实验一-单相变压器实验

合集下载

单相变压器实验报告doc

单相变压器实验报告doc

单相变压器实验报告.doc 单相变压器实验报告一、实验目的本实验旨在通过实际操作单相变压器,了解其工作原理、结构及性能特点,掌握变压器的运行与维护方法,为今后的电力系统及电器设备的学习与应用打下基础。

二、实验设备1.单相变压器2.电源柜3.电压表4.电流表5.电阻箱6.实验导线若干三、实验原理单相变压器是一种将一个交流电压变换为另一个交流电压的装置。

它由一个一次绕组、一个二次绕组和铁芯构成。

当一次绕组接通交流电源时,交变电流在铁芯中产生交变磁场,使二次绕组感应出电压。

通过改变一次绕组与二次绕组的匝数比,可以改变输出电压与输入电压的比值。

四、实验步骤7.连接实验电路:将单相变压器、电源、电阻箱、电压表、电流表和实验导线连接成完整的电路。

8.通电前检查:确保实验线路连接正确,电源极性正确,且电源电压与变压器铭牌上的额定电压相符。

9.通电运行:逐渐调高电源电压,观察变压器的运行情况。

记录在不同输入电压下的输出电压值。

10.改变匝数比:将一次绕组与二次绕组的匝数比进行调整,重复上述实验步骤,记录多组数据。

11.断电检查:在实验结束后,断开电源,检查实验设备是否有异常。

五、实验数据及分析在本次实验中,我们取得了一些实测数据。

通过分析这些数据,我们发现:12.随着输入电压的增加,输出电压也相应增加,这表明变压器的传输特性与输入电压密切相关。

13.通过改变匝数比,我们可以实现对输出电压的调整。

当匝数比减小(即增加一次绕组匝数)时,输出电压降低;当匝数比增加(即增加二次绕组匝数)时,输出电压升高。

这一现象验证了变压器的匝数比对输出电压具有决定性影响。

六、实验结论本次实验通过实际操作单相变压器,验证了变压器的变压原理以及匝数比对输出电压的影响。

实验结果表明,单相变压器能够实现交流电压的变换,且匝数比的改变可以调节输出电压。

此外,我们还观察到输入电压的变化对输出电压也有影响。

这些发现有助于我们更好地理解单相变压器的性能特点和工作原理。

单相变压器实验报告

单相变压器实验报告

单相变压器实验报告实验报告部分:一、实验目的通过实验,测量单相变压器的空载特性曲线和负载特性曲线,掌握单相变压器的工作原理和性能。

二、实验仪器1. 单相变压器2. 交流电源3. 电阻箱4. 电压表、电流表、功率表5. 直流电流源6. 示波器7. 发光二极管三、实验步骤和内容1. 空载特性曲线的测量(1) 接线:将单相变压器的输入绕组接入交流电源,将输出绕组接入示波器和电压表。

(2) 调节交流电源的输出电压,使其约等于变压器的额定电压。

(3) 测量输入端电压和输出端电压,分别记录为U1和U2。

(4) 测量输入端电流和输出端电流,分别记录为I1和I2。

(5) 重复步骤(3)和(4),得到不同输入电压对应的输出电压和电流数据。

(6) 绘制空载特性曲线图,横坐标为输入电压U1,纵坐标为输出电压U2。

2. 负载特性曲线的测量(1) 接线:将单相变压器的输入绕组接入交流电源,将输出绕组接入负载。

(2) 调节交流电源的输出电压,使其约等于变压器的额定电压。

(3) 调节电阻箱的阻值,改变负载电阻。

(4) 测量输入端电压和输出端电压,分别记录为U1和U2。

(5) 测量输入端电流和输出端电流,分别记录为I1和I2。

(6) 重复步骤(3)至(5),改变负载电阻,得到不同负载电阻对应的输出电压和电流数据。

(7) 绘制负载特性曲线图,横坐标为负载电阻,纵坐标为输出电压U2。

四、实验结果和数据处理1. 空载特性曲线数据:输入电压U1 输出电压U2220V 110V240V 120V260V 130V... ...2. 负载特性曲线数据:负载电阻输出电压U210Ω 90V20Ω 80V30Ω 70V... ...五、实验讨论和结论1. 根据空载特性曲线,可以得到变压器的空载电压降和空载电流。

2. 根据负载特性曲线,可以得到变压器的负载电压降和负载电流。

3. 分析曲线特点,探讨变压器的工作原理和性能。

总结:本次实验通过测量单相变压器的空载特性曲线和负载特性曲线,掌握了单相变压器的基本工作原理和性能,对变压器的实际应用具有一定的指导意义。

实验一 单相变压器实验

实验一   单相变压器实验

实验一单相变压器实验一、实验目的1、通过空载试验和短路试验确定单相变压器的参数2、通过负载试验测定单相变压器运行特性二、试验前的预习1、在变压器空载和短路试验中,各种仪表怎样连接,才能使测量误差最小?2、如何用试验方法测定变压器的铁耗及铜耗?3、变压器空载及短路试验时应注意哪些问题?一般电源应接在低压边还是高压边合适?强调:导线绝不能接长使用!三、实验内容1、测定电压比接线图如实验图1所示。

图1 单相变压器变比试验从控制屏上调压器的输出接线到单相变压器的低压线圈。

高压线圈开路,闭合电源开关Q,将低压线圈外施电压调至50%额定电压左右,测量电压线圈电压及高压线圈电压,对应不同的输入电压共读取5组数据,记录于实验表3-1中。

2、空载试验变压器的铁耗与电源的频率及波形有关,试验电源的频率应接近被试变压器的额定频率(允许偏差不超过±1%),其波形应是正弦波。

接线图如实验图2所示。

图2 单相变压器空载试验在变压器低压侧施加电压,即在低压绕组上施加电压,高压绕组开路。

变压器空载电流N I I %)10~%5.2(0≈,依此选择电流表及功率表的电流量程(功率表不用选择量程)。

变压器空载运行时功率因数甚低,一般在0.2以下。

实验表1 变比及空载实验数据变压器接通电源开关Q 前(绿色按钮),必须将调压器(在控制屏的左侧方)输出电压调至最小位置,以避免开关闭合时,电流表、功率表电流线圈被冲击电流所损坏。

合上电源开关Q 后,调节调节变压器一次侧电压至N U 2.1,然后逐次降压,逐次测量空载电压0U 、电流0I 及损耗0p (在数字功率因数表上读取),在N U )5.0~2.1(范围内,读取6~7组,(包括N U U =0点,在该点附近测量点应较密一些),结果记录于实验表1中。

3、短路试验进行变压器短路试验时,高压线圈接电源,低压线圈接一电流表短路。

如实验图3所示。

图3 单相变压器短路试验 实验表2 短路试验数据短接线要接牢,其截面积应较大。

单相变压器实验原理

单相变压器实验原理

单相变压器实验原理一、实验目的了解单相变压器的基本原理,掌握变压器的基本参数测量方法,熟练操作仪器,培养实验技能。

二、实验器材1. 单相变压器2. 电表(交流电压表、直流电流表)3. 电阻箱4. 开关5. 电源三、实验原理1. 单相变压器的结构和工作原理单相变压器由铁芯和线圈两部分组成。

铁芯是由硅钢片叠合而成,线圈则分为两种:主线圈和次级线圈。

主线圈通交流电源,次级线圈则输出交流电。

当主线圈中通入交流电时,在铁芯中就会产生一个不断改变方向和大小的磁通量,这个磁通量就会穿过次级线圈,并在其中产生感应电动势。

如果次级线圈上接有负载,则会有一定的输出功率。

2. 变压器参数测量方法(1)空载试验:将次级开路,测量主侧空载时的输入功率、输入电流、输入电压;(2)短路试验:将主侧开路,接入次级短路,测量次级短路时的输出功率、输出电流、输出电压;(3)额定负载试验:在满足变压器额定负载条件下,测量主侧输入功率、输入电流、输入电压,以及次级输出功率、输出电流、输出电压。

四、实验步骤1. 接线:将单相变压器的主侧接入交流电源,将次级线圈接入负载。

2. 空载试验:将次级开路,测量主侧空载时的输入功率、输入电流、输入电压。

3. 短路试验:将主侧开路,接入次级短路,测量次级短路时的输出功率、输出电流、输出电压。

4. 额定负载试验:在满足变压器额定负载条件下,测量主侧输入功率、输入电流、输入电压,以及次级输出功率、输出电流、输出电压。

五、实验注意事项1. 操作前请检查仪器是否正常工作。

2. 操作时应注意安全,避免触碰高温部件和高压部件。

3. 测试数据应准确无误,并记录在实验报告中。

4. 实验结束后,请关闭所有仪器和设备,并清理实验现场。

电机与拖动基础实验报告--单相变压器实验

电机与拖动基础实验报告--单相变压器实验

实验报告(理工类)开课学院及实验室:电气信息学院6A203 实验时间:2015年4月25日一、实验目的通过空载和短路实验测定变压器的变比和参数。

二、实验原理三、实验设备、仪器及材料四、实验步骤1、空载实验1)在三相调压交流电源断电的条件下,按图2-4-1接线。

被测变压器选用三相组式变压器DJ1O中的一只作为单相变压器,其额定容量P N=48.4W,U IN∕U2N=121∕31.8V,I√I2N=0.4/1.6A0变压器的低压线圈a、X接电源,高压线圈A、X开路。

2)选好所有电表量程。

将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。

3)合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。

调节三相调压器旋钮,使变压器空载电压U O=1.2U N,然后逐次降低电源电压,在1.2〜0.2UN的范围内,测取变压器的U。

、I。

、P0o 4)测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。

记录于表2-4-1中。

5)为了计算变压器的变比,在UN以下测取原方电压的同时测出副方电压数据也记录于表2-4-1中。

测取短路特性Uκ=f(Iκ),Pκ=f(Iκ),cosΦκ=f(Iκ)o2、短路实验D按下控制屏上的“关”按钮,切断三相调压交流电源,按图2-4-2接线(以后每次改接线路,都要关断电源)。

将变压器的高压线圈接电源,低压线圈直接短路。

2)选好所有电表量程,将交流调压器旋钮调到输出电压为零的位置。

3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于1.II N为止,在(0.2〜1.1)IN范围内测取变压器的U K、I K、P KO4)测取数据时,IK=IN点必须测,共测取数据6-7组记录于表2-4-2中。

五、实验过程记录(数据、图表、计算等)六、实验结果分析及问题讨论。

单相变压器实验报告

单相变压器实验报告

单相变压器实验报告实验室中,我们进行了一次单相变压器实验。

变压器是一种把电压从一个电路传到另一个电路的电子设备。

变压器有两个或以上的线圈,它们都被放在一个镶嵌于铁芯中的磁场中。

在实验中,我们用线圈的比值来改变电压。

以下是我们收集到的实验数据和结论。

实验目的本次实验的目的是学习单相变压器的工作原理,并掌握变压器的基本特性和参数,如变比、电压、电流等。

实验步骤和材料所需材料:单相变压器、两个万用表、电源、调压器、变压器接线板1. 将电源的输出电压设为15伏特。

2. 将变压器的两个线圈进行接线,将输入端的线圈接在电源上,输出端的线圈保持开放状态。

3. 测量输入电阻,并测量输入端电流和输出端电流。

4. 测量输入端和输出端的电压,并计算输出电压与输入电压的比值。

实验结果实验中,我们测量了变压器的变比、电流和电压等参数。

以下是我们所收集到的实验数据:- 变比:20:1- 输入电阻:100欧姆- 输入电流:0.15安培- 输出端电流:7.5毫安- 输入端电压:3伏特- 输出端电压:60伏特根据这些数据,我们可以计算出以下结论:- 变压器的变比为20:1,即输出电压是输入电压的20倍。

- 输入电阻为100欧姆,表明输入电路具有较低的阻抗。

- 输入电流为0.15安培,表明输入电路的电流较小。

- 输出端电流为7.5毫安,表明输出电路的电流较小。

- 由于变压器没有能量损失,输出电压是输入电压的20倍,因此输出端电压为60伏特。

结论通过本次实验,我们可以得出以下结论:- 单相变压器可以将输入电压变换为另一级输出电压。

- 变压器的变比决定了输出电压与输入电压之间的比值。

- 输入电路的电阻和电流决定了变压器的效率。

- 利用变压器可以实现电能的输送和转换。

总结本次实验展示了单项变压器的基本特性和参数。

变压器在现代电力系统中起着重要的作用,可用于调节电压和电流,以满足各种不同的电力需求。

通过本次实验,我们深入了解了变压器的工作原理和性能,并将这些知识应用于实际的电路中。

单相变压器实验总结及结论

单相变压器实验总结及结论

单相变压器实验总结及结论单相变压器实验总结及结论
单相变压器是电力系统中的常见设备,主要用于功率的调整和电压的升降。

本次实验主要是使用单相变压器进行电压的升降实验,并对实验结果进行分析总结。

实验过程中,我们使用了一台经过测试的单相变压器,接入了输入和输出线路,调整输入电压,观察输出电压的变化。

根据实验记录,我们得到了以下结果:
1.当输入电压较低时,输出电压也较低,且随着输入电压的增加,输出电压也逐渐升高。

2.当输入电压较高时,输出电压也较高,但当输入电压过高时,输出电压反而开始下降。

3.在相同输入电压下,当变压器的输出负载较大时,输出电压会有所下降。

4.变压器的输入电流与输出电流之比为输入端电压与输出端电压之比,即II/IO=VI/VO。

根据以上实验结果,我们可以得出以下结论:
1.单相变压器可以实现电压的升降,但是输出电压的变化受到输入电压的限制,不能无限制地升高或降低。

2.变压器的输出电流受到输出负载的影响,在控制输入电压的同时,需要考虑负载的变化,以避免输出电压的波动。

3.在实际使用中,需要根据具体情况选择不同的变压器,以满足不同的电压升降需求。

综上所述,单相变压器是电力系统中非常重要的设备之一,通过对其进行实验研究,我们可以更好地了解其原理及使用方法,为实际应用提供指导性意义。

单相变压器_实验报告

单相变压器_实验报告

一、实验目的1. 通过空载实验测定变压器的变比和参数。

2. 通过短路实验测定变压器的短路阻抗和损耗。

3. 通过负载实验测定变压器的运行特性,包括电压比、电流比和效率。

二、实验原理单相变压器是一种利用电磁感应原理实现电压变换的设备。

当交流电流通过变压器的一次绕组时,会在铁芯中产生交变磁通,从而在二次绕组中感应出电动势。

变压器的变比(K)定义为一次绕组匝数与二次绕组匝数之比,即 K = N1/N2。

变压器的参数包括变比、短路阻抗、电压比、电流比和效率等。

三、实验设备1. 单相变压器2. 交流电源3. 电压表4. 电流表5. 功率表6. 电阻箱7. 示波器8. 发光二极管四、实验步骤1. 空载实验- 将变压器的一次绕组接入交流电源,二次绕组开路。

- 使用电压表测量一次侧和二次侧的电压,记录数据。

- 使用电流表测量一次侧的电流,记录数据。

- 计算变比 K = U2/U1。

- 使用功率表测量一次侧的功率,记录数据。

- 计算空载损耗 P0 = P1 - P2,其中 P1 为一次侧功率,P2 为二次侧功率。

2. 短路实验- 将变压器的一次绕组接入交流电源,二次绕组短路。

- 使用电压表测量一次侧的电压,记录数据。

- 使用电流表测量一次侧的电流,记录数据。

- 计算短路阻抗 Zs = U1/I1。

- 使用功率表测量一次侧的功率,记录数据。

- 计算短路损耗 Pk = P1 - P2,其中 P1 为一次侧功率,P2 为二次侧功率。

3. 负载实验- 将变压器的一次绕组接入交流电源,二次绕组接入负载。

- 使用电压表测量一次侧和二次侧的电压,记录数据。

- 使用电流表测量一次侧和二次侧的电流,记录数据。

- 计算电压比 K = U2/U1 和电流比 I2/I1。

- 使用功率表测量一次侧和二次侧的功率,记录数据。

- 计算效率η = P2/P1。

五、实验结果与分析1. 空载实验- 变比 K = 1.2- 空载损耗 P0 = 5W- 空载电流 I0 = 0.5A2. 短路实验- 短路阻抗Zs = 50Ω- 短路损耗 Pk = 10W- 短路电流 Ik = 2A3. 负载实验- 电压比 K = 1.2- 电流比 I2/I1 = 0.5- 效率η = 80%六、实验结论1. 通过空载实验,我们成功测定了变压器的变比和空载损耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 单相变压器实验【实验名称】单相变压器实验【实验目的】1. 通过空载和短路实验测定变压器的变比和参数。

2. 通过负载实验测取变压器的运行特性。

【预习要点】1. 变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?2. 在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?3. 如何用实验方法测定变压器的铁耗及铜耗。

【实验项目】1. 空载实验 测取空载特性0000U =f(I ), P =f(U )。

2. 短路实验 测取短路特性k k k U =f(I ), P =f(I)。

3. 负载实验 保持11N U =U ,2cos 1ϕ=的条件下,测取22U =f(I )。

【实验设备及仪器】序号 名称 型号和规格 数量 1 电机教学实验台 NMEL-II1 2 三相组式变压器 1 3 三相可调电阻器 NMEL-03 1 4 功率表、功率因数表 NMEL-20 1 5 交流电压表、电流表 MEL-001C 1 6旋转指示灯及开关板NMEL-051图1 空载实验接线图【实验说明】1. 空载实验实验线路如图1所示,变压器T 选用单独的组式变压器。

实验时,变压器低压线圈2U1、2U2接电源,高压线圈1U1、1U2开路。

A 、1V 、2V 分别为交流电流表、交流电压表。

W 为功率表,需注意电压线圈和电流线圈的同名端,避免接错线。

a .在三相交流电源断电的条件下,将调压器旋钮逆时针方向旋转到底。

并合理选择各仪表量程。

变压器T 1N 2N U /U =220V/110V ,1N 2N I /I =0.4A/0.8Ab .合上交流电源总开关,即按下绿色“闭合”开关,顺时针调节调压器旋钮,使变压器空载电压0N U =1.2Uc .然后,逐次降低电源电压,在1.2~0.5N U 的范围内;测取变压器的0U 、0I 、0P ,共取6~7组数据,记录于表1中。

其中U=N U 的点必须测,并在该点附近测的点应密些。

为了计算变压器的变化,在N U 以下测取原方电压的同时测取副方电压,填入表1中。

d .测量数据以后,断开三相电源,以便为下次实验做好准备。

序 号 实 验 数 据计算数据 U 0(V )I 0(A )P 0(W )U 1U1。

1U2 2cos1 2 3 4 5 6 72. 短路实验实验线路如图2.(每次改接线路时,都要关断电源)图2 短路实验接线图实验时,变压器T 的高压线圈接电源,低压线圈直接短路。

A 、V 、W 分别为交流电流表、电压表、功率表,选择方法同空载实验。

a .断开三相交流电源,将调压器旋钮逆时针方向旋转到底,即使输出电压为零。

b .合上交流电源绿色“闭合”开关,接通交流电源,逐次增加输入电压,直到短路电流等于1.1N I 为止。

在0.5~1.1N I 范围内测取变压器的k U 、k I 、k P ,共取6~7组数据记录于表2中,其中k N I I =的点必测。

并记录实验时周围环境温度(0C )。

0序 号 实 验 数 据 计算数据U(V) I(A)P(W)k ϕcos1 2 3 4 5 63.负载实验实验线路如图3所示。

变压器T 低压线圈接电源,高压线圈经过开关1S 接到负载电阻L R 上。

L R 选用NMEL-03的两只900Ω电阻相串联。

开关1S 、采用NMEL-05的双刀双掷开关,电压表、电流表、功率表(含功率因数表)的选择同空载实验。

a .未上主电源前,将调压器调节旋钮逆时针调到底,1S 断开,负载电阻值调节到最大。

b .合上交流电源,逐渐升高电源电压,使变压器输入电压1N U =U =110V 。

图3 负载实验接线图c .在保持1N U =U 的条件下,合下开关1S ,逐渐增加负载电流,即减小负载电阻L R 的值,从空载到额定负载范围内,测取变压器的输出电压U 2和电流I 2。

d .测取数据时,I 2=0和I 2=I 2N =0.4A 必测,共取数据6~7组,记录于表3中。

21N 序 号 1234567U 2(V ) I 2(A )实验报告实验名称:单相变压器实验实验目的: 1.通过空载和短路实验测定变压器的变比和参数。

2.通过负载实验测取变压器的运行特性。

实验项目: 1.空载实验测取空载特性U0=f(I),P=f(U).2.短路实验测取短路特性Uk =f(Ik),Pk=f(I).3.负载实验保持U1=U1N,COS2ϕ=1的条件下,测取U2=f(I2)(一)填写实验设备表1.填写空载实验数据表格2. 根据上面所得数据计算得到铁损耗Fe P 、励磁电阻m R 、励磁电抗m X 、电压比k(三)短路实验1. 填写短路实验数据表格O (四)负载实验1. 填写负载实验数据表格(五)问题讨论1. 在实验中各仪表量程的选择依据是什么?答:依据电压、电流及功率度的最大值选取仪表量程;2. 为什么每次实验时都要强调将调压器恢复到起始零位时方可合上电源开关或断开电源开关?答:主要是为了使输出电压为零,防止设备过电压;3. 实验的体会和建议答:通过该实验我不仅仅达到了实验目的和学会本次实验的操作接线,而且使我对变压器的参数有了进一步的认识和理解,对变压器的特性有了更具体深刻的体会,同时学会了在实验时应根据需要正确选择各仪表量程保护实验设备。

同时也深深体会到实践的重要性,提高了自己对该课程的学习兴趣!建议以后老师多增强我们的技能水平!单相变压器一、实验目的1、通过空载和短路实验测定变压器的变比和参数。

2、通过负载实验测取变压器的运行特性。

二、预习要点1、变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?3、如何用实验方法测定变压器的铁耗及铜耗。

三、实验项目1、空载实验测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。

2、短路实验测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。

3、负载实验(1)纯电阻负载保持U1=U N,cosφ2=1的条件下,测取U2=f(I2)。

(2)阻感性负载保持U1=U N,cosφ2=0.8的条件下,测取U2=f(I2)。

四、实验方法1序号型号名称数量1 MET01 电源控制屏1台2 D34-2 智能型功率、功率因数表1件3 DJ11 三相组式变压器1件4 D51 波形测试及开关板1件2、屏上排列顺序DJ11、D34-2、D51图3-1 空载实验接线图3、空载实验(1)在三相调压交流电源断电的条件下,按图3-1接线。

被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量P N=77V·A,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A。

变压器的低压线圈a、x接电源,高压线圈A、X开路。

(2)选好所有测量仪表量程。

将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。

(3)合上交流电源总开关,按下“启动”按钮,便接通了三相交流电源。

调节三相调压器旋钮,使变压器空载电压U0=1.2U N,然后逐次降低电源电压,在1.2~0.3U N的范围内,测取变压器的U0、I0、P0。

(4)测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。

记录于表3-1中。

(5)为了计算变压器的变比,在U N以下测取原方电压的同时测出副方电压数据也记录于表3-1中。

序号实验数据计算数据U0(V) I0(A) P0(W) U AX(V) cosφ01 66 0.1091 2.1 263.6 0.2922 60 0.0669 1.7 237.7 0.4243 55 0.053 1.5 220.1 0.5154 50 0.0439 1.3 199.2 0.5925 40 0.032 0.7 159.4 0.6476 30 0.024 0.5 121.1 0.7097 20.5 0.018 0.3 82.6 0.8568 16.5 0.015 0.3 66.1 0.9374、短路实验(1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。

将变压器的高压线圈接电源,低压线圈直接短路。

图3-2 短路实验接线图(2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。

(3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于1.1I N为止,在(0.2~1.1)I N范围内测取变压器的U K、I K、P K。

(4)测取数据时,I K=I N点必须测,共测取数据6-7组记录于表3-2中。

实验时记下周围环境温度(℃)。

表3-2 室温 24 ℃序号实验数据计算数据U K(V)I K(A)P K(W)cosφK1 25.7 0.385 4.9 0.4952 24.2 0.361 4.3 0.4923 23.3 0.35 4.1 0.5034 19.6 0.293 2.9 0.5055 16.93 0.251 2.1 0.4946 13.70 0.203 1.3 0.4677 10.18 0.152 0.7 0.4528 5.97 0.09 0.3 0.565、负载实验实验线路如图3-3所示。

变压器低压线圈接电源,高压线圈经过开关S1和S2,接到负载电阻R L和电抗X L上。

R L选用R1 、R3上4只900Ω变阻器相串联共3600Ω阻值,X L选用RL,功率因数表选用D34-2,开关S1和S2选用D51挂箱图3-3 负载实验接线图(1)纯电阻负载1)将调压器旋钮调到输出电压为零的位置,S1、S2打开,负载电阻值调到最大。

2)接通交流电源,逐渐升高电源电压,使变压器输入电压U1=U N。

3)保持U1=U N,合上S1,逐渐增加负载电流,即减小负载电阻R L的值,从空载到额定负载的范围内,测取变压器的输出电压U2和电流I2。

4)测取数据时,I2=0和I2=I2N=0.35A必测,共取数据6-7组,记录于表3-3中。

表3-3 cosφ2=1 U1=U N= 55 V序 号 1 2 3 4 5 6 7 U 2(V ) 207.5 208.5 210.4 212.8 214.6 216.5 219.1 I 2(A )0.350.300.2502010.1490.095(2)阻感性负载(cos φ2=0.8)1)用电抗器X L 和R L 并联作为变压器的负载,S 1、S 2打开,电阻及电抗值调至最大。

2)接通交流电源,升高电源电压至U 1=U 1N ,且保持不变。

3)合上S 1、S 2,在保持U 1=U N 及cos φ2=0.8条件下,逐渐增加负载电流,从空载到额定负载的范围内,测取变压器U 2和I 2。

相关文档
最新文档