国赛数学建模A题葡萄酒论文

合集下载

2012年全国大学生数学建模竞赛a题 葡萄酒的评价 答案.

2012年全国大学生数学建模竞赛a题   葡萄酒的评价  答案.

葡萄酒的评价摘要本文主要研究的是如何对葡萄酒进行评价的问题。

通过对评酒员的评分与酿酒葡萄的理化指标和葡萄酒的理化指标等原始数据进行统计、分析和处理,我们得出了一个较为合理地评价葡萄酒质量优劣的模型。

在问题一中,我们采用T检验法,首先进行正态分布拟合检验,判断出它们服从正态分布。

之后,我们通过T检验法判断出了两组评酒员的评价结果具有显著性差异。

而对于如何判断哪一组评酒员的评价结果更可信,由于评酒员评分的客观性,我们通过计算评酒员评分均值的置信区间,利用置信区间的长短来判断评分的可信程度。

置信区间越窄,说明其越可信。

利用Matlab软件求出了第二组评酒员的评分均值的置信区间更窄,所以第二组评酒员的评价结果更可信。

在问题二中,我们采用主成分分析法,把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量再按照方差依次递减的顺序排列。

在数学变换中保持变量的总方差不变,使第一变量具有最大的方差。

第二变量的方差次大,并且和第一变量不相关。

由于变量较多,虽然每个变量都提供了一定的信息,但其重要性有所不同。

依次类推,最后我们将酿酒葡萄分为了四个等级:优质、次优、中等、下等。

在问题三中,我们通过多项式曲线拟合的方法,构造一个以葡萄酒的理化指标为自变量,酿酒葡萄的理化指标为因变量的函数,并利用Matlab软件进行曲线拟合,最后得出酿酒葡萄与葡萄酒的理化指标之间的关系为呈线性正相关。

在问题四中,我们用无交互作用的双因素试验的方差分析方法,通过对观测、比较、分析实验数据的结果,鉴别出了两个因素在水平发生变化时对实验结果产生显著性影响的大小程度。

最后,我们认为能用酿酒葡萄和葡萄酒的理化指标来评价葡萄酒的质量,且酿酒葡萄的理化指标对葡萄酒质量影响相对葡萄酒的理化指标更显著。

关键词:T检验法,Matlab,正态分布,主成分分析法,多项式曲线拟合,方差分析一.问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

2012年国赛A葡萄酒获奖论文带附录(完整版)

2012年国赛A葡萄酒获奖论文带附录(完整版)

2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A 题葡萄酒的评价摘要:确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

一方面由于每个品酒员间存在评价尺度、评价位置和评价方向等方面的差异,导致不同品酒员对同一酒样的评价存在差异,从而不能真实地反映不同酒样间的差异。

另一方面葡萄酒的质量和酿酒葡萄的好坏又有直接的关系,于是根据题中所给的条件和问题提出相关的约束条件和目标函数,建立合理的数学模型。

对于问题一,在分析附件1中所给的数据后,首先根据每组的10名评酒员对其中的一种酒进行品尝后确定葡萄的质量,然后在进行分析评酒员评27种红葡萄酒的差异,最后运用方差分析对两组评酒员的评价结果进行测定,得出两组评酒员存在是否有显著性差异的结果,看其哪组评酒员的技术水平更高些。

问题二是为了对酿酒葡萄进行分级,要从酿酒葡萄的理化指标和葡萄酒的质量进行分级,在附件2、3中,发现酿酒葡萄的成分数据中有很多因素,首先对酿酒葡萄的理化指标经过查找资料、专家咨询进行了较为有效的分类,我们从中选取一些有效因素,例如:氨基酸总量、糖、单宁、色差值、酸、芳香物质等。

然后再采取系统聚类分析法对酿酒葡萄进行分级。

等级大致分为优、良、中、差四个级别。

在解决问题三时,不仅要考虑酿酒葡萄还要考虑葡萄酒的理化指标,因而采用多元回归模型,模型如下:其中,b0为常数项,为回归系数,错误!未找到引用源。

是随机误差。

把酿酒葡萄作为自变量,葡萄酒的理化指标中的因素作为因变量,这样通过多元回归模型就能拟合出两者之间的图像,从而得到酿酒葡萄与葡萄酒理化指标的联系。

针对问题四,我们采用层次分析法用问题二得出来的酿酒葡萄的等级和葡萄酒的理化指标对葡萄酒进行选优排序,把葡萄酒的排序作为目标层(O),把酿酒葡萄的等级和葡萄酒的理化指标作为准则层(C),把酿酒葡萄的等级和葡萄酒的理化指标的影响因素作为子准则层。

2012全国数学建模论文a题(葡萄酒)省一等奖讲述

2012全国数学建模论文a题(葡萄酒)省一等奖讲述

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):指导组日期:2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文主要根据评酒员对葡萄酒的一系列指标的打分,从而对葡萄酒的质量作出判别。

考虑到酿酒葡萄的好坏、所酿葡萄酒的质量和酿酒工艺、陈酿技术等约束条件,为此我们建立模型来确定影响葡萄酒评价的各种因素。

在这模型中利用excel,spss,matlab等一系列的数学工具对模型进行求解,综合统计分析的应用对所给的结果进行比较,从而得出最终的结果。

首先,对于问题1,分析两组评酒员的评价结果,每个评酒员对外观、口感、香气、平衡/整体四个方面指标得分进行求和,得到其总分,确定葡萄酒的质量。

由于葡萄酒的质量满足正态分布,为了能分辨出两组的差异,所以利用spss进行配对T检验,从而得出两组评酒员有显著的差异。

其次,用excel对两组进行方差分析,根据所得到的P值大小,得出第一组的评价结果更为可信。

对于问题2,在问题1的基础下,根据所给的理化指标和葡萄酒的质量利用spss统计分析软件进行分析,相关性分析对数据进行预备分析,剔除与葡萄酒质量无显著性相关的指标,再利用系统聚类的方法对酿酒葡萄进行分级。

数学建模葡萄酒评价优秀论文

数学建模葡萄酒评价优秀论文

葡萄酒的评价模型摘要近年来,我国掀起了一场葡萄酒热,对葡萄酒的需求与日俱增。

特别是随着食品科学技术的发展,人们不再满足传统感官评价葡萄酒的水平。

如何运用数据资料定量研究葡萄酒的品质,加快建立葡萄酒市场指标规则成为人们关注的焦点。

本文通过对感官评价分析,结合葡萄酒和酿酒葡萄的理化指标和芳香物质的大量数据,建立了客观可靠的葡萄酒质量综合评价模型。

针对问题一:本题需要检验两组品酒员的评价结果是否存在显著差异,并选出更可靠的一组。

我们将各种葡萄酒的10个二级指标得分,相加得到每种酒的总分。

在判断知每组品酒员的评价总分均服从正态分布后,用t检验分析两组品酒员对各葡萄酒评价的差异性,由此计算得到两组评价的显著性差异率为13.36%,即总体上两组品酒员的评价不存在显著差异。

但由于两组品酒员的评价仍存在部分差异,我们比较两组品酒员对55种葡萄酒评价的方差,发现第二组评分的方差普遍小于第一组,所以第二组的评价结果更可信。

针对问题二:为了对酿酒葡萄进行分级,我们将葡萄的理化指标作为媒介。

先根据国际指标制定适用于本题评分的分级标准,将葡萄酒进行分级,再根据理化指标经标准化之后的数值,利用欧氏距离对酿酒的55种酿酒葡萄进行Q型聚类分析。

聚类得到红白葡萄各六个分类后,再把各类酿酒葡萄对应至相应葡萄酒的等级,将酿酒红葡萄和酿酒白葡萄各分为五级。

针对问题三:由于各种酿酒葡萄的理化指标种类复杂,我们用主成分分析的方法,从酿酒红葡萄和酿酒白葡萄的27个有效指标中各提取出了8个和9个主要成分。

考虑到酿酒葡萄经化学反应酿造成葡萄酒的过程中各项理化指标一般存在线性关系,我们建立多元线性回归模型,得出酿酒葡萄和葡萄酒各项有效理化指标的正负相关关系。

关键词:显著性检验;聚类分析;主成分分析;多元回归。

一、问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

葡萄酒的评价数学建模论文大学毕设论文

葡萄酒的评价数学建模论文大学毕设论文

葡萄酒的评价摘要本文主要研究葡萄酒的评价问题。

以酿酒葡萄和葡萄酒为对象,通过对酿酒葡萄理化指标的分析、分级,筛选出影响葡萄酒质量的主要指标,就酿酒葡萄和葡萄酒理化指标、芳香物质对葡萄酒质量进行分析研究,从而得出对葡萄酒质量的客观评价。

问题一,我们发现有两组数据是有误的,最后我们取平均值代替,再对两组葡萄酒的数据进行处理,通过t检验征得有显著性差异,然后利用alpha模型来得出第二组比较可信。

问题二,第一问所得的可信组,用EXCLE先计算酿酒葡萄的显著性理化指标的相关系数,然后在按他们的分数给这些指标按分数分级,最后算出各样品的和按分数再给各样品分级。

问题三,以葡萄酒的评分表示质量的优劣程度,将酿酒葡萄、葡萄酒分别与质量计算相关系数,筛选出相关系数较大的指标,然后用酿酒葡萄和葡萄酒中选出的指标做相关性分析,从而得到酿酒葡萄与葡萄酒理化指标的联系。

问题四,根据第三问中酿酒葡萄与葡萄酒显著的理化指标,分别与葡萄酒的质量(评分)建立多元回归方程,再对芳香物质进行显著性分析,发现芳香物质也是影响葡萄酒的重要因素,故分析葡萄酒的质量需要考虑芳香物质的影响。

关键词:t检验alpha模型相关性分析一、问题重述1.1 问题背景葡萄酒的生产有着非常久远的历史,可上溯至几千年前,它是一种世界通畅性酒种,有着广泛交流的基,现已发展成最重要的酒种之一。

葡萄酒的感官分析又叫品酒、评酒,是指评酒员通过眼、鼻、口等感觉器官对葡萄酒的外观、香气、滋味及典型性等感官特性进行分析评定的一种分析方法。

一方面,评酒员必须要抛开个人喜好,排除时间、地点、环境和情绪等的影响,像一台精密的仪器一样进行感官分析;另一方面,因为葡萄酒的复杂多样及变化性,评酒员又必须充分发挥主观能动性,将获得的感觉与大脑中贮存的感官质量标准进行比较分析。

只有兼顾以上两个方面,才能保证结果的精确性。

同时各个评酒员之间还必须保证分析结果的一致性。

一致性和精确性是正确性的保证。

2012年全国大学生数学建模竞赛A题葡萄酒评价分析

2012年全国大学生数学建模竞赛A题葡萄酒评价分析

对葡萄酒的评价分析摘要本文主要应用数理统计中的t检验法,回归分析法等方法对葡萄酒的评价的相关问题进行了分析,建立相应的模型。

针对问题一,首先,对样本进行K-S检验得出数据取自的总体服从正态分布,进而运用成对数据t检验法进行检验,得出两组评酒员对每种葡萄酒的总评分有显著差异;在此基础上,采用两种方法分别判断哪组评酒员的可信度更高。

方法一是计算出每组评酒员对每种葡萄酒的总评分的置信区间,评分处于置信区间内的人次百分比较高的一组可信度较高;方法二是比较两组评酒员对每种葡萄酒的总评分的方差的大小,总体方差分布较小的一组,可信度较高。

两种方法均得出了同一结论,即第二组评酒员的结果更可信。

针对问题二,基于问题一得到的结论,建立了酿酒葡萄品质的综合评价模型。

首先,对数据指标进行归一化处理,并计算出酿酒葡萄与各指标因素间的相关系数。

然后,分别用层次分析法和因子分析法确定了各指标因素的权重。

最后,利用确定的权重,建立了酿酒葡萄品质的综合评价模型,对葡萄进行分级。

如,优质的红葡萄样品是8、23、3、1。

针对问题三,从两个层次建立相关性系数模型。

首先,运用Excel软件分析葡萄酒各理化指标与酿酒葡萄成分的相关性;然后,进一步分析酿酒葡萄的综合评价指标与葡萄酒的理化指标之间的联系。

得出结论:酿酒葡萄的花色苷成分与葡萄酒的花色苷呈显著正相关。

针对问题四,分别建立回归分析模型和综合评价模型,其中综合评价模型建立方法同问题二,回归分析模型则先将葡萄和葡萄酒的各理化指标进行因子分析法降维后得数量较少的因子变量,对简化后的新指标进行回归分析,此处尝试用SPSS软件的回归分析中5种回归拟合方法,继而选取拟合度最佳的模型,得回归系数,建立多元线性回归方程分析各理化指标对葡萄酒质量的影响;将新指标得分带入方程,可求得线性拟合后的葡萄酒质量评分。

进一步引入芳香物质作为评判指标,同样建立线性回归模型求得葡萄酒质量评分,将有无引入芳香物质作为指标的质量评价结果分别与可信度较高的评酒员对葡萄酒的评价结果进行回归模型检验比较和差值平方和比较,得到结论用葡萄和葡萄酒的理化指标来评价葡萄酒的质量是完全可行的,但加入芳香物质作为评价指标更能准确合理地评价葡萄酒的质量。

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

葡萄酒理化指标与质量的评鉴分析摘要用好的葡萄也许酿不出好酒,但没人能用劣质葡萄酿出好酒。

巧妇难为无米之炊,再优秀的酿酒师,如果没有优质的葡萄,也很难酿出好酒。

不同葡萄品种酿制出的葡萄酒是不同的,但是,除了品种间的差异,葡萄自身的质量是酿制高品质葡萄酒的关键。

本文通过建立meansK-聚类模型、典型相关分析等模型,逐步探求用葡萄和葡萄酒的理化指标来评鉴葡萄酒质量的方法。

问题一要求我们分析附件1中两组评酒员的评价结果是否存在显著性差异,为此我们依据小概率原理建立模型Ⅰ-显著性检验模型。

首先我们利用F检验求解两组评酒员之间是否存在显著性差异,再利用配对t检验对检验样本做再次检验,以提高研究效率,确保评价结果的准确性。

利用Excel软件处理数据后,进行t、F的联合检验,当联合检验均被接受,得到两组评酒员的评价结果有显著性差异的结论。

同时通过对两组品酒员对55种葡萄酒样品评分的稳定性、统一性分析,确定第二组品酒员的评价结果更可信。

针对问题二本文根据附件2提供的数据,利用模糊数学原理[3],建立模型ⅢK-聚类模型,对酿酒葡萄进行分类,再以葡萄酒品尝评分作为质量评价依据,means对酿酒葡萄进行分级。

首先,考虑到酿酒葡萄的理化指标过多,不便分类,我们利用多元统计分析原理对红、白酿酒葡萄进行主成分分析,得出红、白酿酒葡萄分别有8个和11个主成分,从而大大减少了分类指标。

再利用meansK-算法求出最佳聚类数k,建立meansK-聚类模型对各种葡萄样品在各个主成分上的得分进行聚类,将红、白葡萄样品分别划分为3类和4类。

最后,根据每个类别中葡萄样品对应的葡萄酒的品尝评分,对各类酿酒葡萄进行分级。

针对问题三建立模型Ⅳ-典型相关分析模型,定量分析酿酒葡萄与葡萄酒的理化指标之间的联系。

我们首先选取酿酒葡萄与葡萄酒皆含有的花色苷、单宁等成分作为理化指标,然后构建典型相关分析模型,研究酿酒葡萄与葡萄酒两组样品的理化指标之间的相关性。

2012年全国数学建模大赛 A题葡萄酒的评价

2012年全国数学建模大赛 A题葡萄酒的评价

葡萄酒的评价摘要本文就影响葡萄酒的质量的因素进行了探究。

在问题一中,评酒员间存在评价尺度、评价位置以及评价方向等方面的差异,导致不同评酒员对同一酒样的评价差异很大,于是我们需要探讨两组评酒员的可信度。

对此,我们建立了单元素方差模型对其进行了显著性差异的判断,最后我们得出结论:两组评酒员的评价结果有显著性差异,并且第二组评酒员评价的结果更加可信。

在问题二中,我们首先将大量的数据进行了样本住分析塞选,大大减少了计算量,就红、白葡萄酒前17组样本葡萄酒的分数进行训练,由后十组的理性指标进行检验,也可检验俩个的准确性。

最后我们认为可以给酿酒葡萄分为一、二、三、四四个等级。

在问题三中,因为要讨论酿酒葡萄与葡萄酒的理化指标之间的联系,我们就其两者的重要理化指标进行了探讨,应用了回归模型将其各项重要指标进行了多元拟合处理,最后得出了葡萄酒和酿酒葡萄中的重要指标的等式关系。

在问题四中,我们首先利用了回归原理求得葡萄酒质量与葡萄酒和酿酒葡萄的理化指标之间的等式关系,由等式和图像细致的分析了葡萄酒和酿酒葡萄理化指标对葡萄酒质量的影响。

在一定范围内,理化指标的与葡萄酒的质量呈正相关,达到一定的量后呈现负相关趋势。

关键词:显著性差异判别主成分分析 BP神经网络回归模型1.问题的重述现今社会,随着人们生活水平的提高,人们对葡萄酒的质量要求也越来越高。

在确定葡萄酒质量的时候,一般聘请一批资深的评酒员进行评比,根据不同的指标所得的分数从而求得总分,以此确定葡萄酒的质量。

其中酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

本题给出了3份材料,材料1是某一年份一些葡萄酒的评价结果,材料2和材料3分别给出了该年份这些葡萄酒和酿酒葡萄的成分数据。

我们必须解决以下问题:问题一:分析材料1中两组评酒员的评价结果是否有明显的差异,并且求出哪组评酒员的评价结果更可信。

问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄的品质进行分级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

葡萄酒的评价一、摘要对于问题一,考虑到分数间不存在相关性,样本量偏小,需要对两组数据进行比较分析,我们采用了非参数检验中的Wilcoxon符号秩检验,评判结果均有显著性差异。

在此情况下,比较同组内十名品酒员对同一样品酒给出的总分的方差,再令得到的多组方差取平均,无论红葡萄酒和白葡萄酒,都是第一组方差较大,故第二组的评分较为可信。

另外由于所给数据大量且复杂,需预先对数据进行预处理,排除明显错误数据,用组内均值替代缺失数据。

对于问题二,先用SPSS对芳香物质和香气指标总分进行简单相关分析,筛选芳香物质中与香气评分相关性较大的成分。

将保留的芳香物质和葡萄的理化指标与葡萄的质量进行逐步回归分析,得到回归方程。

在得到结果后,我们也检验了数据满足逐步回归分析的条件。

最后将不同组葡萄的指标系数代入,根据分数值对葡萄分级,最终红、白葡萄酒都被分为六级。

对于问题三,我组首先对葡萄酒与酿酒葡萄当中相同的指标进行了简单相关性检验,得出其中大部分指标是强相关的,但是有一些指标(例如白酒的色素)是不相关的。

为了对这些指标进行进一步的分析,我组对含有二级指标的指标组进行了典型相关性分析,分析多个指标与多个指标间的关系。

而像酒总黄酮这类的单独指标,则进行了逐步线性回归,探究与所有可能有联系的指标间的联系。

对于问题四,我组以品酒员测定的指标等级为依据,希望通过逐步线性回归与Topsis排序的方法归纳出葡萄酒和葡萄理化指标间的数量关系,进而还原出品酒员所评定的等级。

但是在具体实践过后,两种方法的分级都与品酒员的分级有较大的误差,故认定不能直接通过理化指标去确定葡萄酒的等级。

关键词:葡萄酒质量符号秩检验主成分分析逐步回归主成分分析二、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?三、问题分析3.1问题一的分析两组品酒员分别对于白葡萄酒和红葡萄酒给出了包括外观,口感,香气,平衡四项大指标的评价,可将每个方面的评分相加作为总分确定葡萄酒的质量。

对于同一葡萄酒样品,不同的品酒员给出的分值存在个体差异,考虑到分数间不存在相关性,样本量偏小,且需要对两组数据进行比较分析,我们采用了非参数检验中的Wilcoxon符号秩和检验评判结果有无显著性差异。

由于所给数据大量且复杂,需预先对数据进行预处理,排除明显错误数据,用组内均值替代缺失数据。

要评价哪组的评价结果更可信,主要是检验组内各个品酒员的评分是否相对集中,可以通过计算方差的方法,比较得到哪组数据波动小,则可信度高。

3.2问题二的分析首先,我们分析芳香物质对葡萄酒质量的相关性。

采用SPSS的简单相关系数分析,分别化简保留8个红葡萄和6个白葡萄中芳香物质。

然后,对理化指标中多组测试结果取均值作为该理化指标的唯一数据,同时考虑到二级指标比一级指标分类更细致,可以得到更精确的分析结果,我们以二级指标代替一级指标。

我们以品酒员给出样品酒的总分作为葡萄酒质量的衡定。

将简化好的理化指标与葡萄酒总分输入SPSS软件,进行逐步回归分析,得到理化指标与葡萄酒质量的线性回归方程。

将各个理化指标代入方程,计算得各个总分,对分数进行分级,即可得到酿酒葡萄的等级。

3.3问题三的分析要分析葡萄酒和酿酒葡萄之间的联系,我们发现它们有共同的指标,故首先对葡萄酒与酿酒葡萄当中相同的指标进行了简单相关性检验,得出其中大部分指标是强相关的,但是有一些指标(例如白酒的色素)是不相关的。

为了对这些指标进行进一步的分析,我们对含有二级指标的指标组进行了典型相关性分析,分析多个指标与多个指标间的关系。

而像酒总黄酮这类的单独指标,则进行了逐步线性回归,探究与所有可能有联系的指标间的联系。

3.4问题四的分析我们以品酒员测定的指标等级为依据,希望通过逐步线性回归与Topsis排序的方法归纳出葡萄酒和葡萄理化指标间的数量关系,进而还原出品酒员所评定的等级。

但是在具体实践过后,两种方法的分级都与品酒员的分级有较大的误差,故认定不能直接通过理化指标去确定葡萄酒的等级。

四、模型假设1.假设所有的葡萄酒酿造工艺相同;2. 假设一级指标包括二级指标,部分二级指标可以按一定标准进行取舍;3. 假设各处理条件下的葡萄和葡萄酒样本是相互独立的;4. 评酒员对葡萄酒样品的评分是客观的,不含任何自己的主观意见。

5. 假设葡萄中存在的而葡萄酒中不存在的理化指标也会影响葡萄酒的质量;6.假设附件中给出的葡萄和葡萄酒理化指标都准确可靠。

五、符号说明六、模型的建立和求解6.1模型一的建立和求解6.1.1数据的预处理(1)检验数据的正确性及改正两组品酒员分别对27组红葡萄酒和28组白葡萄酒进行了多指标的评判。

根据每个指标的规定最高分,我们发现第一组品酒员7对于白葡萄酒3号的持久性评分值77大于最优值8,故判断此数据有误。

考虑让数据最不偏离正确的结果,我们对该项目的其余9位品酒员的分数取平均值得到分数6.1分,将错误数据修正为6.1分。

(2)空缺数据的填补第一组品酒员4对于红葡萄酒20号的色调评分值缺失,对该项目的其余9位品酒员的分数取平均值得分数6.2分,将空白数据填充为6.2分。

预处理后数据中,第一组、第二组各有10名评酒员对27种红葡萄酒样品和28中白葡萄酒样品分别作了评价,故将每位评酒员对每种酒样品的各项评分求和得到总分,然后将同组中每种酒样品的10个总分取平均值,从而得到第一组对27种红葡萄酒样品、28种白葡萄酒样品的综合平均评分,和第二组对27种红葡萄酒样品、28种白葡萄酒样品的综合平均评分。

6.1.2基于威尔科克森符号秩检验的显著性差异分析在威尔科克符号秩检验中,它把观测值和零假设的中心位置之差的绝对值的秩分别按照不同的符号相加作为其检验统计量。

适用于T检验中的成对比较,但并不要求成对数据之差di服从正态分布,只要求对称分布即可。

检验成对观测数据之差是否来自均值为0的总体(产生数据的总体是否具有相同的均值)。

要判断两组评酒员的评价结果有无显著性差异,就应该构造统计量,检验两组评分的差异。

若不在置信区间内,则认为评分差异性显著。

基于本题的背景,两组的差异体现在了对样本酒的排名差异上。

因为本题属于食品评价中的感官评价问题,所以可以结合感官评价中的排序检验与非参数检验中的符号秩检验,对两者的显著性进行评价。

下面采用Wilcoxon符号秩检验的方法作显著性分析,以红葡萄酒为例进行说明。

为了比较红葡萄酒样品的两组评分结果是否有显著性差异,作出假设检验为:H0:两组评分结果没有显著性差异;H1:两组评分结果有显著性差异。

正负符号检验和威尔科克森符号秩检验,都可看作是就成对观察值而进行的参数方式的T检验的代用品,非参数检验具有无需对总体分布作假定的优点,而就成对观察值作的参数方式的T检验,必须假定有关的差别总体服从正态分布。

该方法具体步骤如下:(1)对i=1,...,n,计算∣Xi-M0∣,它们代表这些样本点到M0的距离。

(2)把上面的n个绝对值排序,并找出它们的n个秩,如果它们有相同的样本点,每个点取平均秩。

(3)令W+等于Xi-M0>0的∣Xi-M0∣的秩的和,而W-等于Xi-M0<0的∣Xi-M0∣的秩的和。

(4)对双边检验H0:M=M0<=>H1:M≠M0,在零假设下,W+和W-应差不多。

因而,当其中之一很小时,应怀疑零假设。

在此,取检验统计量W=min(W+,W-)。

(5)根据得到的W值,利用统计软件或查Wilcoxon符号秩检验的分布表以得到在零假设下的p值。

如果n很大要用正态近似:得到一个与W有关的正态随机变量Z的值,再用软件或查正态分布表得到p值。

(6)如果p值较小(比如小于或等于给定的显著性水平,譬如0.05)则可以拒绝零假设。

如果p值较大则没有充分的证据来拒绝零假设,但不意味着接受零假设。

先求出每对数据的差值D,按差值绝对值|D|由小到大排列并给秩R,从秩1开始到秩27,样本数目27n,在给秩时,遇到相等的|D|时,使用平均秩,如表中酒样品3和酒样品13具有相同的绝对差值5.8,因而平分秩16和秩17,各为秩16.5。

当绝对差值的秩值R给出后,将R分成正、负差值的两个部分秩值R+和R-,最后求符号秩和T R,T R+=∑+-=∑-由于样本数目为27个,T+和T-的最小可能值为0,而最大可能值为1+2+…n=(n+1)n/2。

此处使用SPSS软件的秩和检验功能,得出如下结果:图6.1 红葡萄酒的秩排序图6.2 白葡萄酒的秩排序上图为红白葡萄酒1~27样品的秩排序,从图中可粗略看出一组与二组数据符合的不好。

下面通过SPSS软件进行定量分析。

红葡萄酒:(1)秩(2)检验统计量[b]白葡萄酒:(1)秩(2)检验统计量[b]选取α=0.05,查表得拒绝域为z≥1.96和z ≤−1.96,因为-2.535<-1.96,-2.084<-1.96,所以拒绝原假设H0,故在显著性水平为0.05的情况下,两组评酒员对27种红葡萄酒、28种白葡萄酒的评价结果也具有显著性差异。

综上所述,在显著性水平为0.05的情形下,两组评酒员的评价结果具有显著性差异。

6.1.3方差比较可信度由于整体评价数据无显著性差异,我们可以认为20名评酒员的水平在一个区间内。

因此评酒员的评价结果的稳定性将决定该评酒员评价的数据的可信度。

若某一评酒员的评价数据不稳定,则其所评数据可信度较低,其所在组别的数据评价可信度也将相应降低。

因此,我们将数据的可信度比较转化为两组评酒员评论水平的稳定性比较。

查阅相关资料获知,评酒员的评价尺度是有一定的系统误差的。

如不同评酒员对色调的敏感度或许是不同的,如果某一评酒员评价的色调稍高于标准色调,但他每次评价的色调都稍高,而且一直很稳定。

虽然与均值间始终存在误差,由于其稳定性,这样的评酒员的评价数据仍然是可信的。

所以,我们建立的数据可信度评价指标为评酒员评价的稳定性。

评酒员的评价数据越稳定,数据越可信。

在此,我们选择方差来刻画稳定性。

27个样品的平均方差越小,则数据越稳定,可信度越高。

相关文档
最新文档