三角函数推导公式及公式大全
三角函数推导,公式应用大全

三角函数公式编辑词条添加义项名B 添加义项 ?三角函数是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
其定义域为整个实数域。
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
基本信息中文名称三角函数外文名称trigonometric function别称三角函数公式应用学科数学、物理、地理、天文等表达式sin,cos,tan等适用领域范围几何,代数变换提出者中国,印度等数学家目录1相关概念2三角规律3特殊值4重要定理5常用公式6函数应用折叠编辑本段相关概念折叠相关概念三角函数的标准英文读音音正弦:sine(简写sin)[sain]余弦:cosine(简写cos)[kəusain]正切:tangent(简写tan)['tændʒənt]余切:cotangent(简写cot)['kəu'tændʒənt] 正割:secant(简写sec)['si:kənt]余割:cosecant(简写csc)['kau'si:kənt]正矢:versine(简写versin)['və:sain]余矢:versed cosine(简写vercos)['və:sə:d][kəusain]直角三角函数直角三角函数(∠α是锐角)三角关系倒数关系:cotα*tanα=1商的关系:sinα/cosα=tanα平方关系:sin²α+cos²α=1折叠编辑本段三角规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
初中数学三角函数推导公式

初中数学三角函数推导公式三角函数是数学中的一种重要函数,它们描述的是角度和正弦、余弦、正切、余切、正割和余割之间的关系。
在初中数学中,我们通常会学习到以下一些重要的三角函数推导公式。
一、正弦函数的推导公式正弦函数是指在三角形中,对于任何角度A,其对边和斜边之比。
我们可以通过构造一个直角三角形来推导出正弦函数的公式。
假设在直角三角形ABC中,∠C为直角,BC为斜边,AC为对边,AB为邻边。
我们可以推导出以下公式:sinA = AC / BC二、余弦函数的推导公式余弦函数是指在三角形中,对于任何角度A,其邻边和斜边之比。
同样地,我们可以通过构造一个直角三角形来推导出余弦函数的公式。
假设在直角三角形ABC中,∠C为直角,BC为斜边,AC为对边,AB为邻边。
我们可以推导出以下公式:cosA = AB / BC三、正切函数的推导公式正切函数是指在三角形中,对于任何角度A,其对边和邻边之比。
同样地,我们可以通过构造一个直角三角形来推导出正切函数的公式。
假设在直角三角形ABC中,∠C为直角,BC为斜边,AC为对边,AB为邻边。
我们可以推导出以下公式:tanA = sinA / cosA = AC / AB四、余切函数的推导公式余切函数是指在三角形中,对于任何角度A,其邻边和对边之比。
同样地,我们可以通过构造一个直角三角形来推导出余切函数的公式。
假设在直角三角形ABC中,∠C为直角,BC为斜边,AC为对边,AB为邻边。
我们可以推导出以下公式:cotA = cosA / sinA = AB / AC五、正割函数的推导公式正割函数是指在三角形中,对于任何角度A,其斜边和邻边之比的倒数。
同样地,我们可以通过构造一个直角三角形来推导出正割函数的公式。
假设在直角三角形ABC中,∠C为直角,BC为斜边,AC为对边,AB为邻边。
我们可以推导出以下公式:secA = 1 / cosA = BC / AB六、余割函数的推导公式余割函数是指在三角形中,对于任何角度A,其斜边和对边之比的倒数。
三角函数公式推导过程及公式大全

三角函数公式推导过程万能公式推导sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。
同理可推导余弦的万能公式。
正切的万能公式可通过正弦比余弦得到。
三倍角公式推导tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2s in^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα和差化积公式推导首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)三角函数公式大全sin30°=1/2 sin45°=√2/2 sin60°=√3/2cos30°=√3/2 cos45°=√2/2 cos60°=1/2tan30°=√3/3 tan45°=1 tan60°=√3cot30°=√3 cot45°=1 cot60°=√3/3sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。
三角函数公式及推导祥尽版

余弦三倍角公式推导:(证明)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想 正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”)) 余弦三倍角:4元3角 减 3元(减完之后还有“余”)
r2 112sinsin coscos r2 22sinsin coscos 2r2 1sinsin coscos
由余弦定理得:
AB2 AC 2 BC 2 2AC BC cos ACB
r2 r2 2r r cos 2r2 2r2 cos r2 2 2 cos 2r2 1 cos
sin
cos cos
sin sin
co 1
s sin
cos sin
cos cos
tan tan 1 tan tan
两角差的正切
tan tan tan tan
1 tan tan
tan tan 1 tan tan
4---二倍角公式 二倍角的正弦、余弦和正切公式(也称为:升幂缩角公式)
口诀总结
上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈z),-α、180°±α,360°-α所在象限的原 三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四 余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”.
三角函数公式大全及其推导方法

三角函数公式大全及其推导三角函数的定义1.Figure I由此,我们定义:ΔABC中如Figure I, 在对边b??(?sin?) 的正弦值:斜边c邻边a??)?(?的余弦值:cos斜边c对边b??)?的正切值:tan?(邻边a邻边11a??)?(?的余切值:cot??b?对边tanb a斜边11c???的正割值:sec???()a?邻边acos c斜边1c1???的余割值:?csc??() b?对边sinb c备注:当用一个字母或希腊字母表示角时,可略写∠符号,但用三个子母表tan。
、示时,不能省略。
在本文中,我们只研究sin、cos额外的定义2.22??)(sinsin?22??)(cos?cos22??)?tan(tan简便计算公式3.b???)sin??cosA?cos(90?cc??)??A?cossin(90??sin b11b1?????tana?)??tanaAtan(90b22??1?cossin?证明:90ABC???ABC中,在222c???ab22ba1?????1?sincos??证完b?sinb c???tan?a?cosa22cc21??sinAB?sin22c22??1cossin2????1tan?222???coscoscos任意三角形的面积公式4.Figure II,如Figure II.1ahS?ABC?21?absinC21?acsinB (两边和其夹角正弦的乘积)25.余弦定理:任意三角形一角的余弦等于两邻边的平方和减对边的平方之差与两邻边积的两倍之比。
证明:如Figure II,222h?db?22)B(cccosB)sin??(a?22222B?cccossin?aB?2accosB?2222)sin(cosBB?=aac?2cosB?c22?2acacos?cB?222222bca?b??ac??cosB???2ac2ac证完海伦公式6.证明:,Figure 如II1absinC?S ABC?212C?cos?ab122222??1ca?b??ab?1??ab22??444222222c??2?ba?c2?2acbb1a?ab1?22b24a22444222222c2c?2abb?14a?b?a2?bc?a?ab22ba24??22444222222c??2a?ab?2?cc?2aba14bb22?ab?22b4a4222422244cbc?2b?2a?2ac?a?b?122?ab?22b4a4????????c????????abcabcbcaab?16. ????????c?b?b?c2acc?2?a?b?c?2baa?a?b??2?2?22?c?b??c?2aa?2ca?bc?2ba?b?a?bc?????2222cb?b?ca???b?cab?ca?a??????cb??a????????2222??????c?a?b=设:s2??????css?a?s?bS?s ABC?正弦定理7.Figure III,Figure如III,外接圆的直径c为ΔABC a?Asin ca的外接圆半径)ABC r2 (r为???c?Asin同理:cb c, c??CsinsinB cabr??2??CAsinsinsinB加法定理8.两角差的余弦(1)Figure IV, Figure IV如???AOC?????BOC??????AOB?AO=BO=r令?cos?rx A的横坐标为点A?sin?ry的纵坐标为A点A?cos?rx的横坐标为点B B?sinry?点B的纵坐标为????????cos??rsinr?rsincosr?2222222222????????cossincosr?rs B22????2xxy?AB??y?BBAA22incos??r2rsinrsin??r2cos???22222????????cossin????r2sinsincossin?cos2cos???22222?? ??????cos?cos??sin??r2sinsin2cos?cossin??2????cos?inscossin??r1?12??????2????c os?r2?2sincossin???????2????cos2?r1?sinsin?cos????由余弦公式可得:??22???cos?2r??rr?r??22????2rrcos?2222?2AC?BCACcos?BC?ABACB???2???2r?2cos???????2???1r?cos?2???????????? sin综上得:coscossin?cos??(2)两角和的余弦??????????coscos????????????????sin?sincos?cos????cossin?cos??sin????sin?cos?cossin两角和的正弦(3)???????????90??cossin?????????90??cos?????????????cossin?cos?sin?90??90?????cos?cos?sinsin(4)两角差的正弦 ?????????sin?sin?????????????????cossinsin?cos????cossin?sin??cos????sin?cos?sincos两角和的正切(5)?????sin??????tan?????cos????coscos?sinsin?????sincossincos?????cossinsin?cos??coscos?????sin?cossincos??coscos??sinsin???coscos???sinsin1???coscos??tantan????tan1?tan(6)两角差的正切?????????tan?tan????????????tantan??????tantan1???tan?tan???tantan1?9.两倍角公式????????2?sinsin????coscossin?sin???cos2sin?????????coscos?2????sin??cossincos22??sin??cos22????2sin2cos1??1???2sin????2tan???2cos??cos2sin?22??sin?cos??cos2sin2?cos?22??sincos?2?cos?2sin?cos?2?sin?12?cos?tan2?2?nta1?10.积化和差公式1??????cossin?cos2sin21??????????sinsin??sincossin?coscos?cos 21??????????sin?sin?????21??????coscos?cos2cos21??????????sincos???sincossincossin?cos 21??????????cos?cos?????21??????sinsin?sin2sin21??????????cos??cossin?sincos?sincossin21?????????cos??cos?????211.和差化积公式(1)设:A=α+β, B=α-β,??????????Asin?sinB?sin?sin????????sinsinsin?coscos?coscossin????cos?2sin???? ???????????????2sincos????22????A?BA?B?????2sincos????22???? ?????????sinsin??sinA?sinB?????????sin?sin??sincoscoscos?cossin??n2cossi????? ??????????????sin2cos?????22????B?BAA?????sin2cos?????22???? (2)ba22????1cossin??设:∵, ??, sincos2222b?ba?aab2222????cos??sin??a?sinasin?bb?a?b?2222ba?ba???22????cosa?b??cossinsin???22????sinba??12.其他常用公式??0??sin??nsin?360??0??cos??ncos?360??0??tann?tan360??????cos90??sin????? sin90??cos?1?????90?tan?tan????cossin?90??????sin??cos?90?1??????tan?90?tan????cos?90?sin??????sin90cos???1?????tan90???tan????sinsin180???????cos?180??cos?????tan???tan?180????sin?180sin??????? cos??cos?180?????tan180tan???????sinsin???????coscos??????tan???tan???90?不存在tan2n?1???????cos1?1?1??cos??1??1?sinsin1??在计算机中,三角函数的算法是这样的,其中x用弧度计算???sinx??????!?2n7!1!3!5!1??nn62040xxxxx 13572n?10xxxxx???xcos??????!6!2n4!2!0! ??n推导公式:(a+b+c)/(sinA+sinB+sinC)=2R(其中,R为外接圆半径)由正弦定理有a/sinA=b/sinB=c/sinC=2R所以a=2R*sinAb=2R*sinBc=2R*sinC加起来a+b+c=2R*(sinA+sinB+sinC)带入(a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R 两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式Sin2A=2SinA?CosA对数的性质及推导的对数b为底,a表示以log(a)(b)表示乘方,用^用*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]由指数的性质a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M/N)=log(a)(M)-log(a)(N)4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N)/log(b)(a)推导如下N=a^[log(a)(N)]a=b^[log(b)(a)]综合两式可得N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)]所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}所以}这步不明白或有疑问看上面的log(b)(N)=[log(a)(N)]*[log(b)(a)]{ 所以log(a)(N)=log(b)(N)/log(b)(a)性质二:(不知道什么名字)log(a^n)(b^m)=m/n*[log(a)(b)]推导如下由换底公式[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(a^n)/ln(b^n)由基本性质4可得log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]--------------------------------------------(性质及推导完)公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·商的关系:α/sinα=cosαcotα/cosα=sinαtan·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:αsin)=-α(-sincos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinααcot)=α-/2π(tancot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)一般的最常用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan(A-B)=(TanA-TanB)/(1+TanA*TanB) 平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαα*sinα=cotαcostanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
三角函数和差公式大全及推导过程

三角函数的和差公式包括正弦函数的和差公式、余弦函数的和差公式、正切函数的和差公式等等,接下来分享三角函数和差公式大全及推导过程。
三角函数的和差化积公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cossinbcos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)三角函数的和差公式推导过程sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinb两式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)] (1)两式相减得:cosasinb=1/2[sin(a+b)-sin(a-b)] (2)cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb两式相加得:cosacosb=1/2[cos(a+b)+cos(a-b)] (3)两式相减得:sinasinb=-1/2[cos(a+b)-cos(a-b)] (4)用(a+b)/2、(a-b)/2分别代替上面四式中的a,b就可得到和差化积的四个式子。
如:(1)式可变为:sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2]其它依次类推即可。
三角函数关系公式三角函数平方关系公式sin²α+cos²α=1cos²a=(1+cos2a)/2 tan²α+1=sec²α三角函数倒数关系公式tanα·cotα=1sinα·cscα=1cosα·secα=1三角函数商数关系公式tana=sina/cosacota=cosa/sina。
三角函数公式大全及推导过程

三角函数公式大全及推导过程三角函数是数学中重要的一类函数,用来描述角的性质和角度之间的关系。
常用的三角函数有正弦函数、余弦函数和正切函数,它们之间有很多重要的关系与性质。
下面我们就来总结一下三角函数的公式及推导过程。
一、正弦函数和余弦函数的基本关系:1.弧度和角度的关系:单位圆上的弧长与半径之比称为弧度。
一周的弧长为2π,对应的角度为360度。
因此有以下关系:360度=2π弧度2.余弦函数的定义:单位圆上,从x轴正向到P点的弧长与半径之比,称为角P的余弦。
记作cosP。
根据定义,cosP = x/r3.正弦函数和余弦函数的关系:在单位圆上的点P(x,y),有以下关系:y=√(1-x²)(根据勾股定理)而x²+y²=1(根据单位圆的定义)整理得y=√(1-x²)所以,sinP = y/r = √(1 - x²)/r由cosP = x/r,得x² + (cosP)² = 1整理得x = √(1 - (sinP)²)所以,cosP = √(1 - (sinP)²)/r二、正弦函数和余弦函数的性质:1.值域和周期:sinP和cosP的值域都是[-1, 1],周期都是2π。
2.平凡性质:sin(0) = 0, cos(0) = 1sin(π/2) = 1, cos(π/2) = 0sin(π) = 0, cos(π) = -1sin(3π/2) = -1, cos(3π/2) = 0三、正弦函数和余弦函数的和差公式:1.正弦函数的和差公式:sin(A + B) = sinAcosB + cosAsinBsin(A - B) = sinAcosB - cosAsinB2.余弦函数的和差公式:cos(A + B) = cosAcosB - sinAsinBcos(A - B) = cosAcosB + sinAsinB推导过程:对于sin(A + B),设角A和角B的坐标分别为(Ax, Ay)和(Bx, By)。
三角函数公式大全与推导过程

三角函数公式大全及推导过程一、任意角的三角函数在角 的终边上任取 一点 P( x, y) ,记: rx 2y 2 , ..正弦: siny余弦: cosx正切: tanyrrx二、同角三角函数的基本关系式sin ,平方关系: sin 22 1 , cos21商数关系: tancos1 tan 2cos三、诱导公式公式一:设 α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)= sin α cos ( 2k π+α)= cos α tan ( 2k π+α)= tan α 公式二:设 α为任意角, π+α的三角函数值与 α的三角函数值之间的关系:sin (π+α)= -sin α cos (π+α)= -cos α tan (π+α) = tan α 公式三:任意角 α与 -α的三角函数值之间的关系:sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α 公式四:利用公式二和公式三可以得到 π-α与 α的三角函数值之间的关系: sin (π-α)= sin α cos ( π-α) = -cos α tan ( π-α) = -tan α公式五: 利用公式 -和公式三可以得到 2π-α与 α的三角函数值之间的关系: sin (2π-α)= -sin α cos ( 2π-α)= cos α tan (2π-α) = -tan α公式六:±α及3±α与 α的三角函数值之间的关系:2 2sin (-α)= cos αcos (-α)= sin α22sin ( +α)= cos αcos (+α) = -sin α22sin (3-α) = -cos α cos (3-α) = -sin α22sin (3+α)= -cos α cos (3+α) = sin α22三、两角和差公式sin( ) sin cos cos sinsin()sincoscossincos()cos cos sin sin cos()cos cos sin sintan()tan tan 1tan tantan()tan tan 1tan tan四、二倍角公式sin 2 2 sin coscos2cos2sin 2 2 cos2 1 1 2sin2⋯ ( )2 tantan 221 tan二倍角的余弦公式( ) 有以下常用变形:(规律:降幂扩角,升幂缩角)1cos22cos21cos22sin21sin 2(sin cos )2 1 sin 2(sin cos ) 2其它公式五、辅助角公式:a sin x bcos x a 2b2 sin( x ) (其中tanb )a其中:角的终边所在的象限与点 (a,b) 所在的象限相同,(以上k∈Z)六、其它公式:1、正弦定理:a b csin A sin B 2R ( R 为 ABC 外接圆半径)sin C 2、余弦定理a2b2c22bc cos Ab2a2c22ac cos Bc2a2b22ab cosC3、三角形的面积公式1底111S ABC高 S ABC absin C bc sin A casin B (两边一夹角)2222万能公式推导sin2 α=2sin α cos α =2sin α cos α/(cos^2(α )+sin^2(α ))......*,(因为 cos^2( α )+sin^2(α )=1)再把 *分式上下同除cos^2( α ) ,可得 sin2 α =2tan α/(1+tan^2(α ))然后用α /2 代替α即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数锐角三角函数三角关系倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:平方关系:三角函数公式2公式相关编辑两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)三角和公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cos γ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sin γ-sinα·cosβ·sinγ-sinα·sinβ·cosγ诱导公式三角函数的诱导公式(六公式)[1]公式一:sin(α+k*2π)=sinαcos(α+k*2π)=cosαtan(α+k*π)=tanα公式二:sin(π+α) = -sinαcos(π+α) = -cosαtan(π+α)=tanα公式三:sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanα公式四:sin(π-α) = sinαcos(π-α) = -cosαtan(π-α) =-tanα公式五:sin(π/2-α) = cosαcos(π/2-α) =sinα由于π/2+α=π-(π/2-α),由公式四和公式五可得公式六:sin(π/2+α) = cosαcos(π/2+α) = -sinα诱导公式记背诀窍:奇变偶不变,符号看象限。
倍角公式二倍角正弦sin2A=2sinA·cosA余弦三倍角三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3acos3a[2]=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^2a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)-sina][(√3/2)+sina]=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa[cos^2a-(√3/2)^2]=4cosa(cosa-cos30°)(cosa+cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)三倍角sin3α=3sinα-4sin^3 α=4sinα·sin(π/3+α)sin (π/3-α)cos3α=4cos^3 α-3cosα=4cosα·cos(π/3+α)cos (π/3-α)tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)其他多倍角四倍角sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)七倍角sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA ^10)N倍角根据棣莫弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)为方便描述,令sinθ=s,cosθ=c考虑n为正整数的情形:cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>;比较两边的实部与虚部实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*虚部:i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …对所有的自然数n:⒈cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
⒉sin(nθ):⑴当n是奇数时:公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。
⑵当n是偶数时:公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。
例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)特殊公式(sin a+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)坡度公式我们通常把坡面的铅直高度h与水平宽度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l,坡度的一般形式写成l : m形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.半角公式tan^2(α/2)=(1-cosα)/(1+cosα)sin^2(A/2)=[1-cos(A)]/2cos^2(A/2)=[1+cos(A)]/2半角公式万能公式万能公式sinα=2tan(α/2)/[1+(tan(α/2))^2]cosα=[1-(tan(α/2))^2]/[1+(tan(α/2))^2] tanα=2tan(α/2)/[1-(tan(α/2))^2]辅助角公式注:该公式又称收缩公式/ 强提公式 / 化一公式等asinα+bcosα=√(a^2+b^2)sin(α+φ),其中tanφ=b/aasinA+bcosB=根号下a方+b方×(根号下a方+b方分之a×sinA+根号下a方+b方分之b×cosB) 令根号下a方+b方分之a=cosC 则根号下a方+b方分之b=sinC asinA+bcosB=根号下a方+b方(sinAcosC+cosBsinC)=根号下a方+b方×sin(A+C)3三角规律编辑三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。