最新哈尔滨市中考数学试题、答案
2022年黑龙江省哈尔滨市中考数学试卷含答案

A.150(1﹣x2)=96
B.150(1﹣x)=96
C.150(1﹣x)2=96
D.150(1﹣=96
9.(3分)如图,AB∥CD,AC,BD 相交于点 E,AE=1,EC=2,DE=3,则 BD 的长为( )
17.(3 分)在△ABC 中,AD 为边 BC 上的高,∠ABC=30°,∠CAD=20°,则∠BAC 是
13.(3分)计算 +3 的结果是
.
14.(3 分)把多项式 xy2﹣9x 分解因式的结果是
.
15.(3分)不等式组
的解集是
.
16.(3 分)已知反比例函数 y=﹣ 的图象经过点(4,a),则 a 的值为
.
23.(8 分)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操 舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行 问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调
21.(7分)先化简,再求代数式( ﹣
)÷ 的值,其中 x=2cos45°+1.
A.150km
B.165km
C.125km
D.350km
二、填空题(每小题 3 分,共计 30 分)
11.(3 分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有 253000 兆瓦,用科学记数法表示
为
兆瓦.
12.(3 分)在函数 y=
中,自变量 x 的取值范围是
.
22.(7 分)如图,方格纸中每个小正方形的边长均为 1,△ABC 的顶点和线段 EF 的端点均在小正方形的顶点 上.
(1)在方格纸中画出△ADC,使△ADC 与△ABC 关于直线 AC 对称(点 D 在小正方形的顶点上);
2024届黑龙江省哈尔滨市呼兰区中考联考数学试题含解析

2024届黑龙江省哈尔滨市呼兰区中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.4的平方根是( )A.2 B.2C.±2 D.±22.16=()A.±4 B.4 C.±2 D.23.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)25.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A.100cm B.10cm C.10cm D.1010cm6.若kb<0,则一次函数y kx b=+的图象一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限7.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×10108.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠9.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为( )A .27.1×102B .2.71×103C .2.71×104D .0.271×10510.若,则的值为( )A .﹣6B .6C .18D .30二、填空题(共7小题,每小题3分,满分21分)11.如图,一艘轮船自西向东航行,航行到A 处测得小岛C 位于北偏东60°方向上,继续向东航行10海里到达点B 处,测得小岛C 在轮船的北偏东15°方向上,此时轮船与小岛C 的距离为_________海里.(结果保留根号)12.函数的自变量的取值范围是 .13.如图,P 是⊙O 的直径AB 延长线上一点,PC 切⊙O 于点C ,PC=6,BC :AC=1:2,则AB 的长为_____.14.已知线段4a =厘米,9b =厘米,线段c 是线段a 和线段b 的比例中项,线段c 的长度等于________厘米.15.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,4),顶点C 在x 轴的负半轴上,函数y =k x(x <0)的图象经过顶点B ,则k 的值为_____.16.方程21x x =-的解是__________. 17.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x =-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________.三、解答题(共7小题,满分69分)18.(10分)反比例函数k y x =的图象经过点A (2,3). (1)求这个函数的解析式;(2)请判断点B (1,6)是否在这个反比例函数的图象上,并说明理由.19.(5分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?20.(8分)如图1,在圆O 中,OC 垂直于AB 弦,C 为垂足,作BAD BOC ∠=∠,AD 与OB 的延长线交于D . (1)求证:AD 是圆O 的切线;(2)如图2,延长BO ,交圆O 于点E ,点P 是劣弧AE 的中点,5AB =,132OB =,求PB 的长 .21.(10分)化简: 23x 11x 2?x 4+⎛⎫+÷ ⎪--⎝⎭ 22.(10分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018 23.(12分)如图,在四边形ABCD 中,点E 是对角线BD 上的一点,EA ⊥AB ,EC ⊥BC ,且EA=EC .求证:AD=CD .24.(14分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】,然后再根据平方根的定义求解即可.【题目详解】=2,2的平方根是的平方根是.故选D.【题目点拨】正确化简是解题的关键,本题比较容易出错.2、B【解题分析】表示16的算术平方根,为正数,再根据二次根式的性质化简.【题目详解】,4故选B.【题目点拨】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.3、D【解题分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【题目详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【题目点拨】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4、C【解题分析】按照“左加右减,上加下减”的规律,从而选出答案.【题目详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【题目点拨】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.5、C【解题分析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.【题目详解】设母线长为R,则圆锥的侧面积=236360R=10π,∴R=10cm,故选C.【题目点拨】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.6、D【解题分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【题目详解】∵kb<0,∴k、b异号。
2024年哈尔滨中考数学题

2024年哈尔滨中考数学题一、小明在操场上跑步,他第一圈用了2分钟,第二圈用了2分10秒,那么小明跑第二圈时比第一圈:A. 快了B. 慢了C. 一样快D. 无法比较(答案:B)二、哈尔滨的冬季气温常常低于零度,某天早晨的气温是-12℃,中午气温上升了5℃,那么中午的气温是:A. -17℃B. -7℃C. 7℃D. 17℃(答案:B)三、已知哈尔滨到北京的距离约为1200公里,如果一辆汽车以每小时80公里的速度匀速行驶,不考虑休息和其他因素,那么它大约需要多少小时才能到达北京?A. 10小时B. 15小时C. 20小时D. 25小时(答案:B,但实际应考虑休息等因素)四、小红在超市买了一瓶饮料和一包零食,饮料的价格是5元,零食的价格是饮料的两倍加1元,那么零食的价格是:A. 6元B. 7元C. 10元D. 11元(答案:D)五、哈尔滨的某座桥长1000米,如果小明以每分钟100米的速度从桥的一端走到另一端,他需要:A. 5分钟B. 10分钟C. 15分钟D. 20分钟(答案:B)六、已知一个直角三角形的两条直角边长度分别为3和4,那么它的斜边长度最接近:A. 5B. 6C. 7D. 8(答案:C,根据勾股定理,实际值为5但选项中最接近7)七、哈尔滨的冬季常常下雪,如果一场雪后,地面的积雪厚度达到了10厘米,并且每小时融化2厘米,那么多少小时后积雪会完全融化?A. 3小时B. 4小时C. 5小时D. 6小时(答案:C,但实际可能因温度等因素有所变化)八、小明家距离学校3公里,他通常骑自行车上学,如果他的骑车速度是每小时15公里,那么他需要多少分钟才能到学校?A. 5分钟B. 10分钟C. 12分钟D. 15分钟(答案:C,3公里/15公里/小时 = 0.2小时 = 12分钟)九、哈尔滨的某座塔高100米,如果小华从塔顶以每秒2米的速度下降,那么他需要多少秒才能到达地面?A. 20秒B. 30秒C. 40秒D. 50秒(答案:D,100米/2米/秒 = 50秒)十、已知一个圆的半径为r,如果它的半径增加了一倍,那么它的面积会增加多少倍?A. 1倍B. 2倍C. 3倍D. 4倍(答案:C,面积从πr²增加到4πr²,增加了3倍)。
2023哈尔滨中考数学试卷真题

2023哈尔滨中考数学试卷真题(正文部分)注意:以下是2023年哈尔滨中考数学试卷的真题内容。
请考生认真阅读题目,并按要求完成答题。
--------------------------------------------------第一部分:选择题(共50题,每小题2分,共100分)请从A、B、C、D四个选项中选择正确答案,并将答案填涂在答题卡上。
1. 下面等式成立的是:A. 2x - 3 = 0B. 3x + 2 < 0C. 4x^2 - 16 = 0D. 5x + 1 > 42. 已知△ABC,AB = AC,∠B = x,∠C = 2x,则∠A的度数为:A. xB. 2xC. 3xD. 4x3. 若直线l和m相交于点A,则∠BAD的度数为:A. 45°B. 90°C. 135°D. 180°4. 若a + b = 3,a - b = 1,则a的值为:A. 1B. 2C. 3D. 45. 若⌖A + ⌖B –⌖C = 180°,则△ABC是:A. 钝角三角形B. 直角三角形C. 锐角三角形D. 长方形......(继续列举选择题,共50题)--------------------------------------------------第二部分:填空题(共10题,每小题4分,共40分)请将正确答案填写在答题卡上。
1. 已知⌖ABC = 35°,⌖CBD = 55°,则⌖BAD = _______°。
2. 一辆汽车从A地开往B地,全程600公里,第一小时以80km/h 的速度行驶,第二小时以60km/h的速度行驶,那么从开始到第二小时结束,汽车已经行驶了_______公里。
3. 若A:B = 4:5,B:C = 3:2,A + B + C = 33,则C的值为_______。
4. 若2x - 3 > 7,则x的取值范围为_______。
2022年中考必做真题:黑龙江哈尔滨中考数学试卷含解析

2022年中考必做真题:哈 尔 滨 市 初 中 升 学 考 试数 学 试 卷(含答案)考生须知:1. 本试卷满分为120分, 考试时间为120分钟。
2. 答题前, 考生先将自己的 ”姓名”、 “考号”、 “考场"、 ”座位号”在答题卡上填写清楚, 将“条形码”准确粘贴在条形码区域内。
3. 请按照题号顺序在答题卡各题目的 答题区域内作答, 超出答题区域书写的 答案无效;在草稿纸、 试题纸上答题无效。
4. 挑选题必须使用2B 铅笔填涂;非挑选题必须使用0. 5毫米黑色字迹的 签字笔书写, 字体工整、 笔迹清楚。
5. 保持卡面整洁, 不要折叠、 不要弄脏、 不要弄皱, 不准使用涂改液、 修正带、 刮纸刀。
第Ⅰ卷挑选题(共30分) (涂卡)一、 挑选题(每小题3分, 共计30分) 1. 75-的 绝对值是 ( ) . (A)75 (B) 57 (C) 75- (D) 57- 2.下列运算一定正确的 是 ( ) .(A) ()222n m n m +=+ (B) ()333n m mn = (C) ()523m m = (D) 22m m m =⋅3. 下列图形中既是 轴对称图形又是 中心对称图形的 是 ( ) .4. 六个大小相同的 正力体搭成的 几何体如图所示, 其俯视图是 ( ) .5. 如图, 点P 为⊙O 外一点, PA 为⊙0的 切线, A 为切点, PO 交⊙0于点B ,∠P=30°, OB=3, 则线段BP 的 长为( ) . (A) 3 (B) 33 (C) 6 (D) 96. 将抛物线y=-5x 2+l 向左平移1个单位长度, 再向下平移2个单位长度, 所得到的 抛物线为( ) . (A)y=-5(x+1) 2-1 (B) y=-5(x-1) 2-1 (C) y=-5(x+1) 2+3 (D) y=-5(x-1) 2+37. 方程3221+=x x 的 解为( ) . (A) x=-1 (B) x=0 (C) x=53(D) x=1 8. 如图, 在菱形ABCD 中, 对角线AC 、 BD 相交于点0, BD=8, tan ∠ABD=43, 则线段AB 的 长为( ) .(A) 7 (B) 27 (C) 5 (D) 109. 已知反比例函数xk y 32-=的 图象经过点(1, 1) , 则k 的 值为( ) .(A) -1 (B) 0 (C) 1 (D) 210. 如图, 在△ABC 中, 点D 在BC 边上, 连接AD, 点G 在线段AD 上, GE ∥BD,且交AB 于点E, GF ∥AC, 且交CD 于点F, 则下列结论一定正确的 是 ( ) .(A) ADAG AEAB =(B) AD DGCFDF =(C) BDEG ACFG = (D) DFCF BEAE =第Ⅱ卷非挑选题(共90分)二、 填空题(每小3分, 共计30分) 11. 将数920 000 000用科学记数法表示为. 12. 函数45y -=x x中, 自变量x 的 取值范围是 . 13. 把多项式x 3-25x 分解因式的 结果是 .14. 不等式组{1215325≥---x x x >的 解集为.15. 计算5110-56的 结果是 . 16. 抛物线y=2(x+2) 2+4的 顶点坐标为.17. 一枚质地均匀的 正方体骰子, 骰子的 六个面上分別刻有1到6的 点数, 张兵同学掷一次骰子, 骰子向上的 一面出现的 点数是 3的 倍数的 概率是 .18. 一个扇形的 圆心角为135°, 弧长为3πcm, 则此扇形的 面积是 .19. 在△ABC 中, AB=AC, ∠BAC=100°, 点D 在BC 边上, 连接AD, 若△ABD 为直角三角形, 则∠ADC 的度数为.20. 如图, 在平行四边形ABCD 中, 对角线AC 、 BD 相交于点0, AB=OB , 点E 、 点F 分别是 OA 、 OD 的 中点, 连接EF, ∠CEF=45°EM ⊥BC 于点M, EM 交BD 于点N, FN=10, 则线段BC 的 长为.三、 解答题(其中21~22题各7分, 23~24题备8分, 25-27题各10分, 共计60分 21(本题7分)先化简, 再求代数式429621-12-+-÷⎪⎭⎫ ⎝⎛-a a a a 的 值, 其中a=4cos30°+3tan45°. 22. (本题7分)如图, 方格纸中每个小正方形的 边长均为1, 线段AB 的 两个端点均在小正方形的 顶点上.(1) 在图中画出以线段AB 为一边的 矩形ABCD(不是 正方形) , 且点C 和点D 均在小正方形的 顶点上;(2) 在图中画出以线段AB 为一腰, 底边长为22的 等腰 三角形ABE, 点E 在小正方形的 顶点上. 连接CE, 请直接写出线段 CE 的 长. 23. (本题8分)为使中华传统文化教育更具有实效性, 军宁中学开展以“我最喜欢的 传统文化种类”为主题的 调查活动, 围绕“在诗词、 国画、 对联、 书法、 戏曲五种传统文化中, 你最喜欢哪一种?(必选且只选一种) ”的 问题, 在全校范围内随机抽取部分学生进行问卷调查, 将调查结果整理后绘制成如图所示的 不完整的 统计图. 请你根据图中提供的 信息回答下列问题:(1) 本次调查共抽取了几 名学生? (2) 通过计算补全条形统计图;(3) 若军宁中学共有960名学生, 请你估计该中学最喜欢国画的学生有几名?24. (本题8分)已知:在四边形ABCD中, 对角线AC、 BD相交于点E,且AC⊥BD, 作BF⊥CD垂足为点F, BF 与AC交于点G. ∠BGE=∠ADE.(1) 如图1, 求证:AD=CD;(2) 如图2, BH是△ABE的中线, 若AE=2DE, DE=EG, 在不添加任何辅助线的情况下, 请直接写出图2中四个三角形, 使写出的每个三角形的面积都等于△ADE面积的 2倍.25. (本题10分)春平中学要为学校科技活动小组提供实验器材, 计划购买A型, B型两种型号的放大镜, 若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1) 求每个A型放大镜和每个B型放大镜各几元?(2) 春平中学决定购买A型放大镜和B型放大镜共75个, 总费用不超过1180元, 那么最多可以购买几个A型放大镜?26. (本题10分)已知:⊙O 是 正方形ABCD 的 外接圆, 点E 在弧AB 上, 连接BE 、 DE, 点F 在弧AD 上, 连接BF, DF, BF 与DE 、 DA 分别交于点G 、 点H, 且DA 平分∠EDF.(1) 如图1, 求证:∠CBE=∠DHG;(2) 如图2, 在线段AH 上取一点N (点N 不与点A 、 点H 重合) , 连接BN 交DE 于点L, 过点H 作HK ∥BN 交DE 于点K, 过点E 作EP ⊥BN 垂足为点P , 当BP=HF 时, 求证:BE=HK;(3) 如图3, 在(2) 的 条件下, 当3HF=2DF 时, 延长EP 交⊙0于点R, 连接BR, 若△BER 的 面积与△DHK 的 面积的 差为47, 求线段BR 的 长.27. (本题10分)已知:在平面直角坐标系中, 点0为坐标原点, 点A 在x 轴的 负半轴上, 直线3273+-=x y 与x 轴、 y 轴分别交于B 、 C 两点, 四边形ABCD 为菱形. (1) 如图1, 求点A 的 坐标;(2) 如图2, 连接AC, 点P 为△ACD 内一点, 连接AP 、 BP, BP 与AC 交于点G, 且∠APB=60°, 点E 在线段AP 上, 点F 在线投BP 上, 且BF=AE. 连接AF 、 EF, 若∠AFE=30°, 求AF 2+EF 2的 值;(3) 如图3在(2) 的 条件下, 当PE=AE 时, 求点P 的 坐标.。
哈尔滨中考数学试卷及答案(word版)

哈尔滨市2021年初中升学考试数学试卷 一、选择题(每题3分,共计30分)1、-9的相反数是( )A.-9B.C.9D. 2、以下运算正确的选项是( )A. B.C. D.3、以下图形中,既是轴对称图形又是中心对称图形的是( )A B C D4、七个大小相同的正方体搭成的几何体如下图,其左视图是( )5、如图,P A 、PB 分别与⊙O 相切于A 、B 两点,点C 为⊙O 上一点,连接AC 、BC ,假设∠P =50º,那么∠ACB 的度数为( )A.60ºB. 75ºC.70ºD.65º6、抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为〔 〕A B.C. D.7、某商品经过连续两次降价,售价由原来的每件25元降到每件16元,那么平均每次降价的百分率为〔 〕A.20%B. 40%C. 18%D. 36%8、方程x x 3132=-的解为( ) A. B. C. D.9、点(-1,4)在反比例函数xk y =的图象上,那么以下各点在此函数图象上的是( ) A.〔4,-1〕 B.〔〕 C. 〔-4,-1〕 D.〔〕10、如图,□ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N , 那么以下式子一定正确的选项是( )A.DE NE BM AM =B.ADAN AB AM = C.BD BE ME BC = D.ME BC BE BD =二、填空题(每题3分,共计30分) 11、将6 260 000用科学记数法表示为 .12、函数323-=x x y 中,自变量x 的取值范围是 . 13、把多项式22396ab b a a +-分解因式的结果为 .14、不等式组⎪⎩⎪⎨⎧≥+≤-123023x x 的解集是 .15、二次函数()86x 2+--=y 的最大值是 . 16、如图,将△ABC 绕点C 逆时针旋转得到△A 'B 'C ,其中点A '与点A 是对应点,点B '与点B 是对应点,点B '落在边AC 上,连接A 'B ,假设∠ACB =45°,AC =3,BC =2,那么A'B 的长为 .17、一个扇形的弧长为π11cm ,半径为18 cm ,那么此扇形的圆心角为 度.18、在△ABC 中,∠A =50°,∠B =30°,点D 在AB 边上,连接CD ,假设△ACD 为直角三角形,那么∠BCD 的度数为 度.19、同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,那么这两枚骰子向上的一面出现点数相同的概率为 .20、如图,在四边形形ABCD 中,AB =AD ,BC =DC ,∠A =60°,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,假设AB =8,CE =6,那么BC 的长为 .三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分) 21、先化简,再求代数式24-4x 4-x x 2-x -2-x 2x 22-÷⎪⎪⎭⎫ ⎝⎛++x x 的值,其中︒+︒=30cos 254tan 4x .22、如图,图1和图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形的顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8.23、建国七十周年到来之际,海庆中学决定举办以“祖国在我心中〞为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取局部学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业〞五类书籍中,选取自己最想读的一种(必选且只选一种).学校将收集到的调查结果适当整理后绘制成如下图的不完整的统计图. 请根据图中所给的信息答复以下问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名?24、:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.25、寒梅中学为了丰富学生的课余生活,方案购置围棋和中国象棋供棋类兴趣小组活动使用.假设购置3副围棋和5副中国象棋需用98元;假设购置8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元?(2)寒梅中学决定购置围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购置多少副围棋?26、:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB⊥OE于点D,CH⊥MN 于点K,连接HN、HE,HE与MN交于点P.(1)如图1,假设AB与CH交于点F,求证:∠HFB=2∠EHN;(2)如图2,连接ME、OA,OA与ME交于点Q,假设OA⊥ME,∠EON=4∠CHN,求证:MP=AB;(3)如图3,在〔2〕的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN交于点R,连接RG,假设HK:ME=2:3,BC=,求RG的长.27、如图,在平面直角坐标系中,点O为坐标原点,直线与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S〔S≠0〕,求S与t之间的函数关系式〔不要求写出自变量t的取值范围〕;(3)在〔2〕的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,假设tan∠QMR=,求直线PM的解析式.。
2022年黑龙江省哈尔滨市中考数学试题及参考答案

哈尔滨市2022年初中升学考试数学试卷一、选择题(每小题3分,共计30分)1.16的相反数是( )A .16B .16-C .6D .6- 2.下列运算一定正确的是( )A .()22346a b a b =B .22434b b b +=C .()246a a = D .339a a a ⋅= 3.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.六个大小相同的正方体搭成的几何体如图所示,其左视图是( )A .B .C .D . 5.抛物线22(9)3y x =+-的顶点坐标是( )A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-6.方程233x x=-的解为( ) A .3x = B .9x =- C .9x = D .3x =-7.如图,,AD BC 是O 的直径,点P 在BC 的延长线上,PA 与O 相切于点A ,连接BD ,若40P ∠=︒,则ADB ∠的度数为( )A .65︒B .60︒C .50︒D .25︒8.某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x ,根据随意,所列方程正确的是( )A .()2150196x -=B .150(1)96x -=C .2150(1)96x -= D .150(12)96x -=9.如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .6 10.一辆汽车油箱中剩余的油量(L)y 与已行驶的路程(km)x 的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L 时,那么该汽车已行驶的路程为( )A .150kmB .165kmC .125kmD .350km第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量效有253000兆瓦,用科学记数法表示为___________兆瓦.12.在函数53x y x =+中,自变量x 的取值范围是___________. 131333___________. 14.把多项式29xy x -分解因式的结果是___________.15.不等式组340,421x x +≥⎧⎨-<-⎩的解集是___________.16.已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________. 17.在ABC △中,AD 为边BC 上的高,30ABC ∠=︒,20CAD ∠=︒,则BAC ∠是___________度.18.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是___________.19.一个扇形的面积为27πcm ,半径为6cm ,则此扇形的圆心角是___________度.20.如图,菱形ABCD 的对角线,AC BD 相交于点O ,点E 在OB 上,连接AE ,点F 为CD 的中点,连接OF ,若AE BE =,3OE =,4OA =,则线段OF 的长为___________.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(本题7分) 先化简,再求代数式21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭的值,其中2cos451x =︒+. 22.(本题7分)如图,方格纸中每个小正方形的边长均为1,ABC △的顶点和线段EF 的端点均在小正方形的顶点上.(1)在方格纸中面出ADC △,使ADC △与ABC △关于直线AC 对称(点D 在小正方形的顶点上);(2)在方格纸中画出以线段EF 为一边的平行四边形EFGH (点G ,点H 均在小正方形的顶点上),且平行四边形EFGH 的面积为4.连接DH ,请直接写出线段DH 的长.23.(本题8分)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.24.(本题8分)已知矩形ABCD 的对角线,AC BD 相交于点O ,点E 是边AD 上一点,连接,,BE CE OE ,且BE CE =.(1)如图1,求证:BEO CEO △≌△;(2)如图2,设BE 与AC 相交于点F ,CE 与BD 相交于点H ,过点D 作AC 的平行线交BE 的延长线于点G ,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(AEF △除外),使写出的每个三角形的面积都与AEF △的面积相等.25.(本题10分)绍云中学计划为绘画小组购买某种品牌的A 、B 两种型号的颜料,若购买1盒A 种型号的颜料和2盒B 种型号的颜料需用56元;若购买2盒A 种型号的颜料和1盒B 种型号的颜料需用64元.(1)求每盒A 种型号的颜料和每盒B 种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A 种型号的颜料?26.(本题10分)已知CH 是O 的直径,点A ,点B 是O 上的两个点,连接,OA OB ,点D ,点E 分别是半径,OA OB 的中点,连接,,CD CE BH ,且2AOC CHB ∠=∠.(1)如图1,求证:ODC OEC ∠=∠;(2)如图2,延长CE 交BH 于点F ,若CD OA ⊥,求证:FC FH =;(3)如图3,在(2)的条件下,点G 是BH 上一点,连接,,,AG BG HG OF ,若:5:3AG BG =,2HG =,求OF 的长.27.(本题10分)在平面直角坐标系中,点O 为坐标原点,抛物线2y ax b =+经过点521,28A ⎛⎫ ⎪⎝⎭,点13,28B ⎛⎫- ⎪⎝⎭,与y 轴交于点C .(1)求a ,b 的值;(2)如图1,点D 在该抛物线上,点D 的横坐标为2-,过点D 向y 轴作垂线,垂足为点E .点P 为y 轴负半轴上的一个动点,连接DP 、设点P 的纵坐标为t ,DEP △的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)如图2,在(2)的条件下,连接OA ,点F 在OA 上,过点F 向y 轴作垂线,垂足为点H ,连接DF 交y 轴于点G ,点G 为DF 的中点,过点A 作y 轴的平行线与过点P 所作的x 轴的平行线相交于点N ,连接CN ,PB ,延长PB 交AN 于点M ,点R 在PM 上,连接RN ,若35CP GE =,2PMN PDE CNR ∠+∠=∠,求直线RN 的解析式.哈尔滨市2022年初中升学考试数学试题参考答案一、选择题(每小题3分,共计30分)1.B 2.A 3.B 4.D 5.B 6.C 7.A 8.C 9.C 10.A二、填空题(每小题3分,共计30分)11.52.5310⨯ 12.35x ≠-13.3 14.(3)(3)x y y +- 15.52x > 16.32- 17.40或80 18.1219.70 20.5三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅- 11x =- ∵22121x =⨯+=+ ∴原式22112===+- 22.(1)如图(2)如图 5DH =23.解:(1)2025%80÷=(名)∴在这次调查中,一共抽取了80名学生.(2)8016242020---=(名)补全统计图如图(3)24160048080⨯=(名) ∴估计该中学最喜欢球类的学生共有480名.24.(1)证明:∵四边形ABCD 是矩形∴AC 与BD 相等且互相平分∴OB OC =∵BE CE =,OE OE =∴BEO CEO △≌△(2)DEG △ DEH △ BFO △ CHO △25.(1)解:设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元. 根据题意得256264x y x y +=⎧⎨+=⎩解得2416x y =⎧⎨=⎩ ∴每盒A 种型号的颜料24元,每盒B 种型号的颜料16元.(2)解:设该中学可以购买a 盒A 种型号的颜料根据题意得2416(200)3920a a +-≤解得90a ≤∴该中学最多可以购买90盒A 种型号的颜料.26.(1)证明:如图1.∵点D ,点E 分别是半径,OA OB 的中点∴12OD OA =,12OE OB = ∵OA OB =,∴OD OE =∵2BOC CHB ∠=∠,2AOC CHB ∠=∠∴AOC BOC ∠=∠∵OC OC =∴COD COE △∽△,∴CDO CEO ∠=∠(2)证明:如图2.∵CD OA ⊥,∴90CDO ∠=︒由(1)得90CEO CDO ∠=∠=︒,∴1sin 2OE OCE OC ∠== ∴30OCE ∠=︒,∴9060COE OCE ∠=︒-∠=︒ ∵11603022H BOC ︒∠=∠=⨯=︒ ∴H ECO ∠=∠,∴FC FH =(3)解:如图3.∵CO OH =,∴OF CH ⊥ ∴90FOH ∠=︒连接AH .∵60AOC BOC ∠=∠=︒∴120AOH BOH ∠=∠=︒,∴AH BH =,60AGH ∠=︒ ∵:5:3AG BC =设5AG x =,∴3BG x =在AG 上取点M ,使得AM BC =,连接MH∵HAM HBC ∠=∠,∴HAM HBG △≌△∴MH GH =,∴MHG △为等边三角形∴2MG HG == ∵AG AM MG =+,∴532x x =+∴1x =,∴5AG =3BG AB ==,过点H 作HN MG ⊥于点N112122MN GM ==⨯=,sin 603HN HG =⋅︒= ∴4AN MN AM =+=,∴2219HB HA NA HN ==+=∵90FOH ∠=︒,30OHF ∠=︒,∴60OFH ∠=︒∵OB OH =,∴30BHO OBH ∠=∠=︒,∴30FOB OBF ∠=∠=︒ ∴OF BF =,在RT OFH △中,30OHF ∠=︒,∴2HF OF = ∴319HB BF HF OF =+==193OF =. 27.解:(1)∵抛物线2y a b =+经过521,28A ⎛⎫ ⎪⎝⎭,13,28B ⎛⎫- ⎪⎝⎭∴2125843184a b a b ⎧=+⎪⎪⎨⎪-=+⎪⎩解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩ (2)如图1,由(1)得21122y x =-,点D 的横坐标为2- ∴点D 纵坐标为32∴32,2D ⎛⎫- ⎪⎝⎭,∵DE y ⊥轴∴2DE =,30,2E ⎛⎫ ⎪⎝⎭∵点P 的纵坐标为t , ∴32PE t =- ∴113322222S DE PE t t ⎛⎫=⋅=⨯⨯-=-+ ⎪⎝⎭(3)如图2,∵21122y x =-,当0x =时,12y =- ∴10,2C ⎛⎫- ⎪⎝⎭,∴12OC = ∵FH y ⊥轴,DE y ⊥轴∴90FHG DEG ∠=∠=︒∵点G 为DF 的中点,∴DG FG =∵HGF EGD ∠=∠,∴FHG DEG △≌△ ∴HF ED =,12HG EG HE ==,∴2HF =.。
2024年中考数学第二次模拟考试+解析(黑龙江哈尔滨卷)

2024年中考第二次模拟考试(黑龙江哈尔滨卷) 数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.下列实数中,最大的是( )A .13−B C .0 D .|3|−【答案】D【分析】本题考查了实数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.先化简绝对值,然后把选项中的4个数按从小到大排列,即可得出最大的数. 【详解】解:∵33−=,∴1033−<<<−,∴最大的数是|3|−. 故选:D .2.下列运算结果正确的是( ) A .3515= B .()323628xy x y −=−C .1x yy x−=− D .()222x y x y −=−【答案】B【分析】本题考查了有理数的乘方,积的乘方,分式的性质,完全平方公式;根据以上知识逐项分析判断,即可求解.【详解】解:A. 35125=,故该选项不正确,不符合题意; B. ()323628xy x y −=−,故该选项正确,符合题意;C.1x y yx x−=−,故该选项不正确,不符合题意; D. ()2222x y x xy y −=−+,故该选项不正确,不符合题意;故选:B.3.下列图形既是轴对称图形,又是正方体的平面展开图的是()A.B.C.D.【答案】B【分析】本题考查了几何体的展开图和轴对称的性质等知识点,由正方体的展开图和轴对称的性质的特征解题即可,熟练掌握几何体的展开图和轴对称的性质是解决此题的关键.【详解】A、是正方体的展开图但不是轴对称图形,不符合题意;B、是正方体的展开图也是轴对称图形,符合题意;C、是轴对称图形但不是正方体的展开图,不符合题意;D、是正方体的展开图但不是轴对称图形,不符合题意;故选:B.4.2023年长沙国际马拉松在芙蓉中路(贺龙体育中心东广场旁)起跑,来自国内外的26000名跑友汇成一片红色的海洋驰聘在长马赛道上,他们用脚步丈量星城,感受一江两岸、山水洲城的魅力,图①是此次全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台从正面看到的平面图形是()A.B.C.D.【答案】A【分析】本题考查主视图,掌握三视图的特征是解题关键.主视图是从几何体正面观察到的视图.【详解】解:领奖台从正面看,是由三个长方形组成的.三个长方形,右边最低,中间最高,故选:A.5.如图,反比例函数kyx=(0k≠,且k为常数)的图象与直线y ax=(0a≠,且a为常数)交于()2,3A−、B两点,则点B的坐标为()A .()3,2−B .()3,2−C .()2,3−D .()2,3−【答案】D 【分析】本题主要考查了一次函数与反比例函数综合,根据反比例函数的对称性可知点A 和点B 关于原点对称,据此求解即可.【详解】解:∵反比例函数ky x=(0k ≠,且k 为常数)的图象与直线y ax =(0a ≠,且a 为常数)交于()2,3A −、B 两点,∴由反比例函数的对称性可知,点B 的坐标为()2,3−, 故选:D . 6.关于x 的方程:11ax =+的解是负数,则a 的取值范围是( ) A .1a < B .1a <0≠ C .1a ≤ D .1a ≤且0a ≠【答案】B【分析】方程去分母化为整式方程,求得1x a =−,再根据方程的解是负数,可得10a −<,且0a ≠,即可求解.【详解】解:去分母得,1a x =+, ∴1x a =−,∵方程的解是负数,且10x +≠, ∴10a −<,且0a ≠,∴a 的取值范围是1a <且0a ≠. 故选:B .【点睛】本题考查了分式方程的求解和解不等式等知识,正确理解题意、熟练掌握分式方程的解法是根据.7.电影《长津湖》上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达18亿元,将增长率记作x ,则方程可以列为( ) A .222218++=x x B .()22118x +=C .()2118x += D .()()22212118x x ++++=【答案】D 【分析】本题考查从实际问题中抽象出一元二次方程,解题的关键在于能够表示出第二玩耍和第三天的票房,设增长率为x ,则第二天的票房为()21x +,第三天的票房为()221x +,然后根据三天后累计票房收入达达18亿元列出方程即可.【详解】解:设增长率为x ,则第二天的票房为()21x +,第三天的票房为()221x +,由题可得:()()22212118x x ++++=, 故选:D .8.如图,菱形ABCD 的对角线交于点O ,AE BC ⊥于点E ,若3cos 5ABC ∠=,10AB =,则AC 的长为( )A .12B .10C .D .【答案】C 【分析】本题考查了菱形的性质,解直角三角形,解直角三角形求出BE 是解决本题的关键. 由菱形的性质得出10AB BC ==,根据余弦求出6BE =,再根据勾股定理求解即可. 【详解】解:∵四边形ABCD 是菱形, ∴10AB BC ==, ∵AE BC ⊥, ∴3cos 5BE ABC AB∠==, ∴6BE =,∴4CE BC BE =−=,∴8AE ==,∴AC = 故选:C .9.如图,AC 是O 的直径,PA 切O 于点A ,PB 切O 于点B ,且60P ∠=︒,4PA =,则点O 到弦AB 的距离为( )A .2 BC D .【答案】B【分析】根据切线长定理结合已知条件得出PAB 为等边三角形,得出4AB PA ==,60PAC ∠=︒,求出906030BAC ∠=︒−︒=︒,过点O 作OH AB ⊥,垂足为H ,根据垂径定理和tan OH AH CAB =⋅∠即可求出结果.【详解】解:∵PA ,PC 分别与O 相切于点A ,点C , ∴PA PB =, ∵60P ∠=︒,∴PAC △为等边三角形, ∴4AB PA ==,60PAC ∠=︒, ∵PA 为O 的切线, ∴OA PA ⊥, ∴90PAO ∠=︒,∴906030BAC ∠=︒−︒=︒, 过点O 作OH AB ⊥,垂足为H ,∴122AH AC ==,∴tan OH AH CAB =⋅∠= 故选:B .【点睛】本题主要考查了切线的性质,切线长定理,等边三角形的判定和性质,直径所对的圆周角为直角,直角三角形的性质,解直角三角形,解题的关键是熟练掌握相关的性质和定理.10.如图1,矩形ABCD 中,点E 为AB 的中点,动点P 从点A 出发,沿折线AD DC −匀速运动,到达点C 时停止运动,连接AP 、PE ,设AP 为x ,PE 为y ,且y 关于x 的函数图象如图2所示,则AP 的最大值为( )A B .5C D .【答案】B【分析】本题考查动点问题与函数图象,矩形的性质,勾股定理,利用数形结合的思想是解题关键.在函数图象中找到当0x =时,2y =,得出2y PE AE ===,进而得到4AB =,再利用图象的拐点得出3AD =,由图象知P 到达C 时得最长,由勾股定理即可求出其值.【详解】解:由图知,当0x =时,2y =,即当P 在A 点时2y PE AE ===, 点E 为AB 的中点,,∴24AB AE ==,当P 在AD 上运动时,PE 慢慢增大,P 到D 点时,从图中的拐点可知,此时y PE DE ===∴3AD ==,当P 在DC 上运动时,PE 先减小再增大,直到P 到达C 点时,此时AP AC ==4DC AB ==,∴5AP =,故选:B .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)11.中国空间站未来将单独发射一个光学舱,内设巡天望远镜,其分辨率与哈勃相当,视场角是哈勃的300多倍.在轨10年,可以对40%以上的天区,约17500平方度天区进行观测.将17500用科学记数表示为 (精确到1000). 【答案】41.810⨯【分析】先把百位上的数字进行四舍五入,然后用科学记数法表示即可. 【详解】解:41750018000 1.810≈=⨯, 故答案为:41.810⨯.【点睛】本题考查了近似数和科学记数法:经过四舍五入得到的数为近似数.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12x 的取值范围是 .【答案】21x −<≤/12x ≥>−【分析】本题考查了二次根式有意义的条件,分式有意义的条件,解一元一次不等式组,熟练掌握解一元一次不等式的方法是解题的关键.根据二次根式有意义的条件,分式有意义的条件列不等式组求解即可得出答案.∴1020x x −≥⎧⎨+>⎩ ∴21x −<≤,故答案为:21x −<≤. 13.如图,在同一平面内,已知AB CD ,直线EF 平分GEB ∠,过点D 作DH EF ⊥于点H ,若70GEB ∠=︒,则CDH ∠= .【答案】55︒/55度【分析】本题考查平行线的性质,与角平分线有关的计算,根据对顶角,结合同旁内角互补,求出CDE ∠的度数,根据垂直的定义结合角平分线的定义和对顶角相等,求出HDE ∠的度数,再用CDE HDE ∠−∠,计算即可.【详解】解:∵直线EF 平分GEB ∠,70GEB ∠=︒, ∴135,702HED GEF GEB AED GEB ∠=∠=∠=︒∠=∠=︒, ∵ABCD ,∴180110CDE AED ∠=︒−∠=︒, ∵DH EF ⊥, ∴90DHE ∠=︒,∴9055HDE HED ∠=︒−∠=︒, ∴55CDH CDE HDE ∠=∠−∠=︒; 故答案为:55︒.14.代数式22222x y xy x +++的最小值是 . 【答案】2−【分析】本题考查了完全平方公式和非负数性质的应用能力,通过将原式变形为()()22112x y y +++−−,再运用非负数的性质进行求解,关键是能对原式进行准确变形配方. 【详解】解:22222x y xy x +++2222221212x xy x y y y y =++++++−+−()()()2222121212x x y y y y y =++++++−+− ()()221122x y y =+++−−≥−, 故答案为:2−.15.已知不等式组()31212x x x a +⎧−>⎪⎨⎪<⎩,有四个整数解,则a 的取值范围为 .【答案】910a <≤【分析】本题考查根据不等式组的解集的情况,求出参数的范围,先求出不等式组的解集,根据解集得到关于a 的不等式组,求解即可.【详解】解:解()31212x x x a +⎧−>⎪⎨⎪<⎩,得:5x x a >⎧⎨<⎩,∵不等式组有四个整数解, ∴5x a <<,∴不等式组的整数解为6,7,8,9, ∴910a <≤;故答案为:910a <≤.16.如图,B D ∠=∠,AE BC ⊥,=90ACD ∠︒,且6412AB AC AD ===,,,则BE = .【答案】【分析】本题主要考查了相似三角形的性质与判定,勾股定理,先利用勾股定理求出CD =AEB ACD ∽,得到BE ABCD AD =612=,则BE = 【详解】解:在Rt ADC中,由勾股定理得CD = ∵AE BC ⊥,∴90AEB ACD ∠=∠=︒, 又∵B D ∠=∠, ∴AEB ACD ∽, ∴BE ABCD AD =612=,∴BE =故答案为:17.甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .则a ,b 能使关于x 的一元二次方程20x bx a ++=有两个不相等的实数根的概率为 . 【答案】59【分析】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件.首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求解. 【详解】解:画树状图如下:关于x 的一元二次方程20x bx a ++=有两个不相等的实数根,∴△240b a =−>,24b a ∴<,由图可知,共有9种等可能的结果,其中能使关于x 的一元二次方程20x bx a ++=有两个不相等的实数根的结果有5种,∴能使关于x 的一元二次方程20x bx a ++=有两个不相等的实数根的概率为59,故答案为: 59.180.618法就应用了黄金分割数.设a =b =1ab =,记11111S a b =+++,2221111S a b =+++,3331111S a b =+++,…,则1232024S S S S +++⋅⋅⋅= .【答案】2024【分析】本题考查分式的规律计算,正确掌握异分母分式的加减计算法则及运用规律解决问题是解题的关键.根据异分母分式加法法则分别求出1S 、2S 、 3S ⋯ 、n S 的值,发现结果均为1,依此解答即可. 【详解】解:()()11111222111111112b a a b a b a bS a b a b a b ab a b a b+++++++++=+=====++++++++++++,()()2222222222222222222221111222111111211b a a b a b a b S a b a b a b a b a b a b +++++++++=+=====++++++++++++,()()3333333333333333333331111222111111211b a a b a b a b S a b a b a b a b a b a b +++++++++=+=====++++++++++++,()()1111222111111211n n n n n n n nn n n n n n n n n n n n nb a a b a b a b S a b a b a b a b a b a b +++++++++=+=====++++++++++++,∴12320241112024S S S S ++++⋅⋅==⋅=+.故答案为:202419.如图,F 是矩形ABCD 内一点,AF BF =,连接DF 并延长交BC 于点G ,且点C 与AB 的中点E 恰好关于直线DG 对称,若6AD =,则AB 的长为 .【答案】【分析】连接EF 、EG 、EC ,由等腰三角形的性质得出EF ⊥AB ,得出EF 是梯形ABGD 的中位线,得出1()2=+EF AD BG ,设BG =x ,则CG =6-x ,1(6)2=+EF x ,证出EF =CG ,得出1(9)92+=−x x ,解得x =3,则BG =3,EG =CG =6,由勾股定理求出BE ,即可得出答案. 【详解】解:连接EF 、EG 、EC ,如图所示: ∵四边形ABCD 是矩形,∴BC =AD =6,AD ∥BC ,∠BAD =∠ABC =90°, ∴AB ⊥AD ,∵AF =BF ,点E 是AB 的中点, ∴EF ⊥AB , ∴EF ∥AD ∥BC ,∴EF 是梯形ABGD 的中位线,∠EFG =∠CGF , ∴1.()2=+EF AD BG设BG =x ,则CG =6-x ,1(6)2=+EF x ; ∵点C 与AB 的中点E 关于直线DG 对称, ∴EG =CG ,∠CGF =∠EGF , ∴∠EFG =∠EGF , ∴EG =EF , ∴EF =CG , ∴1(6)62+=−x x 解得:x =2,∴BG =2,EG =CG =4,∴===BE∴AB =2BE =;故答案为:、【点睛】本题考查了矩形的性质、等腰三角形的判定与性质、梯形中位线定理、轴对称的性质、勾股定理等知识;熟练掌握矩形的性质和等腰三角形的判定与性质是解题的关键.20.如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆分别交AB ,AC 边于D ,E ,再以点C 为圆心,CD 长为半径作圆交BC 边于F ,连接E ,F ,那么图中阴影部分的面积为: .3124π− 【分析】本题考查了扇形的面积的计算,等边三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.过A 作AM BC ⊥于M ,EN BC ⊥于N ,根据等边三角形的性质和解直角三角形求得AM 求得EN =根据阴影部分的面积()ABCCEFBCDADE DCF SS SSS =−−−−扇形扇形即可求解.【详解】解:过A 作AM BC ⊥于M ,EN BC ⊥于N ,∵等边三角形ABC 的边长为2, ∴60BAC B ACB ∠=∠=∠=︒,∴sin 2AM ABM AB =∠⋅=== ∵1AD AE ==,∴1AD BD ==,1AE CE ==, ∴CD AB ⊥, ∵等边三角形ABC ,∴CD AM ==∴sin 1EN ACN CE =∠⋅==∴图中阴影部分的面积()ABCCEFBCDADE DCF SS SSS =−−−−扇形扇形2230π1601111222360222360π⎡⎤⨯⎢⎥=⨯−⨯⨯⎢⎥⎢⎥⎣⎦3124π=−,3124π−. 三、解答题(本大题共7个小题,共60分.解答应写出文字说明,证明过程或演算步骤) 21.(本小题满分7分)先化简,再求值:2222212b a ab a b a b a ab b−⎛⎫−÷ ⎪−−−+⎝⎭,其中tan45a =︒,12b −=.解:2222212b a ab a b a b a ab b−⎛⎫−÷ ⎪−−−+⎝⎭ ()()()()2a b a b ba b a b a a b −+−=⋅+−− 1a b=+, .................................................................................................................................................... 3分 ∵1tan45a =︒=,1122b −==, ................................................................................................................ 5分 ∴原式121312==+. .................................................................................................................................. 7分22.(本小题满分7分)如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A ,()3,4B ,()4,2C .(1)在图中画出ABC 关于x 轴对称的111A B C △;(2)将111A B C △先向左平移4个单位长度,再向上平移2个单位长度,画出平移后的222A B C △; (3)在ABC 中有一点(),P m n ,则经过以上两次变换后点P 的对应点2P 的坐标为______.(1)解:如图,111A B C △即为所求; ...................................................................................................... 2分 (2)如图,222A B C △即为所求; .............................................................................................................. 4分(3)点(),P m n 关于x 轴的对称点为(),m n −,再将(),m n −先向左平移4个单位长度,再向上平移2个单位长度,得到:()4,2m n −−+; 故()24,2P m n −−+;故答案为:()4,2m n −−+. ...................................................................................................................... 7分 23.(本小题满分8分)在全国节能宣传周期间,某校组织开展主题为“节能降碳,你我同行”的社会实践活动.某组同学在甲、乙两个小区各随机抽取50户居民,获得了他们1月份的用电量x (单位:kW ·h ),分别将两个小区居民用电量的数据分成5组:050x ≤≤,50100x <≤,100150x <≤,150200x <≤,200250x <≤,并对数据进行整理和分析,下面给出部分信息:信息一:信息二:乙小区居民1月份用电量在100150x <≤这一组的数据是 106 118 120 122 123 125 125 127 128 130 130 131 133 133 133 134 137 140 142 143 149信息三:甲、乙两个小区居民1月份用电量的平均数、中位数如下.根据以上信息,解答下列问题:(1)填空:=a __________,b =___________.(2)在扇形统计图中,“50100x <≤”所在扇形圆心角的度数为__________°.(3)若甲小区共有1000户居民,乙小区共有800户居民,试估计这两个小区1月份用电量大于150 kW ·h 的总户数.(4)请选择―种统计量分析这两个小区1月份的用电情况,并提出一条能够节能降碳的建议. 【详解】(1)503216416a =−−−−=.根据题意可知乙小区第25,26个数在100150x <≤之间,这两个数是125,125,则1251251252b +==. 故答案为:16,125;................................................................................................................................ 2分 (2)根据题意可知10040%-%-16%-6%-8%=30%, 所以“50100x <≤”所在扇形圆心角的度数为36030=108︒⨯︒%.故答案为:108︒; ..................................................................................................................................... 4分 (3)甲小区用电量大于150kw h ⋅的百分比为22%,乙小区用电量大于150kw h ⋅的百分比为6+4=2050%,所以这两个小区1月份用电量大于150kw h ⋅的总户数为100022=⨯⨯%+80020%380(户); ....................... 6分 (4)拔掉家中一切不用的电源.(答案不唯一,合理即可). ................................................................ 8分 24.(本小题满分8分)某公司准备购进A ,B 两种原料生产甲、乙两种产品,已知1千克A 原料比1千克B 原料少40元,且购进A 原料2千克和B 原料3千克共需420元,生产1件甲产品和1件乙产品所需A ,B 原料数量及每件产品可获得的利润如表:(1)求A ,B 两种原料每千克各多少元?(2)现该公司购进A 原料360千克,B 原料290千克,计划生产甲、乙两种产品共50件,请利用函数的性质说明哪种生产方案获得的总利润最大?最大利润是多少? 【详解】(1)设A 种原料每千克是x 元,B 种原料每千克是y 元,依题意有: .......................................................... 1分4023420y x x y −=⎧⎨+=⎩,解得60100x y =⎧⎨=⎩. .............................................................................................................. 3分 故A 种原料每千克是60元,B 种原料每千克是100元; ......................................................................... 4分 (2)设生产甲产品m 件,则生产乙产品()50m −件,依题意有:.................................................................. 5分 ()()945036031050290m m m m ⎧+−≤⎪⎨+−≤⎪⎩, 解得3032m ≤≤,...................................................................................................................................... 7分 设利润是a 元,则利润为:()70012005050060000a m m m =+−=−+,5000−<,30m ∴=时,即生产甲产品30件,生产乙产品20件时,获得的总利润最大,最大利润是45000元.8分25.(本小题满分10分)如图,在矩形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,点G 为EF 中点,连接BD 、DG CG BG ,,.(1)试判断ECF 的形状,并说明理由; (2)求BDG ∠的度数.【详解】(1)解:ECF 是等腰直角三角形; ........................................................................................ 1分 理由如下:四边形ABCD 是矩形,∴AD BC ∥,90DAB ABC BCD ∠∠∠===︒,DAE BEA ∠∠∴=,AE 平分BAD ∠,45DAE BAE ∠∠∴==︒,45BEA BAE ∠∠∴==︒, ............................................ 2分45CEF ∠∴=︒,AB BE =,904545F ∠∴=︒−︒=︒, EC FC ∴=,又90ECF ∠=︒,ECF ∴是等腰直角三角形; .................................................................................................................... 4分(2)四边形ABCD 是矩形,AB CD ∴=,AB BE =,BE CD ∴=,EC FC =,90ECF ∠=︒,12CG EF EG ∴==,1452ECG ECF ∠∠==︒,9045135DCG ∠∴=︒+︒=︒, ................................................................................................................... 6分18045135BEG ∠=︒−︒=︒,DCG BEG ∠∠∴=,在DCG 和BEG 中,CD BEDCG BEG CG EG =⎧⎪∠=∠⎨⎪=⎩,()SAS DCG BEG ∴≌, ........................................................................................................................... 8分 DG BG ∴=,DGC BGE ∠∠=, 90BGD EGC ∠∠∴==︒,又DG BG =,45BDG ∠∴=︒. ..................................................................................................................................... 10分26.(本小题满分10分)如图,AB ,CD 是O 的两条直径,且AB CD ⊥,点E 是BD 上一动点(不与点B ,D 重合),连接DE 并延长交AB 的延长线于点F ,点P 在AF 上,且PEF DCE ∠=∠,连接AE ,CE 分别交OD ,OB 于点M ,N ,连接AC ,设O 的半径为r .(1)求证:PE 是O 的切线;(2)当15DCE ∠=︒时,求证:2AM ME =;(3)在点E 的移动过程中,判断AN CM ⋅是否为定值,若是,求出该定值;若不是,请说明理由. 【详解】(1)证明:连接OE ,∵CD 是O 的直径,∴90CED ∠=︒,则90CEF CEP PEF ∠=∠+∠=︒, ∵OC OE =,∴DCE OEC ∠=∠, .................................................................................................................................. 1分 又∵PEF DCE ∠=∠, ∴PEF OEC ∠=∠,∴90CEP PEF CEP OEC OEP ∠+∠=∠+∠=∠=︒, ∴OE PE ⊥,∴PE 是O 的切线; ................................................................................................................................ 3分 (2)解:∵15DCE ∠=︒, ∴30DOE ∠=︒,∵AB CD ⊥,则90AOD ∠=︒, ∴120AOE ∠=︒, ∵OA OE =,∴30OAE OEA ∠=∠=︒, .............................................................................................................................. 5分 则2AM OM =, 又∵30DOE OEA ∠=︒=∠, ∴OM ME =,∴2AM ME =; ......................................................................................................................................... 6分(3)AN CM ⋅是定值,222AN CM AC r ⋅==,理由如下: 连接AD ,∵AB CD ⊥,且AB 、CD 是O 的直径, ∴45BAC ACD ADC ∠=∠=∠=︒,则45ACN ACD DCE DCE ∠=∠+∠=︒+∠,45AMC ADC DAE DAE ∠=∠+∠=︒+∠, ....................................... 7分 ∵DCE DAE ∠=∠, ∴ACN AMC ∠=∠, 又∵45ACM CAN ∠=∠=︒,∴ACM NAC △∽△, ................................................................................................................................... 8分 ∴AC CMAN AC=,则2AN CM AC ⋅=, ∵OA OC r ==,∴AC ,则222AC r =,即:222AN CM AC r ⋅==. ........................................................................................................................ 10分 27.(本小题满分10分)在平面直角坐标系,抛物线2y ax bx c =++与x 轴分别交于A ,B 两点(A 在B 左侧),与y 轴交于点03C (,),已知顶点M 的坐标为14(,).(1)求抛物线的解析式并求出点A ,B 的坐标;(2)如图1,P ,Q 是抛物线对称轴上两点(点P 在点Q 上方),且1PQ =,当AQ QP PC ++取最小值时,求点P 的坐标;(3)如图2,点D 是第四象限内抛物线上一动点,过点D 作DF x ⊥轴于F ,ABD △的外接圆与DF 相交于点E .问:线段EF 的长是否为定值?如果是,求出这个定值;如果不是,说明理由.【详解】(1)抛物线与y 轴交于点03C (,),已知顶点M 的坐标为(1,4).∴设抛物线解析式为2(1)4y a x =−+, ..................................................................................................... 1分 将(0,3)C 代入,得:23(01)4a =−+,解得:1a =−,.......................................................................................................................................... 2分 22(1)423y x x x ∴=−−+=−++,令0y =,得2230x x −++=,解得:121,3x x =−=,()()1,0,3,0A B ∴−,∴该抛物线解析式为223y x x =−++,()()1,0,3,0A B −. ........................................................................ 3分 (2)如图1,将点C 沿y 轴向下平移1个单位得(0,2)C ',连接BC '交抛物线对称轴1x =于点Q ', 过点C 作CP BC ''∥,交对称轴于点P ',连接AQ ',A 、B 关于直线1x =对称,AQ BQ ''∴=,CP BC ''∥,P Q CC '''∥,∴四边形CC Q P '''是平行四边形,CP C Q '''∴=,1Q P CC '''==,()0,2C ∴',此时,C '、Q '、B 三点共线,BQ C Q '+''的值最小, ............................................................................ 4分由于1PQ =,即此时BQ C Q P Q ''++'''的值最小,设直线BC '的函数关系式为y mx n =+,将B C 、两点坐标代入得:230n m n =⎧⎨+=⎩,解得:232m n ⎧=−⎪⎨⎪=⎩, ∴直线BC '的函数关系式为223y x =−+, ............................................................................................... 5分 二次函数对称轴为1312x −+==,点Q '在对称轴上, 241233y ∴=−⨯+=, 41,3Q ⎛⎫∴ ⎪⎝⎭', 71,3P ⎛⎫∴ ⎪⎝⎭'; ............................................................................................................................................... 6分 (3)线段EF 的长为定值1.如图2,连接BE ,设2(,23)D t t t −++,且3t >,EF x ⊥轴,22(23)23DF t t t t ∴=−−++=−−,(,0)F t ,3BF OF OB t ∴=−=−,(1)1AF t t =−−=+, ............................................................................................... 7分 四边形ABED 是圆内接四边形,180DAF BED ∴∠+∠=︒,180BEF BED ∠+∠=︒,DAF BEF ∴∠=∠, 90AFD EFB ∠=∠=︒, AFD EFB ∴∽, ......................................................................................................................................... 9分 ∴EF AF BF DF =, ∴21323EF t t t t +=−−−, 222(1)(3)2312323t t t t EF t t t t +−−−∴===−−−−, ∴线段EF 的长为定值1. ....................................................................................................................... 10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年哈尔滨市中考数学试题、答案
考生须知:
1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
5.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷选择题(共30分)(涂卡)
一、选择题(每小题3分,共计30分) 1.7
5
-
的绝对值是( ). (A)
75 (B)57 (C)75- (D)5
7- 2.下列运算一定正确的是( ).
(A)()222
n m n m +=+ (B)()3
33
n m mn = (C)()
52
3
m m = (D)22m m m =⋅
3.下列图形中既是轴对称图形又是中心对称图形的是( ).
4.六个大小相同的正力体搭成的几何体如图所示,其俯视图是( ).
5. 如图,点P 为⊙O 外一点,PA 为⊙0的切线,A 为切点,PO 交⊙0于点B ,
∠P=30°,OB=3,则线段BP 的长为( ). (A)3 (B)33 (C)6 (D)9
6.将抛物线y=-5x 2
+l 向左平移1个单位长度,再向下平移2个单位长度, 所得到的抛物线为( ). (A)
y=-5(x+1)2-1 (B)y=-5(x-1)2-1 (C)y=-5(x+1)2+3 (D)y=-5(x-1)2+3
7.方程
3
2
21+=
x x 的解为( ). (A)x=-1 (B)x=0 (C) x=
5
3
(D)x=1 8.如图,在菱形ABCD 中,对角线AC 、BD 相交于点0,BD=8,tan ∠ABD=4
3
, 则线段AB 的长为( ).
(A)7 (B)27 (C)5 (D)10
9.已知反比例函数x
k y 3
2-=
的图象经过点(1,1),则k 的值为( ). (A)-1 (B)0 (C)1 (D)2
10.如图,在△ABC 中,点D 在BC 边上,连接AD,点G 在线段AD 上,GE ∥BD, 且交AB 于点E,GF ∥AC,且交CD 于点F,则下列结论一定正确的是( ). (A)AD AG
AE
AB = (B)AD DG
CF DF =
(C)BD
EG AC
FG = (D)DF
CF BE
AE =
第Ⅱ卷非选择题(共90分)
二、填空题(每小3分,共计30分)
11.将数920 000 000用科学记数法表示为 . 12.函数4
5y -=
x x
中,自变量x 的取值范围是 . 13.把多项式x 3-25x 分解因式的结果是 .
14.不等式组{
1
215325≥---x x x >的解集为 .
15.计算5
1
10
-56的结果是 . 16.抛物线y=2(x+2)2+4的顶点坐标为 .
17.一枚质地均匀的正方体骰子,骰子的六个面上分別刻有1到6的点数,张兵同学掷一次骰子,骰 子向上的一面出现的点数是3的倍数的概率是 .
18.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是 .
19.在△ABC 中, AB=AC,∠BAC=100°,点D 在BC 边上,连接AD,若△ABD 为直角三角形,则∠ADC 的 度数为 .
20. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点0,AB=OB , 点E 、点F 分别是OA 、OD 的中点,连接EF,∠CEF=45°EM ⊥BC 于 点M,EM 交BD 于点N,FN=10,则线段BC 的长为 .
三、解答题(其中21~22题各7分,23~24题备8分,25-27题各10分,共计60分 21(本题7分)
先化简,再求代数式429621-12-+-÷
⎪⎭
⎫ ⎝⎛
-a a a a 的值,其中a=4cos30°+3tan45°. 22.(本题7分)
如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端 点均在小正方形的顶点上.
(1) 在图中画出以线段AB 为一边的矩形ABCD(不是正方形),且点C 和点D 均在小正方形的顶点上;
(2) 在图中画出以线段AB 为一腰,底边长为22的等腰 三角形ABE,点E 在小正方形的顶点上.连接CE,请直接写出线段 CE 的长. 23.(本题8分)
为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图;
(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?
24.(本题8分)
已知:在四边形ABCD 中,对角线AC 、BD 相交于点E ,且AC ⊥BD,作BF ⊥CD 垂足为点F,BF 与AC 交于点G.∠BGE=∠ADE.
(1)如图1,求证:AD=CD;
(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等
于△ADE面积的2倍.
25.(本题10分)
春平中学要为学校科技活动小组提供实验器材,计划购买A型,B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.
(1)求每个A型放大镜和每个B型放大镜各多少元?
(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?
26.(本题10分)
已知:⊙O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F在弧AD上,连接BF,DF,BF 与DE、DA分别交于点G、点H,且DA平分∠EDF.
(1)如图1,求证:∠CBE=∠DHG;
(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN垂足为点P,当BP=HF时,求证:BE=HK;
(3)如图3,在(2)的条件下,当3HF=2DF 时,延长EP 交⊙0于点R,连接BR,若△BER 的面积与△DHK 的面积的差为
4
7
,求线段BR 的长.
27.(本题10分)
已知:在平面直角坐标系中,点0为坐标原点,点A 在x 轴的负半轴上,直线32
73+-=x y 与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为菱形.
(1)如图1,求点A 的坐标;
(2)如图2,连接AC,点P 为△ACD 内一点,连接AP 、BP,BP 与AC 交于点G,且∠APB=60°,点E 在线段AP 上,点F 在线投BP 上,且BF=AE.连接AF 、EF,若∠AFE=30°,求AF 2
+EF 2
的值;
(3)如图3在(2)的条件下,当PE=AE 时,求点P 的坐标.。