直线的交点坐标与距离公式
第二节直线的交点坐标与距离公式

第二节直线的交点坐标与距离公式直线的交点坐标与距离公式是平面解析几何中非常基础的内容。
它们可以帮助我们确定两条直线的交点坐标以及一个点到直线的距离,是解决许多几何问题的重要工具。
在本篇文章中,我将详细介绍直线的交点坐标与距离公式。
一、直线的交点坐标公式假设有两条直线L1和L2,分别表示为:L1:y=m1x+c1L2:y=m2x+c2其中m1、m2分别是L1和L2的斜率,c1、c2分别是L1和L2的截距。
我们可以通过解以上两个方程组来求解直线L1和L2的交点的坐标(x0,y0)。
解法一:代入法将L1的方程代入L2的方程中,得到:y=m2x+c2m1x+c1=m2x+c2整理得到:x=(c1-c2)/(m2-m1)将x的值带入L1或L2的方程中,即可得到y的值。
根据这个方法,我们可以求得两条直线的交点坐标。
解法二:消元法将L1和L2的方程相减,可以消去y,得到:m1x+c1-(m2x+c2)=0整理得到:(m1-m2)x+(c1-c2)=0解方程可以得知:x=(c2-c1)/(m1-m2)将x的值带入L1或L2的方程中,即可得到y的值。
通过以上两种解法,我们可以求得直线L1和L2的交点的坐标(x0,y0)。
二、点到直线的距离公式同时,我们也可以通过公式求解一个点P(x1,y1)到直线L1: y = mx+ c的距离。
有一种基本的方法是绘制垂线。
首先,我们可以找到点P到直线L1的垂线的方程,将其表示为L2、L2的斜率是m的相反数(-1/m),并且通过点P(x1,y1)。
垂线L2的方程为:L2:y=(-1/m)x+(y1+x1/m)我们可以通过求解L1和L2的交点坐标来确定点P到直线L1的距离。
交点的坐标为(x0,y0)。
距离点P到直线L1的距离利用勾股定理可以得到:d=√((x0-x1)²+(y0-y1)²)将交点的坐标(x0,y0)带入上式即可求得点P到直线L1的距离。
总结:直线的交点坐标与距离公式是解析几何中重要的工具。
两条直线的交点坐标与距离公式

l1上一点,设其关于l的对称点为(x,y),则
{ x + 0 - y - 2-1=0,
22
y +2 ×1
=-1,
x
{ x=-1,
得
即(1,0),
y=-1.
(-1,-1)为l2上两点,可得l2的方程为x-2y-1=0.
故应选B.)
.
返回目录
考点四 直线系方程的应用 求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的交点,且垂 直于直线l3:3x-5y+6=0的直线l的方程.
两直线的交点坐标与 距离公式
.
一、两直线的交点
已知两条直线l1:A1x+B1y+C1=0与 l2:A2x+B2y+C2=0的交点坐标对应的是方程组
{A1x+B1y+C1=0 A2x+B2y+C2=0
的解,
.
返回目录
其中①当A1B2-A2B1≠0时,两条直线 相交于一点 , ② 当条A直1线B2无-A交2B点1=,0即且A1C2-A2平C1行≠,0③(当或AB11BC22--AB22BC11=≠00且)A时1,C两2A即2C1=0(或重B合1C. 2-B2C1=0)时,两条直线有无数个公共点,
.
返回目录
*对应演练*
求过点P(-1,2)且与点A(2,3)和B(-4,5)距离 相等的直线l的方程.
解法一:设直线l的方程为y-2=k(x+1),
即kx-y+k+2=0.由题意知
| 2k - 3 + k + 2 | =
| -4k - 5 + k + 2 |
直线的交点坐标与距离公式

互动探究
例3条件不变,求直线l关 于点A(-1,-2)对称的直线 l′的方程.
考点四 直线中的最值问题
例4.在直线l:3x-y-1=0上求一点P,使得: (1)P到A(4,1)和B(0,4)的距离之差最大; (2)P到A(4,1)和C(3,4)的距离之和最小.
【分析】设B关于l的对称点为B′,AB′与l的交点P满 足(1);C关于l的对称点为C′,AC′与l 的交点Q满足(2).事 实上,对于(1),若P′是l上异于P的点,则
由 l1⊥MN 知,k1=-kM1N=-35, ∴l1 的方程为 y+2=-35(x+2),即 3x+5y+16=0. l2 的方程为 y-3=-35(x-1),即 3x+5y-18=0.
练习 已知三条直线l1:2x-y+a=0a 0,直线l2:-4x+
2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是
∴3-=2k=+-b22.k+b1, ②
①
由①-②得 b1-b2=3k-5,
由 d=|b11-+bk22|=|31k+-k52|两边平方,
整理,得(d2-9)k2+30k+d2-25=0.
③
由 k∈R,得 Δ=302-4(d2-9)(d2-25)≥0.
又 d>0,故解得 0<d≤ 34.
(2)直线关于点的对称,其主要方法是: 在已知直线上取两点,利用中点坐标公式求 出它们关于已知点对称的两点坐标,再由两 点式求出直线方程,或者求出一个对称点, 再利用l1∥l2,由点斜式得到所求直线方程.
AA12xx+ +BB12yy+ +CC12= =00 的解.
2.距离公式
类型
条件
两点间的 距离
两点P1(x1,y1), P2(x2,y2)
直线的交点坐标与距离公式

直线的交点坐标与距离公式在平面几何中,直线是直角坐标系中的基本图形之一、直线的交点坐标和距离公式在解决直线的相关问题时非常有用。
接下来,我将详细介绍直线的交点坐标和距离公式。
1.直线的交点坐标公式:设直线L1的方程为y=k1x+b1,直线L2的方程为y=k2x+b2、若L1和L2有交点,则交点的坐标(x0,y0)满足以下等式:k1x0+b1=k2x0+b2解上述等式可以得到交点的横坐标x0。
将x0带入其中一个直线的方程,可以求得交点的纵坐标y0。
如果两条直线平行,则它们没有交点。
2.直线的距离公式:设点P到直线L的距离为d。
L的一般方程为Ax+By+C=0。
点P的坐标为(x0,y0)。
则点P到直线L的距离d可以由以下公式计算:d=,Ax0+By0+C,/√(A^2+B^2)以上就是直线的交点坐标和距离公式的基本内容。
下面我们将通过具体的例子来进一步理解和应用这些公式。
例1:求直线y=2x+3和y=-x+4的交点坐标。
解:将两个方程相等,得到:2x+3=-x+43x=1x=1/3将x=1/3带入其中一个方程,可以求得y的值:y=2*(1/3)+3=7/3因此,这两条直线的交点坐标为(1/3,7/3)。
例2:求点(1,-2)到直线3x-4y+5=0的距离。
解:由于A=3,B=-4,C=5,将这些值代入距离公式中,可以得到:d=,3*1-4*(-2)+5,/√(3^2+(-4)^2)=,3+8+5,/√(9+16)=16/√25=16/5因此,点(1,-2)到直线3x-4y+5=0的距离为16/5通过以上两个例子,我们可以看到直线的交点坐标和距离公式在解决直线相关问题时的重要性。
它们能够帮助我们简单、快速地求解直线的交点和距离,为我们的几何计算提供便利。
除了直线的交点坐标和距离公式,还有其他的直线相关的公式和定理,如直线的斜率公式、两直线垂直的判定等等。
通过深入学习和理解这些公式和定理,我们将能够更好地应用它们解决各种几何问题,提高我们的数学能力。
直线的交点坐标与距离公式

直线的交点坐标与距离公式首先,我们来看两条直线的交点坐标公式。
假设有两条直线L1和L2,它们的方程分别是:L1: ax + by = cL2: dx + ey = f其中a、b、c、d、e、f为已知常数,x和y为未知变量。
为了求解L1和L2的交点坐标(x0,y0),我们可以通过以下步骤进行计算:1.将L1和L2的方程联立,得到以下方程组:ax + by = cdx + ey = f2.使用消元法或代入法解方程组,求解出x和y的值。
-对于消元法,我们可以通过消去x或y来求解另一个变量。
例如,可以通过将L1的方程乘以e,将L2的方程乘以b,然后将它们相减,得到可解的方程。
-对于代入法,我们可以先求解出一个变量,然后将它代入到另一个方程中求解另一个变量。
3.将求解得到的x和y的值代入L1或L2中,验证它们是否满足直线的方程。
通过上述步骤,我们可以求解出直线L1和L2的交点坐标(x0,y0)。
接下来,我们来看点到直线的距离公式。
假设有一条直线L,它的方程为:L: ax + by + c = 0其中a、b、c为已知常数,x和y为未知变量。
设点P的坐标为(x1,y1),我们希望求出点P到直线L的距离d。
为了求解点到直线的距离d = ,ax1 + by1 + c,/ √(a^2 + b^2)使用上述公式,我们可以按照以下步骤来计算点到直线的距离:1. 将点P的坐标代入直线L的方程,计算得到ax1 + by1 + c的值。
2.将步骤1中计算得到的值代入到距离公式中,计算得到点P到直线L的距离d。
通过上述步骤,我们可以求解出点P到直线L的距离d。
总结起来,直线的交点坐标与距离公式是数学和几何问题求解的基本工具。
对于直线的交点坐标,我们通过联立直线的方程,并使用消元法或代入法来求解变量的值,从而得到交点的坐标。
对于点到直线的距离,我们使用距离公式,将点的坐标代入直线的方程,并进行运算,最后得到点到直线的距离。
这两个公式广泛应用于解决直线相关的几何和数学问题,例如计算两条直线的交点、判断点是否在直线上以及计算点到直线的最短距离等。
两直线的交点坐标和距离公式

两直线的交点坐标和距离公式首先,我们假设有两条直线分别为L1和L2,它们可以表示为以下形式的参数方程:L1:P1=P0+t1*d1L2:P2=P0+t2*d2其中,P1和P2分别是L1和L2上的两个点,P0是直线的起点,d1和d2是直线的方向向量。
t1和t2是参数,用来确定直线上的点的位置。
要求两条直线的交点坐标,我们需要找到使L1和L2重合的参数值t1和t2、我们可以通过两个参数方程组相等来解这个方程组:P1=P2=>P0+t1*d1=P0+t2*d2化简上述方程,我们可以得到:P0+t1*d1-P0=P0+t2*d2-P0即:t1*d1=t2*d2这个方程告诉我们,d1和d2这两个方向向量成比例,它们的比例系数即为两个参数t1和t2的比值。
所以,我们可以将其表示为:d1=k*d2其中,k为比例系数。
在上述方程中,我们可以用矩阵的形式来表示方程:[d1,-d2]*[t1;-t2]=0其中,[d1,-d2]和[t1;-t2]分别是一个2x1的矩阵和一个2x1的列向量。
我们可以将上述方程拓展为一个矩阵方程:[A]*[x]=0其中,[A]是一个2x2的矩阵,其元素为[d1,-d2]。
[x]是一个2x1的列向量,其元素为[t1;-t2]。
根据行列式的定义,只有当[A]的行列式为0时,方程[A]*[x]=0有非零解。
计算[A]的行列式可得:det([A]) = ad1 - bd2对于两条直线相交的情况,其中ad1 - bd2不等于0。
形式上,我们可以将[A]*[x]=0表示为:[U]*[S]*[V^T]*[x]=0其中,[U]和[V]是正交矩阵,[S]是一个对角矩阵,其对角线元素为奇异值。
通过奇异值分解,我们可以得到:[U]*[S]*[V^T]=[R]*[T]其中,[R]是一个旋转矩阵,[T]是一个平移矩阵。
我们可以将解表示为:[x]=[V]*[T[2,:]]其中,[T[2,:]]表示[T]矩阵的第二行。
直线的交点坐标与距离公式

利用公式: x1=x2y1=y2求 解交点坐标
利用公式: x1=x2y1=y2求 解交点坐标
工程制图:确定直线交点坐标绘制工程图 地理信息系统:确定直线交点坐标进行地理信息分析 导航系统:确定直线交点坐标进行导航定位 建筑设计:确定直线交点坐标进行建筑设计规划
确定直线的位置:通过交点坐标可以确定直线在平面上的位置。 计算直线的长度:通过交点坐标可以计算直线的长度。 判断直线的平行或垂直:通过交点坐标可以判断两条直线是否平行或垂直。 计算直线的斜率:通过交点坐标可以计算直线的斜率。
PRT FOUR
设直线方程为x+By+C=0点P(x0,y0) 计算点P到直线的距离d:d=|x0+By0+C|/√(^2+B^2) 证明:d是点P到直线的距离
应用:计算点到直线的距离判断点是否在直线上计算直线与直线的交点等
工程测量:测量点 到直线的距离用于 工程设计和施工
地理信息系统:计 算点到直线的距离 用于地图绘制和导 航
物理学:计算点到 直线的距离用于研 究物体的运动轨迹 和速度
数学教育:教学生 如何计算点到直线 的距离提高数学思 维能力
确定点到直线的距离
判断点是否在直线上
计算点到直线的垂直距离
计算点到直线的斜率
PRT FIVE
平行线定义:在同一平面内永不相交的两条直线 平行线间距离公式:d=|x1-x2|/√(1+k^2) 公式解释:d为平行线间距离x1、x2为平行线交点坐标k为平行线斜率 求解步骤:确定平行线斜率k计算交点坐标x1、x2代入公式求解距离d
示例:当 m=2b=1c=3时 d=|31|/|2|=2/2=1
结论:两条平行线 之间的距离等于其 常数项的差值除以 斜率。
两直线的交点坐标两点间的距离

当直线与x轴相交时,其纵坐标y必定 为0。因此,我们可以将y=0代入直线 的方程中,解出x的值,即为交点的横 坐标。
与y轴交点
总结词
求直线与y轴的交点,即令x=0,解出对应的y值。
详细描述
当直线与y轴相交时,其横坐标x必定为0。因此,我们可以将x=0代入直线的方程中,解出y的值,即为交点的纵 坐标。
特殊情况处理
总结词
当直线与坐标轴的交点在原点时,需要特别处理。
详细描述
当直线过原点时,即交点的横坐标和纵坐标都为0,此时我们需要将x和y都设为0,然后解出对应的值。 需要注意的是,这种情况下的解可能不唯一,需要结合直线的其他条件来确定具体的交点。
04
实际应用举例
解析几何问题
解析几何问题中,两直线的交点坐标是一个重要的概念。通过求解两直线的方程,我们可以找到它们 的交点坐标。这种方法在解决几何问题时非常有用,例如确定两条直线的交点、判断两条直线是否平 行或垂直等。
两直线的交点坐标还可以用于解决一些复杂的地理问题,例如计算地球上任意两点之间的最短路径、分析人口分布规律等。
感谢观看THANKSຫໍສະໝຸດ 两直线的交点坐标两 点间的距离
• 两直线的交点坐标 • 两点间的距离公式 • 直线与坐标轴的交点 • 实际应用举例
目录
01
两直线的交点坐标
直线方程
直线方程一般式
$y = mx + c$,其中m是斜率,c是截距。
直线方程点斜式
$y - y_1 = m(x - x_1)$,其中(x_1, y_1)是直线上 的一个点。
直线方程截距式
$x/a + y/b = 1$,其中a、b分别是直线在x轴和y 轴上的截距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的交点坐标与距离公式【学习目标】1.掌握解方程组的方法,求两条相交直线的交点坐标.2.掌握两点间距离公式,点到直线距离公式,会求两条平行直线间的距离. 【要点梳理】【高清课堂:两直线的交点与点到直线的距离381525 知识要点1】 要点一:直线的交点求两直线1111110(0)A x B y C A B C ++=≠与2222220(0)A x B y C A B C ++=≠的交点坐标,只需求两直线方程联立所得方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩的解即可.若有111222A B C A B C ==,则方程组有无穷多个解,此时两直线重合;若有111222A B C A B C =≠,则方程组无解,此时两直线平行;若有1122A BA B ≠,则方程组有唯一解,此时两直线相交,此解即两直线交点的坐标.要点诠释:求两直线的交点坐标实际上就是解方程组,看方程组解的个数. 要点二:过两条直线交点的直线系方程一般地,具有某种共同属性的一类直线的集合称为直线系,它的方程叫做直线系方程,直线系方程中除含有,x y 以外,还有根据具体条件取不同值的变量,称为参变量,简称参数.由于参数取法不同,从而得到不同的直线系.过两直线的交点的直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=交点的直线方程为111222()0A x B y C A x B y C λ+++++=,其中λ是待定系数.在这个方程中,无论λ取什么实数,都得不到2220A x B y C ++=,因此它不能表示直线2l .要点三:两点间的距离公式两点111222()()P x y P x y ,,,间的距离公式为12PP =要点诠释:此公式可以用来求解平面上任意两点之间的距离,它是所有求距离问题的基础,点到直线的距离和两平行直线之间的距离均可转化为两点之间的距离来解决.另外在下一章圆的标准方程的推导、直线与圆、圆与圆的位置关系的判断等内容中都有广泛应用,需熟练掌握.要点四:点到直线的距离公式点00()P x y ,到直线0Ax By C ++=的距离为d =要点诠释:(1)点00()P x y ,到直线0Ax By C ++=的距离为直线上所有的点到已知点P 的距离中最小距离; (2)使用点到直线的距离公式的前提条件是:把直线方程先化为一般式方程;(3)此公式常用于求三角形的高、两平行线间的距离及下一章中直线与圆的位置关系的判断等.要点五:两平行线间的距离本类问题常见的有两种解法:①转化为点到直线的距离问题,在任一条直线上任取一点,此点到另一条直线的距离即为两直线之间的距离;②距离公式:直线10Ax By C ++=与直线20Ax By C ++=的距离为d =要点诠释:(1)两条平行线间的距离,可以看作在其中一条直线上任取一点,这个点到另一条直线的距离,此点一般可以取直线上的特殊点,也可以看作是两条直线上各取一点,这两点间的最短距离;(2)利用两条平行直线间的距离公式2221||BA C C d +-=时,一定先将两直线方程化为一般形式,且两条直线中x ,y 的系数分别是相同的,才能使用此公式.【典型例题】类型一、判断两直线的位置关系例1.判断下列各组直线的位置关系,如果相交,求出相应的交点坐标:(1)5420220x y x y +-=⎧⎨++=⎩;(2)26301132x y y x -+=⎧⎪⎨=+⎪⎩;(3)2601132x y y x -=⎧⎪⎨=+⎪⎩.【答案】(1)1014,33⎛⎫-⎪⎝⎭;(2)重合;(3)平行. 【解析】(1)解方程组5420220x y x y +-=⎧⎨++=⎩得该方程组有唯一解103143x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以两直线相交,且交点坐标为1014,33⎛⎫-⎪⎝⎭. (2)解方程组2630 1132x y y x -+=⎧⎪⎨=+⎪⎩①② ②×6得2x -6y+3=0,因此①和②可以化成同一个方程,即方程组有无数组解,所以两直线重合.(3)解方程组260 1132x y y x -=⎧⎪⎨=+⎪⎩①② ②×6-①得3=0,矛盾,方程组无解,所以两直线无公共点,所以两直线平行.【总结升华】判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况. 举一反三:【变式1】判断下列各对直线的位置关系,若相交,求出交点坐标:(1)l1:2x+y+3=0,l2:x―2y―1=0;(2)l1:x+y+2=0,l2:2x+2y+3=0;(3)l1:x―y+1=0;l2:2x―2y+2=0.【答案】(1)直线l1与l2相交,交点坐标为(―1,―1).(2)直线l1与l2无公共点,即l1∥l2.(3)两直线重合.类型二、过两条直线交点的直线系方程例2.求经过两直线2x―3y―3=0和x+y+2=0的交点且与直线3x+y―1=0平行的直线方程.【答案】15x+5y+16=0【解析】可先求出交点坐标,再根据点斜式求出所要求的直线方程;也可利用直线系(平行系或过定点系)求直线方程.解法一:设所求的直线为l,由方程组233020x yx y--=⎧⎨++=⎩得3575xy⎧=-⎪⎪⎨⎪=-⎪⎩.∵直线l和直线3x+y―1=0平行,∴直线l的斜率k=―3.∴根据点斜式有73355y x⎡⎤⎛⎫⎛⎫--=---⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即所求直线方程为15x+5y+16=0.解法二:∵直线l过两直线2x―3y―3=0和x+y+2=0的交点,∴设直线l的方程为2x―3y―3+λ(x+y+2)=0,即(λ+2)x+(λ―3)y+2λ―3=0.∵直线l与直线3x+y-1=0平行,∴2323311λλλ+--=≠-,解得112λ=.从而所求直线方程为15x+5y+16=0.【总结升华】直线系是直线和方程的理论发展,是数学符号语言中一种有用的工具,是一种很有用的解题技巧,应注意掌握和应用.举一反三:【变式1】求证:无论m取什么实数,直线(2m―1)x+(m+3)y―(m―11)=0都经过一个定点,并求出这个定点的坐标.证法一:对于方程(2m―1)x+(m+3)y―(m―11)=0,令m=0,得x―3y―11=0;令m=1,得x+4y+10=0.解方程组31104100x yx y--=⎧⎨++=⎩,得两直线的交点为(2,―3).将点(2,―3)代入已知直线方程左边,得(2m―1)×2+(m+3)×(―3)―(m―11)=4m―2―3m―9―m+11=0.这表明不论m取什么实数,所给直线均经过定点(2,―3).证法二:将已知方程以m为未知数,整理为(2x+y―1)m+(―x+3y+11)=0.由于m取值的任意性,有2103110x yx y+-=⎧⎨-++=⎩,解得23xy=⎧⎨=-⎩.所以所给的直线不论m取什么实数,都经过一个定点(2,―3).类型三、对称问题例3.(2016秋 北京期中)求点A (3,―2)关于直线l :2x ―y ―1=0的对称点A '的坐标. 【思路点拨】设点A '的坐标为(m ,n ),求得A 'A 的中点B 的坐标并代入直线l 的方程得到①,再由线段A 'A 和直线l 垂直,斜率之积等于―1得到②,解①②求得m ,n 的值,即得点A '的坐标.【答案】134(,)55-【解析】设点A (3,―2)关于直线l :2x ―y ―1=0的对称点A '的坐标为(m ,n ), 则线段A 'A 的中点32(,)22m n B +-, 由题意得B 在直线l :2x ―y ―1=0上,故3221022m n +-⨯--= ① 再由线段A 'A 和直线l 垂直,斜率之积等于―1得22131n m +⨯=-- ②,解①②所成的方程组可得:134,55m n =-=, 故点A '的坐标为134(,)55-. 【总结升华】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.例4.求直线x ―y ―2=0关于直线l :3x ―y+3=0对称的直线方程. 【答案】7x+y+22=0【解析】 解法一:由20330x y x y --=⎧⎨-+=⎩,得交点59,22P ⎛⎫-- ⎪⎝⎭,取直线x ―y ―2=0上一点A (0,―2),设点A 关于直线l :3x ―y+3=0的对称点为A '(x 0,y 0), 则根据'1AA l k k ⋅=-,且线段AA '的中点在直线l :3x ―y+3=0上,有00002310232022y x x y +⎧⨯=-⎪-⎪⎨-⎪⨯-+=⎪⎩,解得0031x y =-⎧⎨=-⎩. 故所求直线过点59,22⎛⎫-- ⎪⎝⎭与(―3,―1). ∴所求直线方程为95722x x ⎛⎫+=-+ ⎪⎝⎭. 即7x+y+22=0.解法二:设P (x ,y )为所求直线上任意一点,P 关于直线l :3x ―y+3=0的对称点P '(x ',y ').根据PP '⊥l 且线段PP '的中点在直线l 上,可得'31'''33022y yx x x x y y -⎧⨯=-⎪⎪-⎨++⎪⋅-+=⎪⎩,解得8618'10686'10x y x x y y -+-⎧=⎪⎪⎨++⎪=⎪⎩.又∵P '(x ',y ')在直线x ―y ―2=0上, ∴8618686201010x y x y -+-++--=,即7x+y+22=0.故所求直线方程为7x+y+22=0.【总结升华】 轴对称问题一般利用这两种方法求解,其中解法二是求轨迹方程的常用方法,称为代入法.举一反三: 【变式1】(1)求点P (x 0,y 0)关于直线x ―y+C=0的对称点坐标;(2)求直线l 1:Ax+By+C=0关于直线l 2:x+y ―3=0的对称直线l 3的方程. 【答案】(1)(y 0―C ,x 0+C );(2)Bx+Ay ―3A ―3B ―C=0.【高清课堂:两直线的交点与点到直线的距离381525 要点(二)中的例1】 【变式2】l 过点M(-2,1),且与点A(-1,2),B(3,0)的距离相等,求直线l 的方程.【答案】1y = 20x y += 【解析】法一:直线l 过AB 的中点(1,1),所以l 的方程为1y =. 直线//l AB ,则设l 的方程为1(2)y k x -=+ 则12k =-,所以l 的方程为:20x y += 法二:由题意知直线l 的斜率存在,设l 的方程为1(2)y k x -=+,则A 、B 两点到直线l 的距离=解得:10,2k k ==-所以l 的方程为:1y =和20x y +=类型四、两点间的距离 例5.已知点A (1,2),B (3,4),C (5,0),求证:△ABC 是等腰三角形. 【解析】 先分别求出三边之长,再比较三边的长短,最后下结论.∵||AB ==||AC ==||BC ==∴|AC|=|BC|.又∵A 、B 、C 三点不共线,∴△ABC 是等腰三角形.【总结升华】 利用两点间距离公式即可求出两点间的线段的长度,进而可解决相关问题,在运用两点间距离公式时只需将两点坐标代入公式即可.举一反三:【变式1】以点A (―3,0),B (3,―2),C (―1,2)为顶点的三角形是( )A .等腰三角形B .等边三角形C .直角三角形D .以上都不是 【答案】C【解析】22(33)236440210=--+=+==AB ,22(13)(22)16163242=--+--=+==BC ,22(13)2822=-++==AC ,∵222AC BC AB +=,∴△ABC 为直角三角形. 故选:C . 例6.已知直线l 过点P (3,1),且被两平行直线l 1:x+y+1=0,l 2:x+y+6=0截得的线段长为5,求直线l 的方程.【答案】y=1或x=3【解析】 设直线l 与直线l 1、l 2分别交于点A (x 1,y 1)、B (x 2、y 2),则11221060x y x y ++=⎧⎨++=⎩,两方程相减,得(x 1―x 2)+(y 1―y 2)=5, ①由已知及两点间距离公式,得(x 1―x 2)2+(y 1―y 2)2=25, ②由①②解得121250x x y y -=⎧⎨-=⎩或121205x x y y -=⎧⎨-=⎩,又点A (x 1,y 1)、B (x 2,y 2)在直线l 上,因此直线l 的斜率为0或不存在,又直线l 过点P (3,1),所以直线l 的方程为y=1或x=3.【总结升华】 从交点坐标入手,采用“设而不求”“整体代入”或“整体消元”的思想方法优化了解题过程.这种解题思想方法在解析几何中经常用到,是需要掌握的技能.另外,灵活运用图形中的几何性质,如对称,线段中垂线的性质等,同样是很重要的.举一反三:【变式1】如图,直线l 上有两点A 、B ,A 点和B 点的横坐标分别为x 1,x 2,直线l 方程为y=kx+b ,求A 、B 两点的距离.【答案】2222121||(1)()1||AB k x x k x x =+-=+-类型五、点到直线的距离例7. 在△ABC 中,A (3,3),B (2,―2),C (―7,1),求∠A 的平分线AD 所在直线的方程. 【答案】y x =【解析】 设M (x ,y )为∠A 的平分线AD 上的任意一点,由已知可求得AC 边所在直线的方程为x ―5y+12=0,AB 所在直线的方程为5x ―y ―12=0.由角平分线的性质得2626=,∴x ―5y+12=5x ―y ―12或x ―5y+12=y ―5x+12,即y=―x+6或y=x . 但结合图形(如图),可知k AC <k AD <k AB ,即155AD k <<, ∴y=-x+6不合题意,故舍去.故所求∠A 的平分线AD 所在直线的方程为y=x .【总结升华】 本例利用角的平分线上任意一点到角的两边的距离相等这一性质,创设了运用点到直线的距离公式的条件,从而得到角的平分线上任意一点的坐标(x ,y )所满足的方程,化简即得到所求的直线方程.由此可见,灵活运用点到直线的距离公式的关键在于创设出点到直线的距离这一条件.举一反三:【变式1】求点P 0(―1,2)到下列直线的距离: (1)2x+y ―10=0;(2)x+y=2;(3)y ―1=0.【答案】(1)2)2(3)1【解析】(1)根据点到直线的距离公式得d ===(2)直线方程可化为x+y ―2=0,所以d ==(3)因为直线y ―1=0平行于x 轴,所以d=|2―1|=1. 类型六、两平行直线间的距离例8.已知直线1l :ax +y +2=0(a ∈R ),(1)若直线1l 的倾斜角为120°,求实数a 的值; (2)若直线1l 在x 轴上的截距为2,求实数a 的值;(3)若直线1l 与直线2l :2x -y +1=0平行,求两平行线之间的距离.【思路点拨】(1)由题意可得tan120°=-a ,解方程可得;(2)令y =0,解得x 即直线1l 在x 轴上的截距,可得关于a 的方程,解方程可得;(3)由直线的平行关系可得a 值,代入两平行线之间的距离公式计算可得.【解析】(1)由题意可得tan120°=-a ,解得=a(2)令y =0,可得2=-x a ,即直线1l 在x 轴上的截距为22-=a,解得a =-1; (3)∵直线1l 与直线2l :2x -y +1=0平行, ∴a =-2,∴直线1l 的方程可化为2x ―y ―2=0=举一反三:【变式1】直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2,且l 1与l 2的距离为5,求l 1、l 2的方程.【答案】12:12550:125600l x y l x y -+=⎧⎨--=⎩或12:0:5l x l x =⎧⎨=⎩.。