高考考前数学120个提醒

合集下载

2024年高考考前指导(考前提醒+心理调整+应试策略+答题技巧)

2024年高考考前指导(考前提醒+心理调整+应试策略+答题技巧)

内容提纲1、考前篇2、考场篇3、答题技巧:(1)单项选择题的答题技巧;(2)多项选择题的答题技巧;(3)填空题的解题技巧;(4)解答题的答题技巧4、七大题型解题策略:(1)数列;(2)解三角形;(3)立体几何(4)概率统计(5)解析几何(6)导数及应用(7)新定义题型1、合理作息、调整状态适当休息、按时学习,调整状态,以最好的状态迎接高考!2、适度温习、保持题感准备好回扣材料、错题好题本、一模以来的高考综合模拟题等相应材料考前再浏览一遍重点题目,作息时间和高考保持一致,学习上做基础题练笔,看以前的错题,不要再做新题、仿真卷、猜题卷等!对新题看看思路,也可做些简单题,免得"手生".考前把一些基本数据、常用公式、重要定理"过过电影"。

再看一眼难记易忘结论、平时考试比较容易出错的地方:如抽样中的平均数、方差公式、几何体的体积面积公式、圆锥曲线和平面向量的二级结论等.3、清单物品、奔赴考场出发前,再次清点用具是否带全(笔、橡皮、作图工具、身份证、准考证等),根据学校的安排,精神放松,心态平静的奔赴考场考场。

到达考场后不要打闹喧哗,按照考场安排,按时进入考场。

1、填涂信息拿到答题卡后一定先认真填涂信息,贴好二维码,注意不要忙中出错影响考试心态,万一出现错误,也不必着急,请示监考老师后,考点会有补救措施。

2、心理调整(1)合理设置考试目标,创设宽松的应考心理,以平常心对待高考。

(2)调节呼吸,不断进行积极的心理暗示。

(3)遇事都往好处想在考试时,要相信自己的水平,相信自己已经复习的很好了,没有什么不会的了。

就算是有不会的,也要告诉自己:“这题我不会,那么大家肯定都不会,我不是一个人。

”就算数学是弱科,你也要知足常乐,把会做的题都做完,把该得的的分都得到就好了。

3、通览试卷刚拿到试卷,一般心情比较紧张。

开考铃响之前不允许答题,利用这5分钟:先从头到尾、正反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查。

高考数学考前100个提醒

高考数学考前100个提醒

回归课本: 高考数学考前提醒一、集合与简易逻辑1、已知集合A 、B ,当A B = ∅时,切记要注意到“极端”情况:∅=A 或∅=B ; 求集合的子集时别忘记∅;φ是任何集合的子集,是任何非空集合的真子集.2、含n 个元素的有限集合的子集个数为n 2,真子集为,12-n其非空子集、非空真子集的个数依次为,12-n .22-n二、函数与导数3、函数的三要素:定义域,值域,对应法则.研究函数的问题一定要注意定义域优先的原则.4、指数式、对数式:m a =1m mnaa -=,01a =,log 10a =,log 1a a =,lg 2lg51+=,log ln e x x =,log (0,1,0)b a a N N b a a N =⇔=>≠>,log a N a N =(对数恒等式).要特别注意真数大于零,底数大于零且不等于1,字母底数还需讨论的呀. 对数的换底公式及它的变形,log log ,log log ,log log log n m n n c a a a a a c b nb b b b b a m===. 5、确定函数单调性的方法有定义法、导数法、图像法(x y x y ==,3的图象会画吗?)和特值法(用于小题)等.注意:①. 0)(>'x f 能推出)(x f 为增函数,但反之不一定。

如函数3)(x x f = 在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

6、奇偶性:f(x)是奇函数⇔f(-x)=-f(x);定义域含零的奇函数必定过原点(f(0)=0); 定义域关于原点对称是为奇函数或偶函数的必要而不充分条件。

奇函数在对称的单调区间内有相同的单调性;偶函数则为相反的单调性;注意:既奇又偶的函数有无数个,解析式只有一种y=0 (如()0f x =,只要定义域关于原点对称即可).7、周期性:①函数()f x 满足()()x a f x f +=-,则()f x 是周期为2a 的周期函数;②若1()(0)()f x a a f x +=±≠恒成立,则2T a =; ③满足条件()()f x a f x a +=-的函数的周期2T a =.8、函数的对称性:满足条件()()f a x f a x +=-的函数的图象关于直线x a =对称; 9、函数()y f x =在点0x 处的导数的几何意义是指:曲线()y f x =在点00(,())P x f x 处 切线的斜率,即0()k f x '=,切线方程为()()000y y f x x x '-=-.10、导数应用:⑴在某点的切线只有一条;过某点的切线不一定只有一条;(2)给出函数极大(小)值的条件,一定要既考虑0()0f x '=,又要考虑检验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记!千万别上当噢. 11、导数公式:()ln xxaaa '=,()1log ln x a x a'=()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、数列12、11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩, 注意一定要验证a 1是否包含在a n 中,从而考虑要不要分段.13、等比数列中11n n a a q-=; 当q=1,S n =na 1 ;当q≠1,S n =qq a n --1)1(1=q qa a n --11.14、常用性质:等差数列中:()n m a a n m d =+-;若q p n m +=+,则q p n m a a a a +=+; 等比数列中:n m n m a a q -=; 若q p n m +=+,则q p n m a a a a ⋅=⋅;15、求和常法:公式、分组、裂项相消、错位相减法、倒序相加法.关键是要找准通项结构. 16、求通项常法: (1)已知数列的前n 项和n S ,你现在会求通项n a 了吗?(2)先猜后证; (3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+ ; 叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=----- . 四、三角17、弧长公式||l R α=,扇形面积公式211||22S lR R α==,1弧度57.305718'≈= .18、解斜三角形ABC ∆,易得:A B C π++=,19、诱导公式简记:奇变偶不变.....,.符号看象限......(注意:公式中始.终视..α.为锐角...).20、巧变角(角的拆拼):如()()ααββαββ=+-=-+, 2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等.五、平面向量21、想一想如何求向量的模?a 在b方向上的投影是什么? (是个实数,可正可负可为零!).22、 若→1e 和→2e 是平面一组基底,则该平面任一向量→→→+=2211e e a λλ(21,λλ唯一).特别:=12OA OB λλ+则121λλ+=是三点P 、A 、B 共线的充要条件。

高考前数学100个提醒3

高考前数学100个提醒3

高考前数学100个提醒3三、数列、 26、a n ={),2()1(*11N n n S S n S n n ∈≥-=- 注意验证a 1是否包含在a n 的公式中。

27、)*,2(2)(111中项常数}等差{N n n a a a d a a a n n n n n n ∈≥+=⇔=-⇔-+-?,,,);0()(2=+=⇔+=⇔B A b a Bn Ans b an a n n 的二次常数项为一次2n n -1n 1n 1n a a a (n 2,n N )a }q ();a 0nn a a +-⎧=⋅≥∈⇔⇔=⎨≠⎩{等比定 ?m ;a a 11n =⋅-=⇔⋅=⇔-nn n q m m s q如若{}n a 是等比数列,且3n n S r =+,则r = (答:-1)28、首项正的递减(或首项负的递增)等差数列前n 项和最大(或最小)问题,转化为解不等式)0(0011⎩⎨⎧≥≤⎩⎨⎧≤≥++n n n n a a a a 或,或用二次函数处理;(等比前n 项积?),由此你能求一般数列中的最大或最小项吗?如(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。

(答:前13项和最大,最大值为169);(2)若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是(答:4006)29、等差数列中a n =a 1+(n-1)d;S n =dn n na 2)1(1-+=dn n na n2)1(--=2)(1n a a n +等比数列中a n = a 1 q n-1;当q=1,S n =na 1 当q≠1,S n =qq a n--1)1(1=qq a a n --1130.常用性质:等差数列中, a n =a m + (n -m)d, nm a a d n m --=;当m+n=p+q,a m +a n =a p +a q ;等比数列中,a n =a m q n-m; 当m+n=p+q ,a m a n =a p a q ;如(1)在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___(答:512);(2)各项均为正数的等比数列{}n a 中,若569a a ⋅=,则313231l o g l o g l o g a a a +++= (答:10)。

高考数学(理)考前必记的60个知识点含公式推理推论总结及提醒

高考数学(理)考前必记的60个知识点含公式推理推论总结及提醒

高考理科数学考前必记的60个知识点集合(1)集合之间关系的判断方法①A真含于B⇔A⊆B且A≠B,类比于a<b⇔a≤b且a≠b.②A⊆B⇔A真含于B或A=B,类比于a≤b⇔a<b或a=b.③A=B⇔A⊆B且A⊇B,类比于a=b⇔a≤b且a≥b.(2)集合间关系的两个重要结论①A⊆B包含A=B和A B两种情况,两者必居其一,若存在x∈B且x∉A,说明A≠B ,只能是A B.②集合相等的两层含义:若A⊆B且B⊆A,则A=B;若A=B,则A⊆B且B⊆A.[提醒]1任何一个集合是它本身的子集,即A⊆A.2对于集合A,B,C,如果A⊆B且B⊆C,则有A⊆C.3含有n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.4集合中元素的三大特性:确定性、互异性、无序性.常见关键词及其否定形式关键词等于大于小于是一定是都是至少有一个至多有一个存在否定词不等于不大于不小于不是不一定是不都是一个也没有至少有两个不存在命题(1)四种命题间的相互关系(2)四种命题的真假性原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假[提醒]1两个命题互为逆否命题,它们有相同的真假性.2两个命题为互逆命题或互否命题,它们的真假性没有关系.3在判断一些命题的真假时,如果不容易直接判断,则可以判断其逆否命题的真假.(3)含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所述:命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M非p(x) 充分、必要条件(1)充分条件与必要条件的相关概念①如果p⇒q,那么p是q的充分条件,同时q是p的必要条件.②如果p⇒q,但q⇒/ p,那么p是q的充分不必要条件.③如果p⇒q,且q⇒p,那么p是q的充要条件.④如果q⇒p,且p⇒/ q,那么p是q的必要不充分条件.⑤如果p⇒/ q,且q⇒/ p,那么p是q的既不充分也不必要条件.(2)充分、必要条件与集合的对应关系从逻辑观点看从集合观点看p是q的充分条件(p⇒q)A⊆Bp是q的必要条件(q⇒p)A⊇Bp是q的充分不必要条件(p⇒q,q⇒/ p)A真含于Bp是q的必要不充分条件(q⇒p,p⇒/ q)A真包含Bp是q的充要条件(p⇔q)A=B函数的定义域及相关的6个结论(1)如果f(x)是整式函数,那么函数的定义域是R.(2)如果f(x)是分式函数,那么函数的定义域是使分母不等于0的实数的集合.(3)如果f(x)是偶次根式函数,那么函数的定义域是使被开方数大于或等于0的实数的集合.(4)如果f(x)是对数函数,那么函数的定义域是使真数大于0的实数的集合.(5)如果f(x)是由几个代数式构成的,那么函数的定义域是使各式子都有意义的实数的集合.(6)如果f(x)是从实际问题中得出的函数,则要结合实际情况考虑函数的定义域.函数的值域求函数值域常用的7种方法(1)配方法:二次函数及能通过换元法转化为二次函数的函数类型.(2)判别式法:分子、分母中含有二次项的函数类型,此函数经过变形后可以化为x2A(y)+xB(y)+C(y)=0的形式,再利用判别式加以判断.(3)换元法:无理函数、三角函数(用三角代换)等,如求函数y=2x-3+13-4x的值域.(4)数形结合法:函数和其几何意义相联系的函数类型,如求函数y=3-sin x2-cos x的值域.(5)不等式法:利用几个重要不等式及推论求最值,如a2+b2≥2ab,a+b≥2ab(a,b为正实数).(6)有界性法:一般用于三角函数类型,即利用sin x∈[-1,1],cos x∈[-1,1]等.(7)分离常数法:适用于解析式为分式形式的函数,如求y=x+1x-1的值域.指数函数与对数函数(1)指数函数与对数函数的对比区分表解析式y=a x(a>0且a≠1)y=log a x(a>0且a≠1)定义域R(0,+∞)值域(0,+∞)R图象关系指数函数对数函数奇偶性非奇非偶非奇非偶单调性0<a<1时,在R上是减函数;0<a<1时,在(0,+∞)上是减函数;a>1时,在R上是增函数a>1时,在(0,+∞)上是增函数[提醒]直线x=1与所给指数函数图象的交点的纵坐标即底数,直线y=1与所给对数函数图象的交点的横坐标即底数.(2)比较幂值大小的方法①若指数相同,底数不同,则考虑幂函数.②若指数不同,底数相同,则考虑指数函数.③若指数与底数都不同,则考虑借助中间量,这个中间量的底数与所比较的一个数的底数相同,指数与另一个数的指数相同,那么这个数就介于所比较的两数之间,进而比较大小.(3)常见抽象函数的性质与对应的特殊函数模型的对照表抽象函数的性质特殊函数模型①f(x+y)=f(x)+f(y)(x∈R,y∈R);②f(x-y)=f(x)-f(y)(x∈R,y∈R)正比例函数f(x)=kx(k≠0)①f (x )f (y )=f (x +y )(x ,y ∈R ); ②f (x )f (y )=f (x -y )(x ,y ∈R ,f (y )≠0) 指数函数f (x ) =a x (a >0,a ≠1)①f (xy )=f (x )+f (y )(x >0,y >0);②f (xy)=f (x )-f (y )(x >0,y >0)对数函数f (x )=log a x (a >0,a ≠1)①f (xy )=f (x )f (y )(x ,y ∈R ); ②f (x y )=f (x )f (y )(x ,y ∈R ,y ≠0)幂函数f (x )=x n函数零点的判断方法(1)利用零点存在定理判断法:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0.这个c 也就是方程f (x )=0的根.口诀:函数零点方程根,数形本是同根生,函数零点端点判,图象连续不能忘.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点. 导数(1)基本初等函数的导数公式①(sin x )′=cos x ,(cos x )′=-sin x .②(ln x )′=1x (x >0),(log a x )′=1x ln a(x >0,a >0,且a ≠1).③(e x )′=e x ,(a x )′=a x ln a (a >0,且a ≠1). (2)导数的四则运算法则 ①(u ±v )′=u ′±v ′⇒[f 1(x )+f 2(x )+…+f n (x )]′ =f ′1(x )+f ′2(x )+…+f ′n (x ).②(u v )′=v u ′+v ′u ⇒(c v )′=c ′v +c v ′=c v ′(c 为常数). ③⎝⎛⎭⎫u v ′=v u ′-v ′u v 2(v ≠0).[提醒] 1若两个函数可导,则它们的和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.2利用公式求导时,一定要注意公式的适用范围及符号,如(x n )′=nx n -1中n ∈Q *,(cos x )′=-sin x . 3注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.4导数的加法与减法法则,可由两个可导函数推广到任意有限个可导函数的情形,即[u (x )±v (x )±…±w (x )]′=u ′(x )±v ′(x )±…±w ′(x ).5一般情况下,[f (x )g (x )]′≠f ′(x )g ′(x ),[f (x )·g (x )]′≠f ′(x )+g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )-g ′(x ).6。

上海高考数学知识点整理(全)

上海高考数学知识点整理(全)

高考临近给你提个醒集合与简易逻辑1.例1.集合R x x y y M ∈==,2,R x x y y N ∈+-==,12,则=N M 例2.集合{}R x x y y x M ∈==,),(2,{}R x x y y x N ∈+-==,1),(2,=N M 例3.集合()(){}R a a M ∈+==λλ,4,32,1,集合()(){}R a a N ∈+==λλ,5,43,2,则=N M2.研究集合必须注意集合元素的特征,即集合元素的三性:确定性、互异性、无序性。

例4.已知集合{},,lg()A x xy xy =,集合{}y x B ,||,0=,且B A =,则=+y x3.集合的性质:① 任何一个集合P 都是它本身的子集,记为P P ⊆。

② 空集是任何集合P 的子集,记为P ⊆∅。

③ 空集是任何非空集合P 的真子集,记为P ≠⊂∅。

注意:若条件为B A ⊆,在讨论的时候不要遗忘了∅=A 的情况。

例5.集合}012|{2=--=x ax x A ,如果∅=+R A ,实数a 的取值范围集合的运算:④ ()()C B A C B A =、()()C B A C B A =; ()()()U U U C AB C A C B =、()()()U U U C A B C A C B =。

⑤ ∅=⇔⊆⇔⊆⇔=⇔=B C A A C B C B A B B A A B A U U U 。

⑥ 对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为:n2、12-n、12-n、22-n。

例6.满足条件{}{}5,4,3,2,12,1⊆⊂≠A 的集合A 共有 个。

4.研究集合之间的关系,当判断不清时,建议通过“具体化...”的思想进行研究。

例7.已知{}N k k x x M ∈+==,12,{}N k k x x N ∈±==,14,则N M _____。

高考数学考前指导 高考临近给考生的100个温馨提醒试题

高考数学考前指导 高考临近给考生的100个温馨提醒试题

2021年高考数学考前指导 高考临近给考生的100个温馨提醒亲爱的高三同学,当你即将迈进考场时,对于以下问题,你是否有清醒的认识?你的数学教师提醒你:1.集合中的元素具有无序性和互异性。

如集合{},2a 隐含条件2a ≠,集合{}|(1)()0x x x a --=不能直接化成{}1,a 。

2.研究集合问题,一定要抓住集合中的代表元素,如:{x y x lg |=}与{x y y lg |=}及{x y y x lg |),(=}三集合并不表示同一集合;再如:设A={直线},B={圆},问A ∩B 中元素有几个?能答复是一个,两个或者没有吗?3 .进展集合的交、并、补运算时,不要忘了集合本身和空集的特殊情况,不要忘了借助于数轴和韦恩图进展求解;假设A B=φ,那么说明集合A 和集合B 没公一共元素,你注意到两种极端情况了吗?A φ=或者B φ=;对于含有n 个元素的有限集合M ,其子集、真子集、和非空真子集的个数分别是2n 、21n -和22n -,你知道吗?A 是B 的子集⇔A ∪B=B ⇔A ∩B=A ⇔A B A B ⊆⇔⊂,假设A B ⊆,你可要注意A φ=的情况。

4.你会用补集的思想解决有关问题吗?C U 〔A ∪B 〕=〔C U A 〕∩〔C U B 〕,C U 〔A ∩B 〕=〔C U A 〕∪〔C U B 〕,这种思想在计算概率时也经常用到:()()P A B P A B =+,()()P A B P A B +=5. 求不等式〔方程〕的解集,或者求定义域时,你按要求写成集合形式了吗?6.研究一个函数的图象或者性质时,你首先考虑函数的定义域了吗?7 .求一个函数的解析式或者一个函数的反函数时,你注明了该函数的定义域了吗?⑴求反函数的步骤掌握了吗?〔①先求函数的定义域和值域;②反解x 1()f y -=,③互换y x ,,得1()y f x -=,一定要注明定义域;原函数与反函数有两个“穿插关系〞:自变量与因变量、定义域与值域原函数)(x f y =在区间[a a ,-]上单调递增,那么一定存在反函数,且反函数也是单调递增;但一个函数存在反函数,此函数不一定单调,这样的函数是什么?如分段函数1(0)()(0)x x f x x x +≥⎧=⎨<⎩注意1()()f a b f b a -=⇔=,1[()]f f x x -=,1[()]f f x x -=, 但11[()][()]f f x f f x --=不一定成立,为什么?⑵ 函数(1)y f x =+的反函数是1()1y f x -=-,而不是1(1)y f x -=+8 .求一个函数的反函数时,你是按照“先求反函数,后求值〞这条原那么解题的吗?例如:11)(+-=x x x f ,求)1(1x f -;再如:函数(1)y f x =+,求1(1)f x -+,一般是先求出()f x ,后求1()f x -,再用代入法求出1(1)f x -+。

高考之前--数学考前3提醒100

高考之前--数学考前3提醒100
ab ; 2
7、小范围推大范围.
ab c , ④ f a x f b x c f x 有对称中心 2 2 三、三角比与三角函数
1、简单三角方程注意三角对称和周期导致的多解. 2、锐角三角形充要条件是任意的两个内角和大于直角.
3、三角形中的最小内角的范围是 0, ,最大内角的范围是 , . 3 3
sin cos ,sin cos ,sin cos 三个式子的正负,开方时往往只取其一.
10、 f x A sin x ( A 0, 0 )为奇函数的充要条件 k k Z ;为偶函数的充 要条件是 k
a1 an q 求和,可避免对项数讨论. 1 q
9、使用累加法、累乘法、退位相减法都必须验证 n 1 的情况,数列通项公式的最终结果要 注意是否分段. 10、题中出现 1 ,一般做奇偶分类讨论,注意最小的奇数与最小的偶数.
n
11、关注分段求和问题与周期数列问题. 六、矩阵与行列式 1、行列式在解二元(三元)一次方程组中的应用,考前关注下,有唯一解,无解,无穷多 解的充要条件. 2、区别余子式,代数余子式,关注增广矩阵在解方程组中的应用. 3、注意矩阵的乘法,加法与减法运算的法则. 七、圆锥曲线 1、看到以 AB 为直径的圆过 M 点,锁定 AM BM ,再利用向量解决,实施坐标运算. 2、 直线过定点问题, 本质上是构造出直线系方程, 多数条件下先设直线方程为 y kx b , 然后找出 b f k ,最后结合直线系方程,得出定点坐标. 3、动圆圆心求轨迹常结合圆锥曲线定义求解,无需设坐标求方程. 4、注意直线点斜式的局限性,解题时要注意补充讨论. 5、直线方程注意两种设法(斜率存在: y kx b ,斜率不存在且不为 0: x ny b ) 6、圆锥曲线问题中,若弦过焦点且涉及到线段和与差的最值,往往可用定义转化(椭圆双 曲线是到一个焦点的距离转化为到另外一个焦点的距离,抛物线是到焦点的距离与到准 线的距离相互转化) ,定义解决不了的,考虑二次函数解决. 7、椭圆、双曲线中焦点三角形的面积公式要熟记(一个是正切,一个是余切,公式中的角 是焦点对短轴张角的一半). 8、涉及到直线与圆锥曲线有两个不同交点时,圆锥曲线与直线关系联立,一定先算△ 0 .

高中数学高考核心考点提醒选修1-1 第一章 常用逻辑用语

高中数学高考核心考点提醒选修1-1 第一章  常用逻辑用语

高中数学高考核心考点提醒选修1-1 第一章常用逻辑用语集合与常用逻辑用语集合概念一组对象的全体. ,x A x A∈∉。

元素特点:互异性、无序性、确定性。

关系子集x A x B A B∈⇒∈⇔⊆A∅⊆;,A B B C A C⊆⊆⇒⊆n个元素集合子集数2n 真子集00,,x A x B x B x A A B∈⇒∈∃∈∉⇔⊂相等,A B B A A B⊆⊆⇔=运算交集{}|,x xB x BA A∈∈=且()()()U U UC A B C A C B=()()()U U UC A B C A C B=()U UC C A A=并集{}|,x xB x BA A∈∈=或补集{}|Ux x UC A x A∈=∉且常用逻辑用语命题概念能够判断真假的语句。

四种命题原命题:若p,则q原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。

互为逆否的命题等价。

逆命题:若q,则p否命题:若p⌝,则q⌝逆否命题:若q⌝,则p⌝充要条件充分条件p q⇒,p是q的充分条件若命题p对应集合A,命题q对应集合B,则p q⇒等价于A B⊆,p q⇔等价于A B=。

必要条件p q⇒,q是p的必要条件充要条件p q⇔,,p q互为充要条件逻辑连接词或命题p q∨,,p q有一为真即为真,,p q均为假时才为假。

类比集合的并且命题p q∧,,p q均为真时才为真,,p q有一为假即为假。

类比集合的交非命题p⌝和p为一真一假两个互为对立的命题。

类比集合的补量词全称量词∀,含全称量词的命题叫全称命题,其否定为特称命题。

存在量词∃,含存在量词的命题叫特称命题,其否定为全称命题。

一、命题及其关系1.四种命题的相互关系:(既否条件又否结论)(先逆再否)(互换条件与结论)2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性,即原命题与逆否命题等价,逆命题与否命题等价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考考前数学120个提醒一、集合与逻辑1、(Ⅰ)区分集合中元素的形式:如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如(1)设集合{|3}M x y x ==+,集合N ={}2|1,y y x x M =+∈,则M N =___(答:[1,)+∞);(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _____(答:)}2,2{(--)(Ⅱ)(1)M ={}R a x ax y a 的定义域为)lg(2+-=,求M ;(2)N ={}R a x ax y a 的值域为)lg(2+-=。

解:(1)02>+-a x ax 在R x ∈恒成立,①当0=a 时,0>-x 在R x ∈不恒成立;②当0≠a 时,则⎩⎨⎧<->04102a a ⇒⎪⎩⎪⎨⎧>-<>21210a a a 或⇒21>a ∴M =⎪⎭⎫ ⎝⎛+∞,21;(2)a x ax +-2能取遍所有的正实数。

①当0=a 时,x -R ∈;②当0≠a 时,则⎩⎨⎧≥->04102a a ⇒⎪⎩⎪⎨⎧≤≤->21210a a ⇒210≤<a 。

∴N =⎥⎦⎤⎢⎣⎡21,0。

2、条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。

如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

(答:a ≤0)3、(1)}|{B x A x x B A ∈∈=且 ;}|{B x A x x B A ∈∈=或 C U A={x|x ∈U 但x ∉A};B A ⊆⇔若x ∈A 则x ∈B ;真子集怎定义?含n 个元素的集合的子集个数为2n ,真子集个数为2n -1,非空真子集个数为2n -2;如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。

(答:7)(2)从集合{}n a a a a A ,,,,321⋅⋅⋅=到集合{}m b b b b B ,,,,321⋅⋅⋅=的映射有nm 个。

(3)C U (A ∩B)=C U A ∪C U B ;C U (A ∪B)=C U A ∩C U B;card(A ∪B)=?(4)A ∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A ∩C U B=∅⇔C U A ∪B=U (5)补集思想常运用于解决否定型或正面较复杂的有关问题。

如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围。

(答:3(3,)2-) 4、充要条件与命题:(1)充要条件:①充分条件:若p q ⇒,则p 是q 充分条件。

②必要条件:若q p ⇒,则p 是q 必要条件。

③充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件。

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然。

(2)四种命题:①原命题:p q ⇒;②逆命题:q p ⇒;③否命题:p q ⌝⇒⌝;④逆否命题:q p ⌝⇒⌝;互为逆否的两个命题是等价的。

如:“βαsin sin ≠”是“βα≠”的 条件。

(答:充分非必要条件)(3)若p q ⇒且q p ≠;则p 是q 的充分非必要条件(或q 是p 的必要非充分条件);(4)注意命题p q ⇒的否定与它的否命题的区别:① 命题p q ⇒的否定是p q ⇒⌝;②否命题是p q ⌝⇒⌝;③命题“p 或q ”的否定是“┐P 且┐Q ”;④“p 且q ”的否定是“┐P 或┐Q ”。

(5)注意:如 “若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数”;否定是“若a 和b 都是偶数,则b a +是奇数”。

二、函数与导数5、指数式、对数式:(1)mn a =1mn m na a -=,(以上0,,a m n N *>∈,且1n >)。

01a =,log 10a =,log 1a a =,lg 2lg51+=,log ln e x x =,(2)b N N a a b =⇔=log (0>a ,1≠a ,0>N );(3)()N M MN a a a log log log +=;(4)N M N M a a alog log log -=; (5)log log m n a a n b b m =;(6)对数恒等式:log a N a N =;(7)对数的换底公式:log log log m a m N N a=。

如2log 1()2的值为___(答:164) 6、一次函数:y=ax+b(a ≠0) b=0时奇函数;7、二次函数:①三种形式:一般式f(x)=ax 2+bx+c(轴-b/2a,a ≠0,顶点?);顶点式f(x)=a(x-h)2+k ,h ,k =?;零点式f(x)=a(x-x 1)(x-x 2)(0≠a )(轴?);b=0偶函数;②区间最值:配方后一看开口方向,二讨论对称轴与区间的相对位置关系; 如:若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2)③实根分布:先画图再研究△>0、轴与区间关系、区间端点函数值符号;8、反比例函数:)0x (x c y ≠=平移⇒b x c a y -+=(中心为(b,a)) 9、对勾函数xa x y +=是奇函数,上为增函数,,在区间时)0(),0(,0∞+-∞<a 递减,在时)0,[],0(,0a a a -> ,递增,在),a [],a (+∞--∞10、单调性:(Ⅰ)定义法:设1x 、2x ∈[]b a ,,1x ≠2x ,那么[]1212()()()0x x f x f x -->⇔0)()(2121>--x x x f x f ⇔)(x f 在[]b a ,上是增函数; []1212()()()0x x f x f x --<⇔0)()(2121<--x x x f x f ⇔)(x f 在[]b a ,上是减函数。

(Ⅱ)导数法:设函数)(x f y =在某个区间内可导,如果0)(≥'x f ,则)(x f 为增函数;如果0)(≤'x f ,则)(x f 为减函数。

如:已知函数3()f x x ax =-在区间[1,)+∞上是增函数,则a 的取值范围是____(答:(,3]-∞);注意:(1) 0)(>'x f 能推出)(x f 为增函数,但反之不一定。

如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

(2)函数单调性与奇偶性的逆用了吗?(①比较大小;②解不等式;③求参数范围).如已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,求实数m 的取值范围。

(答:1223m -<<)(3)复合函数由同增异减判定;(4)图像判定;(5)作用:比大小,解证不等式。

如函数()212log 2y x x =-+的单调递增区间是________(答:(1,2))。

11、奇偶性:(1)定义:f(x)是偶函数⇔f(-x)=f(x)=f(|x|);f(x)是奇函数⇔f(-x)=-f(x);定义域含零的奇函数过原点(f(0)=0);定义域关于原点对称是为奇函数或偶函数的必要而不充分的条件。

(2)奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.(3)多项式函数110()n n n n P x a x a x a --=+++的奇偶性:()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零;()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零。

12、周期性:(Ⅰ)类比“三角函数图像”得:(1)若()y f x =图像有两条对称轴,()x a x b a b ==≠,则()y f x =必是周期函数,且一周期为2||T a b =-;(2)若()y f x =图像有两个对称中心(,0),(,0)()A a B b a b ≠,则()y f x =是周期函数,且一周期为2||T a b =-;(3)如果函数()y f x =的图像有一个对称中心(,0)A a 和一条对称轴()x b a b =≠,则函数()y f x =必是周期函数,且一周期为4||T a b =-;如:已知定义在R 上的函数()f x 是以2为周期的奇函数,则方程()0f x =在[2,2]-上至少有__________个实数根(答:5)。

(Ⅱ)由周期函数的定义“函数()f x 满足()()x a f x f +=(0)a >,则()f x 是周期为a 的周期函数”得:(1)函数()f x 满足()()x a f x f +=-,则()f x 是周期为2a 的周期函数;(2)若)(1)(x f a x f =+(0≠a ,0)(≠x f )恒成立,则2T a =;(3)若)(1)(x f a x f -=+(0≠a ,0)(≠x f )恒成立,则2T a =。

(4)21)()(2x f x f -+=)(a x f +()(x f []1,0∈)恒成立,则2T a =。

(5))(11)(a x f x f +-=(0)(≠x f )恒成立,则a T 3=。

(6))()()(a x f x f a x f +-=+,则a T 6=。

(7))(21x x f +=)()(1)()(2121x f x f x f x f ∙-+,且1)(=a f (1)()(21≠∙x f x f ,<021x x -a 2<),则a T 4=。

如:①设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则)5.47(f 等于_____(答:5.0-);②定义在R 上的偶函数()f x 满足(2)()f x f x +=,且在[3,2]--上是减函数,若,αβ是锐角三角形的两个内角,则(sin ),(cos )f f αβ的大小关系为_________(答:(sin )(cos )f f αβ>);13、常见的图象变换:(1)函数()a x f y +=的图象是把函数()x f y =的图象沿x 轴向左)0(>a 或向右)0(<a 平移a 个单位得到的。

相关文档
最新文档