直流杂散电流的排流方法

直流杂散电流的排流方法
直流杂散电流的排流方法

直流杂散电流的排流方法

根据排流回路中电连接的电路方式不同,直流杂散电流的排流方法可分为直流排流、极性排流、强制排流和接地排流四种。

(1)直接排流法

对于直流电气铁路附近的管道而言,用电缆将管道与电气化铁路的铁轨或负回归线实现电连接,这是一种常用的、有效的排流法。直接排流法适合管道上存在着稳定不变的阳极区的情况。在直接连接的电缆中可串联可调电阻、控制开关及断路系统,据此可控制排流量的大小及管道的相对电位,以防止排流量过大造成管道防腐层发生老化和剥离。

(2)极性排流法

极性排流法是目前广泛应用的排流方式之一,它具有单向导电性,只允许杂散电流从管道排出,而不允许杂散电流进入管道,能防止逆流。这种方法结构简单,比较安全,效率高。

(3)强制排流法

当埋地管道位于杂散电流干扰极性交变区,用于直接排流和极性排流都无法将杂散电流排出,这时可选用强制电流法。强制电流法的原理类似于阴极保护技术。它在管道与铁轨(或接地阳极)之间安装一个整流器,可起到电位控制器的作用。在外部存在电位差的条件下强制进行排流,其功能兼具排流和阴极保护的双重作用,比较经济、有效,所以应用比较广泛。

(4)接地排流电缆并不连接到铁轨上,而是连接到一个埋地辅助阳极上。将杂散电流从管道排除到阳极上,经过土壤再返回铁轨。接地排流地床的接地电阻应尽可能地小,以提高排流效果。采用牺牲阳极时也需要使用填包料。

对于同一埋地结构物,应根据实际环境情况和工况,根据排流需要,采用一种或几种排流方法,选择一点或多点进行排流处理。

在电气化铁路邻近的埋地结构物上,采用排流法应注意它自身可能产生的干扰性。即它在工作过程中可能对铁路控制系统的传输信号造成干扰,从而对铁路运行安全造成威胁。

油气管道的杂散电流腐蚀与防护

油气管道的杂散电流腐蚀与防护 随着我国能源和交通工业的发展,我国油气管道与电力线路、电气化铁路的里程迅速增加。由于地理位置的限制,在油气管道与电力线路、电气化铁路的设计和建设过程中不可避免地出现了并行敷设的情况。由电力线路、电气化铁路产生的杂散电流会对油气管道产生巨大的危害。辽河油田到鞍山化肥厂的天然气管道在投产14个月后就出现多起杂散电流引起的腐蚀穿孔事故,被迫长时间停产,开挖大修。郑州煤气公司在某电厂附近的一段输气管道受电厂杂散电流的影响,也多次出现穿孔泄漏,严重威胁管道和人身的安全。由此可见,杂散电流对油气管道会产生强烈腐蚀作用。因此,开展杂散电流引起的油气管道的腐蚀与防护研究,对保障油气管道的安全运行具有十分重要的意义。 1杂散电流的形成 杂散电流是指在规定电路或意图电路之外流动的电流,又称迷走电流[1]。杂散电流主要表现为直流电流、交流电流和大地中自然存在的地电流3种状态,且各自具有不同的特点。直流杂散电流主要来源于直流电解设备、电焊机、直流输电线路;交流杂散电流主要来源于交流电气化铁路、输配电线路系统,通过阻性、感性和容性耦合在相邻的管道或金属体中产生交流杂散电流,但交流杂散电流对铁腐蚀较轻微,一般为直流腐蚀量的1%;由于地磁场的变化感应出来的地杂散电流,一般情况下只有约2μA/m2,从腐蚀角度看并不重要。

以电气化铁路车辆直流供电牵引系统产生的直流杂散电流是造成油 气管道杂散电流腐蚀的主要原因。 在电气化铁路车辆直流供电牵引系统巾,列车所需要的电流由牵引变电所提供,通过架空线向列车供电,然后经行走轨回流至牵引变电所。理想情况下行走轨电阻为0,行走轨对大地的泄漏电阻无穷大,此时经行走轨回流的电流等于牵引电流,即所有的电流都经行走轨回流至牵引变电所。但实际上行走轨的电阻不为0,当有电流通过时就形成了电位差,并且行走轨对大地的泄漏电阻也不会为无穷大,这就不可避免地造成了部分电流不经行走轨回流,而是流入大地,然后通过大地回流至牵引变电所。若铁路附近有导电性能较好的埋地金属管道(燃气管道、输油管道、供水管道等),则部分电流会选择电阻率较低的埋地金属管道作为电流回流路径,从牵引变电所附近的管道中流出流回牵引变电所。杂散电流形成原理见图1,杂散电流形成原理等效电路见图2。

直流杂散电流的排流方法

直流杂散电流的排流方法 根据排流回路中电连接的电路方式不同,直流杂散电流的排流方法可分为直流排流、极性排流、强制排流和接地排流四种。 (1)直接排流法 对于直流电气铁路附近的管道而言,用电缆将管道与电气化铁路的铁轨或负回归线实现电连接,这是一种常用的、有效的排流法。直接排流法适合管道上存在着稳定不变的阳极区的情况。在直接连接的电缆中可串联可调电阻、控制开关及断路系统,据此可控制排流量的大小及管道的相对电位,以防止排流量过大造成管道防腐层发生老化和剥离。 (2)极性排流法 极性排流法是目前广泛应用的排流方式之一,它具有单向导电性,只允许杂散电流从管道排出,而不允许杂散电流进入管道,能防止逆流。这种方法结构简单,比较安全,效率高。 (3)强制排流法 当埋地管道位于杂散电流干扰极性交变区,用于直接排流和极性排流都无法将杂散电流排出,这时可选用强制电流法。强制电流法的原理类似于阴极保护技术。它在管道与铁轨(或接地阳极)之间安装一个整流器,可起到电位控制器的作用。在外部存在电位差的条件下强制进行排流,其功能兼具排流和阴极保护的双重作用,比较经济、有效,所以应用比较广泛。 (4)接地排流电缆并不连接到铁轨上,而是连接到一个埋地辅助阳极上。将杂散电流从管道排除到阳极上,经过土壤再返回铁轨。接地排流地床的接地电阻应尽可能地小,以提高排流效果。采用牺牲阳极时也需要使用填包料。 对于同一埋地结构物,应根据实际环境情况和工况,根据排流需要,采用一种或几种排流方法,选择一点或多点进行排流处理。 在电气化铁路邻近的埋地结构物上,采用排流法应注意它自身可能产生的干扰性。即它在工作过程中可能对铁路控制系统的传输信号造成干扰,从而对铁路运行安全造成威胁。

大学物理实验多种方法测量直流电阻

用多种方法测量直流电阻 一、实验目的 1、熟悉各种电学仪器及电路技巧; 2、掌握多种方法测量直流电阻 3、巩固不确定度的评定方法 二、仪器 DH6108赛电桥综合实验仪,直流稳压电源,万用电表,电阻箱,两个待测电阻,千分尺,直流电流表,直流电压表,滑线变阻器,检流计等 三、实验原理 电阻是电磁学实验工作中的常用元件,可分为高值电阻(兆欧以上)、中值电阻(10欧~兆欧)、低值电阻(10欧以下)。测量电阻的方法有许多种,常用的如伏安法、电桥法、比较测量方法(电压比等于电阻比)。 (一)伏安法测量电阻的原理(适用于测中值电阻) 1、实验线路的比较和选择 当电流表内阻为0,电压表内阻无穷大时,下述两种测试电路的测量不确定度是相同的。 图1 电流表外接测量电路 图2 电流表内接测量电路 被测电阻的阻值为: I V R = 。 但实际的电流表具有一定的内阻,记为R I ;电压表也具有一定的内阻,记为R V 。因为R I 和R V 的存在,如果简单地用I V R = 公式计算电阻器电阻值,必然带来附加测量误差。为了减少这种附加误差,测量电路可以粗略地按下述办法选择:

比较(R/R I )和(R V /R )的大小,比较时R 取粗测值或已知的约值。如果前者大则选电流表内接法,后者大则选择电流表外接法。 如果要得到测量准确值,就必须按下(1)、(2)两式,予以修正。 即电流表内接测量时,I R I V R -= (1) 电流表外接测量时, V R V I R 11-= (2) 2、测量误差与不确定度的评定 实验使用的电压表和电流表的量程和准确度等级一定时,可以估算出U V 、U I ,再用简化公式I R I V R -= 计算时的相对不确定度 (3) 式中U R 表示测量R 的不确定度,并非指R 的电压值。 可见要使测量的准确度高,应选择线路的参数使数字表的读数尽可能接近满量程,因为这时的V 、I 值大,U R /R 就会小些。 当电压表、电流表的内阻值R V 、R I 及其不确定度大小U RI 、U RV 已知时,可用公式(1)、(2)更准确地求得R 的值,相对不确定度由下式求出: 电流表内接时: (4) 电流表外接时: (5) 这就知道由公式(1)、(2)来得到电阻值R 时,线路方案和参数的选择应使U R /R 尽可能最小(选择原则3)。 (二)惠斯通电桥测量未知电阻的原理 (适用于测中值电阻) 现代计量中直流电桥正逐步被数字仪表所替代. 以往在电阻测量中电桥起了重要作用。 惠斯通电桥(Wheatstone ,s bridge )沿用了近二百年,1833年由克里斯泰(Cheistie )首先提出,后来以惠斯通名字命名. 电桥产生的背景是: 1)在数字仪表发展之前的时期,如果用伏安法测量电阻/R V I =,需要同时准确测量电压V 和电流I ,当时0.2级模拟式电表的制造成本与价格就已经显著高于准确度约0.05% 6位旋转式电阻箱. 2)伏安法测量的条件要求较高,如0.2级电表的使用与检定的条件要求较高,对电源 2 2?? ? ??+??? ??=I U V U R U I V R ?? ????-??? ?????? ??+??? ??+??? ??=I V R I V R R U I U V U R U I I I R I V R I /1/2222????? ?-???? ?????? ??+??? ??+??? ??=V V V R I V R R I V R I V R U I U V U R U V /1/222 2

交流电气化铁路杂散电流排流工程设计方案

交流电气化铁路杂散电流 排流工程 设 计 方 案 河南汇龙合金材料有限公司 2019年正版

随着我国电气化铁路改造以及高铁网络的建设以及特高压输电线路、变电站的建设,因其产生的杂散电流不可避免的干扰到临近的地下管道、油库等设施,导致其电位紊乱,阴极保护系统失效,腐蚀加剧,因此杂散电流的防护及排流越来越收到人们的重视,这就需要采取有效的防杂散电流措施,使杂散电流量控制在允许的范围内。杂散电流的防护工程基本上采用“以防为主,以排为辅,防排结合,加强监测”的原则。本文讲述了山东石创公司在杂散电流防护过程中的一点体会和理念。 1 杂散电流的防护原则 轨道交通直流牵引供电系统中,只要用走行轨兼做回流导体,杂散电流的产生是不可避免的。为了减少杂散电流的

危害,就应当设法减少杂散电流量。这就需要采取有效的防杂散电流措施,使杂散电流量控制在允许的范围内。杂散电流的防护工程基本上采用“以防为主,以排为辅,防排结合,加强监测”的原则。 (1) 以防为主 控制所有可能的杂散电流泄漏途径,减少杂散电流进入轨道交通系统的主体结构、设备以及沿线附近相关设施的结构钢筋。具体实施时,由于涉及到的专业多,各专业、各工种必须紧密配合,尤其在施工设计阶段更要考虑综合防治措施,尽量减少直流系统与其他建筑物的电气连接。可采取的措施有:牵引变电所内和区间的交直流供电设备在安装时与结构钢筋和结构主体绝缘安装;走行轨道在施工时,采用与轨道道床绝缘的安装方式;由外界引入轨道交通内部或由轨道交通内部引出的金属管线均应进行绝缘处理后方可引入 和引出;在轨道交通线内部设立结构钢筋电气连通,把所有结构钢筋和接地点连接在一起,将泄漏的杂散电流排流回直流系统。 (2) 以排为辅 设置杂散电流的收集系统。此收集系统为杂散电流从回流轨上泄漏后遇到的第一道小电阻的回流通道,可以将杂散电流尽量限制在本系统内部,防止杂散电流向本系统以外泄漏。

城市轨道交通中杂散电流的危害及防护

城市轨道交通中杂散电流的危害及防护 摘要:本文主要从杂散电流的施工要求、杂散电流的防护原则、杂散电流的产 生机理及危害、杂散电流的防护措施设计这几方面介绍了题目,本文旨在与同行 探讨学习,共同进步。 关键词:施工要求;防护原则;产生机理及危害;防护措施设计 杂散电流被称为迷流,是在城市轨道交通直流牵引供电回流中产生的。其对 城市轨道交通系统内外金属设备、沿途管线会导致一定的影响及危害,特别会对 道床钢筋、走行轨、各种金属管线、结构钢筋等有着极强的腐蚀作用,为此,杂 散电流防护为轨道交通建设以及运营过程中一项极为主要的内容。 一、杂散电流的防护原则 轨道交通直流牵引供电系统中,只要用走行兼做回流导体,杂散电流的产生 是不可避免的。为了减少杂散电流的危害,就应当设法减少杂散电流量。这就需 要采取有效的防杂散电流措施,使杂散电流量控制在允许的范围内。杂散电流的 防护工程基本上采用/以防为主,以排为辅,防排结合,加强监测的原则。 (1)以防为主 控制所有可能的杂散电流泄漏途径,减少杂散电流进入轨道交通系统的主体 结构、设备以及沿线附近相关设施的结构钢筋。具体实施时,由于涉及到的专业多,各专业、各工种必须紧密配合,尤其在施工设计阶段更要考虑综合防治措施,尽量减少直流系统与其他建筑物的电气连接。可采取的措施有:牵引变电所内和 区间的直流供电设备在安装时与结构钢筋和结构主体绝缘安装;走行轨道在施工时,采用与轨道道床绝缘的安装方式;由外界引入轨道交通内部或由轨道交通内 部引出的金属管线均应进行绝缘处理后方可引入和引出;在轨道交通线内部设立 结构钢筋电气连通,把所有结构钢筋和接地点连接在一起,将泄漏的杂散电流排 流回直流系统。 (2)以排为辅 设置杂散电流的收集系统。此收集系统为杂散电流从回流轨上泄漏后遇到的 第一道小电阻的回流通道,可以将杂散电流尽量限制在本系统内部,防止杂散电 流向本系统以外泄漏。 二、杂散电流的产生机理及危害 杂散电流是一种在规定电路或意图电路之外流动的电流,主要来源于铁路运 输电力牵引系统、阴极保护系统和高压输变电系统。目前,地铁列车牵引动力系 统一般采用直流供电系统,供电电压多为DC750V或DC1500V。以电力为驱动动力,由设置在沿线的牵引变电所经过接触网或第三轨向列车馈送电量。机车通过 受电弓与接触网或导电轨连接受电。利用走行轨实现回流,如图1所示。直流供 电系统由于其走形轨本身具有一定的电阻,且走形轨对地不能做到完全绝缘,因 此在回流电流流经走行轨时,在走行轨上会产生电压降,并存在对地电位差,该 电位差促使走行轨中有一些电流泄漏到土壤,这部分从走形轨泄漏的电流被称为 杂散电流。 杂散电流具有局部集中特征,当土壤中有杂散电流流动时,会通过隧道结构、整体道床、车站结构或其他建筑物的结构钢筋及附近敷设金属管线或电缆的金属 护套等导体而流至回流点,再经土壤重新归入回流轨。根据电解池原理回流轨附 近这些金属导体在杂散电流流出处会产生激烈的电解腐蚀,破坏结构钢的强度, 大大降低其使用寿命。若杂散电流流入电气接地装置,将会提高接地电位,导致

杂散电流的腐蚀及防护

一、杂散电流干扰方式 杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。其中,以城市和矿区电机车为最甚。它的干扰途径如图10-60所示。从图中可以划分三种情况: 图10-60 杂散电流干扰示意图 1—供电所2—架空线3—轨道电流4—阳极区5—腐蚀电流6—交变区7— 阴极区 1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电 流电解。 2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流 出。当电流流出时,造成腐蚀。 3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的 阴极保护作用。 以上是一般规律。实际上杂散电流干扰源是多中心的。如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。作用在

管道上的杂散电流干扰电位如图10-61所示。 图10-61 杂散电流干扰电位曲线 埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。因属电解腐蚀,所以有时也称电蚀。这是管道腐蚀穿孔的主要原因之一。例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。 随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。其干扰形式如图10-62和图10-63所示。其干扰范围与阳极排放电流和阴极保护电流密度成正比。当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。 二、杂散电流腐蚀的特点 1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。大部分属腐蚀原电池型。腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几

微电流检测资料

目录 1、设计背景 (1) 2、设计方案选择 (1) 2.1典型的微电流测量方法 (1) 2.1.1开关电容积分法[1] (1) 2.1.2运算放大器法 (2) 2.1.3场效应管+运算放大器法 (2) 2.2总体设计方案 (3) 3、具体设计方案及元器件的选择 (4) 3.1稳流信号源问题 (4) 3.2I/V转换及信号滤波放大 (5) 3.2.1前级放大 (5) 3.2.2滤波及后级放大电路 (6) 3.2.3运算放大器的选取 (6) 3.3量程自动转换 (6) 3.4信号采集处理 (7) 4、软件仿真结果 (8) 5、参考资料 (9)

微电流测试电路设计 1、设计背景 微电流是指其值小于-6 10A的电流,微电流检测属于微弱信号检测的一个分支,是一门针对噪声的技术,它注重的是如何抑制噪声和提高信噪比。该技术在军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等许多领域具有广泛的应用。我们所研究的微电流检测主要针对电力系统中的绝缘材料,因为现代国民经济对电力供应的依赖性日益增大,电力系统的规模、容量也在不断扩大。而电气设备的绝缘材料往往是电力系统中的重要组成部分,绝缘材料的漏电流情况严重会造成电力系统的重大损失。微电流检测是通过对泄漏电流的测量来评估绝缘材料状况的有效方法。近年来,针对微弱电流的信噪改善比SNIR已能达到1了,目前国内做得比较好的单位是南京大学,其独家生产的ND-501型微弱信号检测实验综合装置己被国内至少76家高等院校使用。但其产品价格昂贵,少则几千元,多则几万元,例如HB-831型pA级电流放大器、HB-834型四通道pA级电流放大器、HB-838型八通道pA级电流放大器的售价分别为4100元/台、13000元/台、22000元/台。所以,研制高精度、寿命长、成本低、电路简单的微电流检测仪具有重要的现实意义及理论参考价值。为了达成目标,我们需要重点考虑以下几个问题: 10 A(本设计要求)的稳流信号源的实现(1)如何获得实验信号,即电流为12 问题; (2)如何将微弱电流信号转换成易于操作的信号; (3)怎样将微弱信号提取放大; (4)如何实现量程的自动转换问题; (5)将实际中的模拟信号转换成数字信号; (6)实现对数字信号的处理和显示。 2、设计方案选择 2.1典型的微电流测量方法 2.1.1开关电容积分法[1] 开关电容式微电流测量方法的前级是在利用开关电容实现电流向电压转换的同时对电压信号进行调制和放大,达到微伏级;后级电路通过选频放大电路实

铁路对管道杂散电流排流方案设计(单点)

排流方案 铁路对管道干扰杂散电流解决方案项目号: 文件号:GLYB2017021108 CADD号: 设计阶段:方案设计 日期:2017.02.11 0 版 铁路对管道杂散电流排流设计方案 (此方案为单交叉点的方案) (文件号:GLYB2017021108) 西安冠霖电气有限公司 0 张宁静吴琳2017.02.11 版次说明编制校对审核审定日期

目次 1概述 (3) 2设计原则 (3) 3设计遵循的标准规范 (3) 4设计基本参数 (4) 5保护对象和保护方法 (4) 6排流方案设计内容 (4) 7施工技术要求 (8) 8排流保护准则 (8) 9系统的管理和维护 (8) 10卫生、安全和环境 (9) 11材料表 (10)

1.概述 铁路与埋地管道交叉或平行时,会对埋地管道形成电磁干扰,从而使管道电位升高或降 低,导致管道腐蚀加剧。所以,在铁路和管道交叉或平行时,必须对管道进行固态去耦合器 排流处理,以消除或降低铁路对管道的干扰。 铁路干扰的相关参数: (1)、铁路为单回路供电,供电电压一般为27.5kV; (2)、铁路对管道主要产生交流干扰,但也有相当大的直流分量; (3)、干扰电压呈波动状态,最高可达到100V; (4)、交叉多处,交叉斜角为70--90度; (5)、设计排流防雷系统寿命为25年。 2.设计原则 2.1 严格遵守埋地钢质管道排流有关的设计规范、技术标准和技术规定; 2.2 采用成熟技术、材料,做到安全可靠、经济合理; 3.设计遵循的标准规范 3.1 《埋地钢质管道强制电流阴极保护设计规范》(SY/T0036-2000) 3.2 《钢制管道及储罐腐蚀控制工程设计规范》(SY0007-1999) 3.3 《长输管道阴极保护施工及验收规范》(SY/J4006-90) 3.4 《埋地钢质管道阴极保护参数测量方法》(GB/T 21246-2007) 3.5 《钢质管道外腐蚀控制规范》(GB/T 21447-2008) 3.6 《埋地钢质管道阴极保护技术规范》(GB/T 21448-2008) 3.7 《埋地钢质管道直流排流保护技术标准》(SY/T 0017-2006) 3.8 《埋地钢质管道交流干扰防护技术标准》(GB/T 50698—2011) 3.9 《减轻交流电和雷电对金属构筑物和腐蚀控制系统影响的措施》(NACE SP0177-2007) 3.10 《阴极保护管道的电绝缘标准》(SY/T 0086-2003) 3.11 《埋地钢质管道交流排流保护技术标准》(中华人民共和国石油天然气行业标准SY/T 0032-2000) 3.12 《埋地钢质管道牺牲阳极阴极保护设计规范》(中华人民共和国石油天然气行业标准 SY/T 0019-97)。 3.13《埋地钢质管道交流干扰防护技术标准》(GB 50698-2011) 3.14 业主方提供的其他资料、图纸。

电化学分析系统中pA_A微电流测量

第25卷 第11期 电子测量与仪器学报 Vol. 25 No.11 · 972 · JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT 2011年11月 本文于2011年9月收到。 DOI: 10.3724/SP.J.1187.2011.00972 电化学分析系统中pA~μA 微电流测量 王 俊 (福州大学 至诚学院, 福州 350002) 摘 要: 为了提高电化学分析系统的分析速度和测量的准确度。探究如何对电化学分析系统中,既有慢变化又有快变化的pA~μA 范围的微电流进行快速、准确的测量。基于定阻式I/V 转换的方法,对pA~μA 范围的微电流,设置了由微机控制的多个电流量程及自动调零电路,以及从软?硬件上进行抗工频干扰的设计。实现对宽范围微电流测量的量程快速搜索?转换,提高了电化学分析系统中pA~μA 范围微电流测量的准确度? 关键词: 微电流; 测量; pA~μA; 电化学分析系统 中图分类号: TH399 文献标识码: A 国家标准学科分类代码: 460.40 pA~μA micro-current measurement in electrochemical analysis system Wang Jun (Zhicheng College, Fuzhou University, Fuzhou 350002, China) Abstract: In order to improve the speed of analysis and the accuracy of measurement in electrochemical analysis system, the fast-speed and accurate measurement of micro current of pA~μA range in both slow and fast change was researched. Based on the constant resistance I/V conversion method, for the pA~μA micro-current measurement range, a number of current computer control and automatic zero-adjusting circuit was set up, and anti-frequency interference design of software and hardware were carried out. The fast search and conversion in wide micro current measurement range were realized. Thereby the scope of pA~μA micro-current measurement accuracy is enhanced. Keywords: micro-currents; measurements; pA~μA; Electrochemical analysis system 1 引 言 应用在电化学、生物电化学和生命科学等作为物质组分分析和测量的电化学分析系统。随着超微电极技术的突破性进展, 使用具有信?噪比高、反应速度快等优良电化学特性的微电极、超微电极作为电化学分析系统的传感器, 大大提高了该系统对微小量测量的准确度[1-2]。微电极、超微电极由于化学反应所生成的微电流(极化电流), 其范围为pA~μA, 对该范围的微电流测量, 正是文中要讨论的。 把反映被测物质含量的微电流信号, 经过电流—电压转换, 形成相应的电压信号。 利用计算机技术对产生的电压信号进行一系列的数据处理, 电化学分析系统可以较容易实现最优化选择, 实现数据处理过程的全部自动化, 但系统的分析速度和测量的准确 度之关键在于对微电流的测量。 鉴于微电极、超微电极其尺寸及表面形状、测试它们的化学反应体系及其控制电位(电压)的波型、扫描速度以及电化学分析方法等不同, 其极化电流峰值大小差别很大, 达几个数量级[3]。微电极一般为nA~μA, 超微电极一般为pA~nA, 极化电流的时间曲线和电位曲线也不同。有的变化较缓慢, 有的变化较快, 有的曲线的频谱还包含工频50 Hz 频率分量, 而且测试环境往往是高阻抗, 工频干扰尤显严重, 对测量小至pA 级微电流的元器件的温、湿度影响很大。因此, 要快速、准确地测量电化学分析系统中pA~μA 微电流难度较大[9]。 电化学分析系统中测量的微电流可小至pA 级, 要实现对既有慢变化的, 又有快变化的pA~μA 宽范围微电流量程自动地快速搜索、转换有以下难点:

高压直流电压电流的测量

高压直流电压电流的测量 一.高压直流电流测量 测量方式: 1.霍尔式隔离传感器(磁隔离) 2.直放式LEM传感器 3.平衡式LEM传感器 测量原理: 1.霍尔式隔离传感器(磁隔离) 霍尔效应: 如图所示,在一个N型半导体薄片(霍尔元件)相对两侧面通以控制电流I,在薄片垂直方向加以磁场B,则在半导体两侧面会产生一个大小与 控制电流I和磁场B乘积成正比的电势UH。即IB U K H H 这一现象叫做霍尔效应,产生的电势UH叫做霍尔电势,为灵敏度。 当I一定时,UH正比于B。 2.直放式LEM传感器: 在如图所示直放式LEM传感器中存在下列关系:VX∝iX∝LX∝B∝E 该传感器价格便宜,但是存在零点飘移。 目前市场上多为双电源,单电源数量少而且价格高且易发生磁化问题。4.平衡式LEM传感器: 平衡式LEM传感器自身存在动态平衡,反映速度快,其线性度、灵敏度都比直放式好,且它不受零飘的影响。如图所示,Bx与Bf相抵消直至E=0。

二.高电压测量 稳态高电压与冲击高电压区别: 稳态高电压:主要是指工频交流高压和直流高压。但所述及的测量方法或装置,有的也可用于频率在一定范围以内的高频高压或脉动成分很大的直流高压的测量。 冲击电压:无论是雷电冲击电压或操作冲击电压,均为快速变化或较快速变化的一种电压。测量冲击电压的整个测量系统包括其中的电压转换装置和指示、记录及测量仪器必须具有良好的瞬态响应特性。一些适宜于测量稳态或慢过程(如直流和交流电压)的测量系统不一定适宜于或根本不可能测量冲击电压。冲击电压的测量包括峰值测量和波形记录两个方面。 实验室与电力系统的高电压测量区别: 电力系统:电力运行部门测量交流高电压,是通过电压互感器和电压表来实现的。用电压互感器测交流电压把电压互感器的高压边接到被测电压,低压边跨接一块电压表,把电压表读数乘上电压互感器的变比,就可得被测电压值。 电力系统没有专门的冲击电压测量系统 实验室:互感器在高电压实验室中用得不多,因为高电压实验室中所要测的电压值常常比现有电压互感器的额定电压高许多,特制一个超高压的电压互感器是比较昂贵的,而且很高电压的互感器也比较笨重,所以采用别的方法来测量交流高电压 实验室的高电压测量: 交流高电压测量: (1) 利用气体放电测量交流高电压――如测量球隙 (2) 利用静电力测量交流高电压――如静电电压表 (3) 利用整流电容电流测量交流高电压――如峰值电压表 (4) 利用整流充电电压测量交流高电压――如峰值电压表 直流高电压的测量: 用高欧姆电阻串联直流毫安表可以测量直流电压的平均值,是一种比较方便而又常用的测量系统 冲击高电压的测量: (1) 球隙法:是直接测量高电压峰值的一种方法。 (2) 分压器――峰值电压表:只测峰值,不测波形。事先应验证波形合乎标准,或同时用示波器观测波形。 (3) 分压器――示波器(或数字记录仪):可同时测出峰值及波形。在采用数字式示波器或数字记录仪时,可立即获得峰值和时间参数值,并可打印

城市轨道交通杂散电流的危害及其监测系统的研究

城市轨道交通杂散电流的危害及其监测系统的研究 城市轨道交通的供电方式是采用直流电力牵引的方式,回流线是有一定电气阻抗的,会产生杂散电流。杂散电流监测系统可以随时监测杂散电流腐蚀防护系统的状况,以便有关部门及时采取相应措施,从而可以确保地铁长期安全、可靠地运行。 标签:城市轨道交通;杂散电流;监测系统 1 杂散电流的危害 杂散电流对地铁系统中的设备和线路具有一定的腐蚀性,严重时会使管道由于腐蚀严重,而造成漏气、漏水。针对杂散电流的危害,对轨道、线路等结构进行设计时,使用了多种绝缘保护。但随着地铁运营时间的推移,由于受到各种因素的影响,使这些绝缘性能大大降低,并不能有效预防杂散电流。 为了保证地铁能够长期安全运营,应实时监视杂散电流的泄漏及腐蚀情况,以便有关部门能及时采取相应的措施,因此,需要建立一套完善的杂散电流监测系统。 2 杂散电流监测系统工作原理 杂散电流监控装置由信号测量电缆、测试端子箱、微机综合测试装置(信号转换箱、A/D转换设备、笔记本)组成,如图1所示。 2.1 信号测量电缆 用于连接参比电极与测试端子箱,沿区间敷设在电缆支架上,通信电缆采用屏蔽控制电缆。 2.2 测试端子箱 安装在变电所内,各个测试点分布在站区内,主要测试参考电极电位。这些测试到的电位和收集网的端子电位,通过信号电缆集中在一起,从而将信号传送到信号转换箱。 2.3 综合测试装置 综合测试装置对应每个通道均有放大档位调节旋钮,主要包括信号采集机构、放大机构、A/D转换机构和计算机处理机构。信号采集机构将采集到的信号传送给放大机构进行放大,再传送到A/D转换机构进行采样,采样得到的数据存储在计算机中进行运算处理,最后会得到每个测试点的电位——时间曲线图。

元坝气田埋地管道交流杂散电流排流技术研究

元坝气田埋地管道交流杂散电流排流技术研究 摘要:元坝气田站外集输埋地钢质管道的防腐一般联合采用管道外部防腐层加阴极保护的方法,集输埋地管道在运行过程中出现杂散电流干扰问题,不仅会加快管道腐蚀,同时电压过 高将对管道操作人员人身安全造成威胁。通过现场勘探、连续监测电压方式确认交流干扰的 位置、带电原因,确定干扰程度为中~强。采取安装固态去耦合器的排流措施,选择合理的 安装位置,将交流杂散电流干扰电压控制在4V以下,满足埋地钢质管道交流干扰防护技术 标准,有效消除管道交流腐蚀隐患。 关键词:埋地管道;杂散电流;交流干扰;排流;固态去耦合器 1 背景 元坝气田属于高含硫气田,集输管道在生产运行过程中发现,集气总站至元坝X0-1H管线存 在明显的交流干扰,测到最大交流电压达到25V。元坝X03H附近电压最高,距离场站越远,电位基本处于下降趋势;交流电压大小呈周期性变化,在一天内存在早上11:00-12:00和下午18:00-21:00两个峰值。 图1 干扰电压一天内变化情况 2 交流干扰的原因及程度分析 2.1 产生交流干扰原因分析 经现场排查,集气总站至元坝X03H至元坝X0-1H段主要干扰源为东河苍溪段水利发电站和500KV高压交流输电线路,苍溪段共有6座阶梯水电站,自上游至下游分别为东溪电站、蜂 子岩电站、鲤口电站、杨牟寺电站、碑沱电站及梨苑滩电站。其中的梨苑滩电站距离检测管 段最近。 2.2 交流干扰程度分析 经现场踏勘,管道沿线主要地理环境为丘陵和低山,管道埋设环境主要为农田、荒地。管道 沿线土壤电阻率为21~22Ω·m,土壤腐蚀性中~强,根据GB/T 50698-2011《埋地钢质管道交流干扰防护技术标准》相关条款,交流电流密度为55-122A/m2,各条线路交流干扰程度为中~强。 3 交流杂散电流的消除措施 根据GB/T50698-2011《埋地钢质管道交流干扰防护技术标准》,针对元坝气田埋地集输管道的交流干扰,采取加装固态去耦合器排流装置进行排流,对元坝X0-2H至元坝X0-1H、元坝 X0-1H至元坝X03H位置安装排流装置。 排流设备采用固态去耦合器,接地体采用锌合金阳极,同时采用锌带和锌合金阳极敷设在管 道一侧的方式。固态去耦合器在高压铁塔附近时,去耦合器应安装在高压铁塔与管道垂直的 位置;锌带和锌合金位于管道存在高压线或高压线铁塔一侧,敷设在排流沟内,与管道距离 大于 2.5m,不可与管道交叉;敷设 2 支锌合金阳极,每支锌合金阳极敷设间距为2米,距离 管道2.5米,埋深0.7米。 图2 排流设施安装示意图 4 效果评估

铁塔与管道排流施工 交直流杂散电流排除

河南汇龙合金材料有限公司考虑到排流地床接地体既要保证将杂散电流排走,又要保证阴极保护电流不被排走,当管道所受的直流干扰为正电流干扰的情况下,通常接地体一般选择牺牲阳极接地体如镁阳极或者锌接地体,牺牲阳极既可以作为接地将杂散电流排入地下,还可以提供足够的阴极保护电流来抵消直流杂散电流的干扰; 当管道所受的直流干扰为负电流干扰的情况下,接地体一般可选择铜接地体,因为锌接地体等牺牲阳极自身开路电位较高,加上钳位式排流器0.5V的电压差,无法将多余电流排走。该工程正是受直流杂散电流负干扰较为严重的情况,不能选择牺牲阳极作为接地体或者牺牲阳极阴极保护系统,容易产生过保护。 高压输电线路与地下金属管道平行分布且相互距离较近时,由于磁性耦合的作用,管道上会产生交流电压,在测量上表现为管地交流电位,即由输电线路引起的交流干扰。 新大管道沿线高压输电线路较多,有些管段与高压线近距离平行,易受交流干扰。为此,对管道交流电位进行了24h连续测试,实测结果表明,新大管道存在强直流和弱交流干扰,需要采取排流保护措施。

管道上施加的强制电流阴极保护对直流干扰有明显的作用。 与轻轨平行的新大管道管段应采用排流保护,以降低杂散电流对该管段的干扰;在管道两端利用阴极保护对杂散电流的作用来降低对管道的干扰,并使该管段得到有效的阴极保护,具体设计方案如下。 (1)在管道末端增设1座阴极保护站,以减轻轻轨穿越点处至七厂段管道直流的干扰,解决该管段的阴极保护电位不足的问题。 (2)在管道与轻轨平行段预设6~8处排流设施,既可消除该管段的直流干扰,又可同时减弱其交流干扰。 (3)排流装置采用接地式排流方式,该方式位置选择灵活,对其它设施干扰小。对于轻轨铁路引起的干扰,由于管道电位波动较大,且存在正负交变现象,为防止杂散电流倒流人管道,排流器需增设防逆流装置,即极性排流器。排流接地极材料选用镁合金阳极,不仅可以提高排流驱动电压,而且还可为管道提供阴极保护。 (4)考虑到管道与轻轨平行段附近多数地域较狭窄,排流接地极采用了灵活的排布方式,接地地床方

杂散电流与地表土壤电位

杂散电流与地表土壤电位在杂散电流进入管道的部分,管道为阴极而得到保护,但是过大的电流进入时,这部分管道就会发生过保护。同时杂散电流离开管道的地方就会因为失去电子而腐蚀。确定管道是否已经受到杂散电流的干扰,可以通过检测管道电位的变化与历史数据比较来判断。 直流杂散电流腐蚀干扰的判断标准:管地电位偏移判断标准:当管地电位正向偏移值小于20mV时,杂散电流的程度比较弱;当管地电位正向偏移值在20mV到200mV之间时,杂散电流程度适中;当管地电位正向偏移值大于200mV时杂散电流的程度比较强。杂散电流主要指不按照规定途径移动的电流,它存在于土壤中,与需要保护的设备系统没有关联。这种在土壤中的杂散电流会通过管道某一部位进入管道,并在管道中移动一段距离后在从管道中离开回到土壤中,这些电流离开管道的地方就会发生腐蚀,也因此被称为杂散电流腐蚀。 杂散电流的输出点有很多包括有外加电流阴极保护系统,DC电车系统,DC开矿以及焊接系统,高压DC、AC传输线路。杂散电流有动态与静态之分,随时间变化大小或方向的为动态杂散电流,不发生改变的为静态杂散电流。 地表土壤电位梯度判断指标:当土壤电位梯度小于0.5mV/m时,杂散电流的程度比较弱;当土壤电位梯度在0.5mV/m到5.0mV/m之间时,杂散电流的程度适中;当土壤电位梯度大于5.0mV/m时,杂散电流的程度比较强。 当管道上的任何一处测量电位值正向偏差到100mV时或者被保

护管道附近的土壤中测量的电位梯度大于2.5mV/m的时候,就应该及时的管道进行阴极保护的防腐蚀措施。 沥青防腐层埋地钢制管道交流干扰判断指标:干扰程度比较弱时碱性土壤的判断标准是小于10V,中性土壤的判断标准是小于8V,酸性土壤的判断标准是小于6V;干扰程度为中级时碱性土壤的判断标准是10V到20V之间,中性土壤的判断标准是8V到15V之间,酸性土壤的判断标准是6V~10V之间;干扰程度比较强时,碱性土壤的判断标准是大于20V,中性土壤的判断标准是大于15V,酸性土壤的判断标准是大于10V.对于高性能防腐层,判断标准为15V。采取排流措施后,使腐蚀干扰处于若干扰电压值。该指标取自国内标准。国外标准中通常根据土壤的电阻率确定允许交流电压值。

物理实验的基本方法及数据处理基本方法

摘要:物理学是实验性学科,而物理实验在物理学的研究中占有非常重要的地位。本文着重介绍工科大学物理实验蕴涵的实验方法,提出工科大学物理实验的新类型。并介绍相关的数据处理的方法。 关键词:大学物理实验方法数据处理 正文: 一、大学物理实验方法 实验的目的是为了揭示与探索自然规律。掌握有关的基本实验方法,对提高科学实验能力有重要作用。实验离不开测量,如何根据测量要求,设计实验途径,达到实验目的?是一个必须思考的重要问题。有许多实验方法或测量方法,就是同一量的测量、同一实验也会体现多种方法且各种方法又相互渗透和结合。实验方法如何分类并无硬性规定。下面总结几种常用的基本实验方法。 根据测量方法和测量技术的不同,可以分为比较法、放大法、平衡法、转换法、模拟法、干涉法、示踪法等。 (一)比较法 根据一定的原理,通过与标准对象或标准量进行比较来确定待测对象的特征或待测量数值的实验方法称为比较法。它是最普遍、最基本、最常用的实验方法,又分直接比较法、间接比较法和特征比较法。直接比较法是将被测量与同类物理量的标准量直接进行比较,直接读数直接得到测量数据。例如,用游标卡尺和千分尺测量长度,用钟表测量时间。间接比较法是借助于一些中间量或将被测量进行某种变换,来间接实现比较测量的方法。例如,温度计测温度,电流表测电流,电位差计测电压,示波器上用李萨如图形测量未知信号频率等。特征比较法是通过与标准对象的特征进行比较来确定待测对象的特征的观测过程。例如,光谱实验就是通过光谱的比较来确定被测物体的化学成分及其含量的。 (二)放大法 由于被测量过小,用给定的某种仪器进行测量会造成很大的误差,甚至小到无法被实验者或仪器直接感觉和反应。此时可以先通过某种途径将被测量放大,然后再进行测量。放大被测量所用的原理和方法称为放大法。放大法分累计放大法、机械放大法、电磁放大法和光学放大法等。 1、累计放大法在被测物理量能够简单重叠的条件下,将它展延若干倍再进行测量的方法称为累计放大法。例如,在转动惯量的测量中用秒表测量三线摆的周期。

各种电流检测方式的比较

浅谈电流检测方式 一、检测电阻+运放 优势: 成本低、精度较高、体积小 劣势: 温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。 检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT和PT就是特殊的变压器。基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号)工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性 模块型霍尔电流传感器 模块型霍尔电流传感器分开环模式与闭环模式。 开环模式又称为直接测量式霍尔电流传感器,输入为电流,输出为电压。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。 开环模式的结构原理见下图 根据检测量程的需求,一般分为以下两种绕线模式,左图为小量程的结构图,右图为大量程的结构图。 闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图

杂散电流监测系统(含排流柜)、单向导通装置技术规格书

杂散电流监测系统(含排流柜)、单向导通装置技术规格书 (一)杂散电流监测系统(含排流柜) 1. 适用范围 本技术要求适用于重庆轨道交通一号线朝沙段杂散电流监测系统,并作为投标方制定投标技术文件和供货设备的技术依据。 2. 环境条件 1)环境温度:-5?C~+44.5?C 2)污秽等级:重污区 3)相对湿度:日平均:95% 月平均:90% 有凝露发生 4)海拔高度:≤1000m 5)雷电日:60D/年 6)地震烈度:7度 3. 供货规格型号 4. 采用标准(但不限于此) 地铁杂散电流自动监测系统有关设备所涉及的产品标准、规范;工程标准、规范;验收标准、规范等完全满足所有中华人民共和国的条例及规范,包括:《地铁杂散电流腐蚀防护技术规程》CJJ49-92 《低压电器外壳防护等级》GB4942.2-85 《电工电子产品基本环境试验规程》GB2423-81 《电磁兼容试验和测量技术》GB/T 17626 《煤矿通信、检验、控制用电工电子产品基本试验方法》MT 210 《交流电气装置的接地》DL/T621-1997

《地铁设计规范》GB50157-2003 《地铁直流牵引供电系统》GB10411-89 5. 系统构成 本工程杂散电流监测系统采用车站(变电所)监测和控制中心集中监测二级监测系统。 杂散电流监测装置通过变电所内通信网络与电力监控系统接口,并将处理和统计后的数据传至监控中心。 杂散电流监测系统由参比电极、整体道床测防端子、地下结构测防端子、测量线、传感器、通信电缆、信号转接器、监测装置组成。 6. 系统功能 杂散电流监测装置的输入端与从沿线各传感器引入的通信电缆连接,通过各监测点传感器实时采集监测分区内的结构钢筋的极化电位,参比电极自然本体电位,并对数据进行A/D转换,计算、存贮、统计并通过变电所内通信网络,将统计结果传送到变电所自动化系统,本监测系统具备以下几种功能: 6.1 通信功能 每个供电区间内的监测装置定期向传感器发出数据采集命令,数据按指定的格式上传到监测装置。 监测装置与SCADA通信每天上传的数据是: (1)监测点参比电极本体电位值。 (2)监测点极化电位实时值、正向偏移电位平均值。 (3)监测点30分钟极化电位正向偏移超标值、接触电压平均值。 6.2 测量功能 (1)实时监测道床结构钢筋的极化电位。 (2)实时监测隧道结构钢筋的极化电位。 (3)机车停止运行时,参比电极的自然本体电位。 6.3 计算功能。 根据计算极化电位的数学模型计算出30分钟监测点的极化电位正向偏移平均值。 6.4 显示功能 (1)就地显示道床结构钢筋的极化电位。

相关文档
最新文档