x)2=32+x2,且满足3<x<6.
【解答】解:∵在△ABC中,AC=AM=3,设AB=x,BC=9﹣x.
由三角形两边之和大于第三边得到下列不等式组:,
解得3<x<6;
①AC为斜边,则32=x2+(9﹣x)2,即x2﹣9x+36=0,方程无解,即AC为斜边不成立.
②若AB为斜边,则x2=(9﹣x)2+32,解得x=5,满足3<x<6,
③若BC为斜边,则(9﹣x)2=32+x2,解得x=4,满足3<x<6,
∴x=5或x=4;
故选:C.。