晶体生长理论(20200801090717)

合集下载

第六章 晶体生长理论基础

第六章  晶体生长理论基础

(5.15)
与前面类似,我们定义,
c c0
称饱和比,
1
称过饱和度,故有
g kTIn(C / C0 ) kTIn kT (5.16)
若在溶液生长系统中,生长的晶体为纯溶质构成,将(5.16)式代入(5.9)式,
得溶液生长系统中单个分子相变驱动力f为:
f
kT S
In(C
/ C0 )
kT S
In
S
S1
S2
U1 T1
U2 T2
U( 1 T1
1 T2
)
其中,S1、S2分别为两部分的熵,达到平衡态时,S有最大值, 即T1=T2 ,于是,得到热平衡条件为:T1=T2
就是说,热力学系统的热平衡条件为温度相等。如果系统没
有达到平衡态,则将发生不可逆过程,即热量从高温部分传 向低温部分,直至两部分的温度相等为止。
假定温度T0不变,蒸汽压由p0 增加到p(p为过饱和蒸汽压),汽相的化学式可
写成: ' (T0 p ) 0 (T0 ) RT lnp
0为温度为T0 压强为一个大气压的理想气体。
由于其p差﹥值p0为,:p为过饱和蒸汽压,此R时系T统0 I中n的(汽p相p0的)化学式大于晶体的化学式,
汽相生长系统中的相变驱动力
结晶的过程包括三态(固、液、汽)之间的转变,下面分别讨论之。
6.3.1 汽相生长系统中的相变驱动力
在平衡温度和平衡压力(T0、p0,p0为饱和蒸汽压)下,两相处于平衡,此时
晶体和蒸汽的化学势应当相等, 0 (T0、P0 ) / (T0、P0 )
晶体的化学势可写成:0 (T0 p0 ) 0 (T0 ) RT0Inp0
★单元系:指含有一种化学成分的物质的系统,称之为单元系。 ★复相系:系统中各个部分的性质有差别且有边界的系统,称之为复相系。

晶体生长理论

晶体生长理论

碳化硅晶体的螺位错生长
针状莫来石晶体的螺位错生长
周期键链(PBC)理论



该理论从晶体结构的几何特点和质点能量两方面来探讨界面的生长发育。哈特曼 和柏多克等认为在晶体结构中存在一系列周期性重复的强键链,其重复特征与晶 体中质点的周期性重复相一致,这样的强键链称为周期键链(periodic bond chain, 简写为PBC),晶体均平行键链生长,键力最强的方向生长最快,基于这种考虑, 可将晶体生长过程中所能出现的晶面划分为三种类型,分别为F,S和K。 F面,或称平坦面,有两个以上的PBC与之平行,网面密度最大。质点结合到F面 上去时,只形成一个强键,晶面生长速度慢,易于形成晶体的主要晶面。 S面,或称阶梯面只有一个PBC与之平行,网面密度中等。质点结合到S面上去时, 形成的强键至少比F面多一个,晶面生长速度属于中等。 K面, 或称扭折面,不平行任何PBC,网面密度最小,扭折处的发现方向与PBC一 致,质点极其容易从扭折处进入晶格,晶面生长速率快,时易消失的晶面。 因此, 晶体上F面为最常见且发育较大的面,K面经常缺失或罕见。 尽管PBC理论从晶体结构,质点能量出发,对晶面生长发育作出了许多解释,也 解释了一些实际现象,但在其它晶体中晶面发育仍存在一些与上述结论不尽一致 的实例。这表明晶体生长的过程是很复杂的。
晶体平衡形态理论

Frank运动学理论:1958年,F.C.Frank在 应用运动学理论描述晶体生长或溶解过程中不 同时刻的晶体外形,提出了两条基本定律,即 所谓的运动学第一定律和运动学第二定律。利 用该定律能够定量计算出晶体的生长形态。
界面生长理论

晶体平衡形态理论虽然是从晶体内部结构、应 用结晶学和热力学的基本原理来探讨晶体的生 长,但是过于注重晶体的宏观和热力学条件, 而没有考虑晶体的微观条件和环境相对于晶体 生长的影响,实际是晶体的宏观生长理论;界 面生长理论重点讨论晶体与环境的界面形态在 晶体生长过程中的作用,力求从界面处物理化 学特性来诠释晶体生长的动力。

晶体生长理论及其应用

晶体生长理论及其应用

晶体生长理论及其应用晶体在日常生活中无处不在,从家具上的水晶饰品到微处理器芯片,晶体都起着至关重要的作用。

晶体的实际应用需要通过掌握晶体生长的基本原理,使其品质得以提高,从而提高其应用性能。

晶体生长的基本原理晶体生长是指从固态或液态中将单一或复杂的化合物、元素或合金排列成一定结构并并定向生长,最终形成具有良好晶体结构的物质。

晶体生长依赖于物质分子间的相互作用力。

这些力可以近似地描述为分子间键的力。

晶体稳定性可从它们表面和周围环境的化学反应率来推断。

在晶体生长中,物质粒子从溶液或气体的界面处被吸附并形成新的晶体表面。

此过程中,分子间距离增加,而多面体结构的晶体表面能量则随之降低。

这种过程是可逆的,即晶体表面吸附的物质可在适当的条件下溶解。

晶体生长应用生长高纯度晶体是许多技术领域的一个重要问题。

为了保障晶体品质的重复性和稳定性,需要控制在生长过程中的密度和速度。

因此,对晶体生长机理的研究,能够提高晶体的生长速率和结构表现,并能够建立晶体生长的多个参数之间的关系。

研究显示,普通的晶体生长方法在高产量和生长质量方面存在很大局限性。

因此,许多新的生长方法和技术正在被开发。

一些新兴的晶体生长方法如电化学、电泳沉淀和喷雾干燥等能够提高生长速率、提高纯度、减少缺陷。

另外,通过研究晶体生长机制,一些新型的功能晶体和超硬晶体也被制造出来。

例如,尽管很难生长,但氮化硼晶体具有优异的物理特性。

氮化硼晶体具有高硬度、高热稳定性和较高的折射率。

这些物性使其成为重要的工业原料,用于制造磨料、切割工具、防弹材料和光学透镜。

此外,一些晶体生长技术还被广泛应用于生物医学、电子学和能源领域,如肿瘤治疗、生物芯片和太阳电池等。

在生物医学方面,人类组织需要一种有效的培养技术,以便生长新的组织。

这就需要合适的支架来支撑新组织的生长。

晶体生长方法可生产出高品质的生物聚合物薄膜,在人类组织移植和细胞培养方面具有很大的潜力。

总之,晶体生长理论的研究和应用,为各个领域提供了很多发展机会。

晶体生长理论1

晶体生长理论1

晶体生长理论1晶体生长理论特征表面的光滑与否是和晶体结构、材料特征、晶面取向以及温度等因素有关。

P.哈特曼提出的周期键理论在于根据晶面中周期性键链数来确定其光滑的程度。

更属物理的理论则是建立在晶面的统计力学基础上。

K.A.杰克孙的理论阐明相变熵与表面光滑性的关系;伯顿与卡布雷拉的理论指出在一定的临界温度,表面可能发生光滑-粗糙转变。

近年来对这些问题有更加深入的理论探讨,而且,晶面的计算机模拟直观地再现了过去的理论设想,并且推广到非平衡的状态。

晶体生长的输运理论及形态稳定性晶体生长在空间上是不连续的过程,结晶只发生在固体-流体界面上。

在流体和固体内部都存在热量和质量输运过程。

这一类型的输运问题通常可以采用宏观物理学的方法来处理,即化为边界条件下偏微分方程的求解。

当然这种边值问题是有其特殊性的,即随着晶体的长大,边界在移动。

早在1891年J.斯忒藩首先处理了极区冰层长厚的问题,所以这类问题被称为斯忒藩问题。

斯忒藩问题的外部边界条件应模拟生长系统的实际情况。

能求出解析解的仅限于少数简单的几何形状的情况。

在流体相中传热和传质可以通过对流来实现,因而流体中的热传导与溶质扩散往往局限于固液界面处的边界层中。

这样,就可以将流体力学的边界层理论引用到相应的斯忒藩问题之中。

但晶体生长的流体效应亦有其复杂的一面,特别是牵涉到流动的失稳和非稳态流动等问题。

要进行确切的理论计算极其困难,因而往往求助于模拟性的实验或晶体生长层的剖析。

重要问题在晶体生长形态学中还有一个重要问题,就是形态的稳定性:具体来说,就是生长界面是否能够持续地保持下去。

有些界面虽然能够满足斯忒藩问题的解,但实际上却并不出现,因为这种界面对于干扰是不稳定的。

设想某一平界面在某瞬时受到干扰,使界面局部突出。

它随时间的演变将有两种可能性:一是干扰的振幅逐渐衰减,最终界面恢复原状,表明原界面是稳定的;另一种情况是干扰振幅逐渐增大,则表明原来的平界面是不稳定的,可能转化为凹凸不平的胞状界面,或甚至于发展为枝晶(den-drites)。

微电子材料—晶体生长基本理论与技术

微电子材料—晶体生长基本理论与技术

天然盐湖卤水蒸发
珍珠岩
5
3. 由固相变为固相:
同质多相转变,某种晶体在热力学条件改变的时候, 转变为另一种在新条件下稳定的晶体;
原矿物晶粒逐渐变大,如由细粒方解石组成的石灰 岩与岩浆接触时,受热再结晶成为由粗粒方解石组 成的大理岩;
细粒方解石
大理岩
6
3. 由固相变为固相:
固溶体分解,一定温度下固溶体可以分离成为几 种独立矿物;
19
气相中的均匀成核
晶胚有两种发展趋势: 1)继续长大,形成稳定的晶核; 2)重新拆散,分开为单个分子。
20
液相中的均匀成核
晶体熔化后的液态结构是长程无序的; 在短程范围内却存在着不稳定的接近于有序
的原子集团; 它们此消彼长,出现结构起伏或叫相起伏。
21
液相中的均匀成核
当温度降到结晶温度时,这些原子集团就可 能成为均匀成核的“胚芽”,称为晶胚。
17
晶核的形成
非均匀成核:若新相优先在旧相某些区域中 存在的异质处成核,即依附于液相中的杂质 或外来表面成核。
18
气相中的均匀成核
在气-固相体系中,气体分子不停的做无规则的 运动;
能量高的气子发生碰撞后再弹开,这种碰撞类似 于弹性碰撞;
某些能量低的分子,可能在碰撞后连接在一起, 形成几个分子(多为2个)组成的“小集团”,称为 “晶胚”。
22
经典成核理论
经典成核理论是基于热力学的分析,基本思 想是把成核视为过饱和蒸汽或溶质的凝聚;
设两个分子碰撞形成晶胚,从分子到晶胚的 变化看成一个体系。
23
经典成核理论
体系吉布斯自由能的改变包括:
1、气相转变为晶胚(固相),体积减小,体积自由能 减少,设体积自由能改变为△GV。 2、晶胚的生成,会形成一个固-气界面,需要一定 的表面能,其改变为△GS。

《晶体生长理论》ppt课件

《晶体生长理论》ppt课件
提纯
多次区熔的过程
○ 在凝固界面,对于k<1的杂质,由于分凝作用将部分被
排斥到熔区,并向后携带
○ 在熔化界面,锭料的熔化带入新的杂质,并从熔化界面向凝
固界面运动〔杂质倒流〕,其结果是使整个熔区杂质浓度添加
○ 随着区熔次数的添加,尾部杂质越来越多,浓度梯度越来越
陡,杂质倒流越严重
极限分布
○ 经过多次区熔提纯后,杂质分布形状到达一个
如Cu-Ni相图 :
相图分析:2个点、2条线、3个区。
测定方法:热分析法〔最常用〕。
③二元合金相图的建立——热分析法建立相图的过程
▲配制系列成分的铜镍合金
▲测出它们的冷却曲线,得到临
界点
▲把这些点标在T—成分坐标上
▲将具有一样意义的点衔接成线,
标明各区域内所存在的相, 即得到
Cu-Ni合金相图
2、分凝景象与分凝系数
④ l →大,Cs→小,提纯效果好⇒l越大越好
⑤ 极限分布时(K一定):
⑥ l →大,B →小, A →大,Cs(x)→大, 提纯效果差

⇒l越小越好
⑧ 运用:前几次用宽熔区,后几次用窄熔区。
②熔区的挪动速度
BPS公式:
Keff
K0
f
D
1K0e
K0
f越小,keff越接近k0,提纯效果好, 区熔次数少, 但是过低速
〔资料中的杂质量本来很少〕
由于存在分凝景象,正常凝固后锭条中的杂质分布不再是均匀的,
会出现三种情况:
K<1的杂质,杂质向尾部集中;
K>1的杂质,杂质向头部集中;
K≈1的杂质,根本上坚持原有的均匀分布的方式
正常凝固过程中,Cs沿锭长的分布
1

晶体生长原理

晶体生长原理

晶体生长原理晶体是一种具有高度有序结构的固体材料,其内部的原子、分子或离子排列呈现出一定的规律性。

晶体的生长过程是一个复杂而又精密的物理化学过程,其原理涉及到热力学、动力学、界面化学等多个领域。

本文将就晶体生长的基本原理进行探讨,以期加深对晶体生长过程的理解。

晶体生长的基本原理可以概括为以下几个方面:1. 原子或分子的聚集。

晶体生长的第一步是原子或分子的聚集。

在适当的条件下,如过饱和度、温度、溶液中的物质浓度等方面的变化,会导致原子或分子在某一特定位置聚集成固态结构的种子,从而形成晶核。

2. 晶核的生长。

晶核的形成标志着晶体生长的开始。

晶核的生长是一个动力学过程,其速度取决于溶液中物质的浓度、温度、溶液的流动情况等因素。

在晶核生长过程中,原子或分子会不断地从溶液中聚集到晶核表面,形成新的晶格,使得晶核逐渐增大。

3. 晶体的形态。

晶体的形态受到晶体生长条件的影响。

在不同的生长条件下,晶体会呈现出不同的形态。

例如,在溶液中生长的晶体往往呈现出多面体形态,而在气相中生长的晶体则更倾向于呈现出柱状或板状的形态。

晶体的形态与其生长过程中的动力学条件密切相关。

4. 晶体生长的动力学。

晶体生长的动力学过程涉及到原子或分子在晶体表面的吸附、扩散和结合等过程。

这些过程受到温度、浓度梯度、溶液流动等因素的影响。

在晶体生长的过程中,这些动力学过程相互作用,共同决定了晶体的生长速率和形态。

5. 晶体生长的热力学。

晶体生长的热力学过程主要涉及到溶液中物质的浓度、温度等因素对晶体生长的影响。

热力学条件的变化会导致晶体生长速率的变化,从而影响晶体的形态和尺寸。

总之,晶体生长是一个受到多种因素影响的复杂过程,其原理涉及到热力学、动力学、界面化学等多个领域。

对晶体生长原理的深入理解有助于我们更好地控制晶体的生长过程,从而制备出具有特定形态和性能的晶体材料,为材料科学和工程技术的发展提供有力支持。

晶体生长理论

晶体生长理论

晶体⽣长理论晶体⽣长理论晶体⽣长理论是⽤以阐明晶体⽣长这⼀物理-化学过程。

形成晶体的母相可以是⽓相、液相或固相;母相可以是单⼀组元的纯材料,也可以是包含其他组元的溶液或化合物。

⽣长过程可以在⾃然界中实现,如冰雪的结晶和矿⽯的形成;也可以在⼈⼯控制的条件下实现,如各种技术单晶体的培育和化学⼯业中的结晶。

基础晶体⽣长的热⼒学理论[1]J.W.吉布斯于1878年发表的著名论⽂《论复相物质的平衡》奠定了热⼒学理论的基础。

他分析了在流体中形成新相的条件,指出⾃然体⾃由能的减少有利新相的形成,但表⾯能却阻碍了它。

只有通过热涨落来克服形成临界尺⼨晶核所需的势垒,才能实现晶体的成核。

到20世纪20年代M.福⽿默等⼈发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作⽤(⾮均匀成核)。

⼀旦晶核已经形成(或预先制备了⼀块籽晶),接下去的就是晶体继续长⼤这⼀问题。

吉布斯考虑到晶体的表⾯能系数是各向异性的,在平衡态⾃由能极⼩的条件就归结为表⾯能的极⼩,于是从表⾯能的极图即可导出晶体的平衡形态。

晶体平衡形态理论曾被P.居⾥等⼈⽤来解释⽣长着的晶体所呈现的多⾯体外形。

但是晶体⽣长是在偏离平衡条件下进⾏的,表⾯能对于晶体外形的控制作⽤限于微⽶尺⼨以下的晶体。

⼀旦晶体尺⼨较⼤时,表⾯能直接控制外形的能⼒就丧失了,起决定性作⽤的是各晶⾯⽣长速率的各向异性。

这样,晶⾯⽣长动⼒学的问题就被突出了。

动⼒学理论晶体⽣长的动⼒学理论晶⾯⽣长的动⼒学指的是偏离平衡的驱动⼒(过冷或过饱和)与晶⾯⽣长的速率的关系,它是和晶体表⾯的微观形貌息息相关的。

从20世纪20年代就开始了这⽅⾯的研究。

晶⾯的光滑(原⼦尺度⽽⾔)与否对⽣长动⼒学起了关键性的作⽤。

在粗糙的晶⾯上,⼏乎处处可以填充原⼦成为⽣长场所,从⽽导出了快速的线性⽣长律。

⾄于偏离低指数⾯的邻位⾯,W.科塞⽿与 F.斯特兰斯基提出了晶⾯台阶-扭折模型,晶⾯上台阶的扭折处为⽣长的场所。

由此可以导出相应的⽣长律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档