高考数学考前100个温馨提醒
高考前数学100个提醒3

高考前数学100个提醒3三、数列、 26、a n ={),2()1(*11N n n S S n S n n ∈≥-=- 注意验证a 1是否包含在a n 的公式中。
27、)*,2(2)(111中项常数}等差{N n n a a a d a a a n n n n n n ∈≥+=⇔=-⇔-+-?,,,);0()(2=+=⇔+=⇔B A b a Bn Ans b an a n n 的二次常数项为一次2n n -1n 1n 1n a a a (n 2,n N )a }q ();a 0nn a a +-⎧=⋅≥∈⇔⇔=⎨≠⎩{等比定 ?m ;a a 11n =⋅-=⇔⋅=⇔-nn n q m m s q如若{}n a 是等比数列,且3n n S r =+,则r = (答:-1)28、首项正的递减(或首项负的递增)等差数列前n 项和最大(或最小)问题,转化为解不等式)0(0011⎩⎨⎧≥≤⎩⎨⎧≤≥++n n n n a a a a 或,或用二次函数处理;(等比前n 项积?),由此你能求一般数列中的最大或最小项吗?如(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。
(答:前13项和最大,最大值为169);(2)若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是(答:4006)29、等差数列中a n =a 1+(n-1)d;S n =dn n na 2)1(1-+=dn n na n2)1(--=2)(1n a a n +等比数列中a n = a 1 q n-1;当q=1,S n =na 1 当q≠1,S n =qq a n--1)1(1=qq a a n --1130.常用性质:等差数列中, a n =a m + (n -m)d, nm a a d n m --=;当m+n=p+q,a m +a n =a p +a q ;等比数列中,a n =a m q n-m; 当m+n=p+q ,a m a n =a p a q ;如(1)在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___(答:512);(2)各项均为正数的等比数列{}n a 中,若569a a ⋅=,则313231l o g l o g l o g a a a +++= (答:10)。
数学高考考前100个问题提醒

数学高考考前100个问题提醒临近高考,熟熟悉一下这些解题小结论,防止解题易误点的产生,对提升高考数学成绩将会起到较大的作用 对照检查一下自己复习掌握的情况,便于及时查漏补缺啊 1 集合 A 、B ,∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;求集合的子集时是否忘记∅ 例如:()()02222<-+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了a =2的情况了吗? 2 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n 3 B C A C B A C I I I ⋂=⋃)(, B C A C B A C I I I ⋃=⋂)( “p 且q ”的否定是“非p 或非q ”,“p 或q ”的否定是“非p 且非q ” 在反证法中的相关“反设”你清楚吗?4 “≥”的涵义你清楚吗?不等式(0x -≥的解集是{}|3x x ≥对吗?5 若A ⇔B ,则求B 成立的一个充分不必要条件C ,只需C ØA ;求B 成立的一个必要不充分条件C ,只需A ØC6 从集合A 到集合B 的映射,只要求A 中的每一个元素在B 中有唯一的象即可 在排列组合中的映射计数问题,一定要找到每一个元素的象,分步完成构建第一个映射,按分步计数原理计数7 函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+,那么函数()x f y =的图象关于直线a x =对称⇔()y f x a =+是偶函数②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称;函数()x f y =与函数()x f y --=的图象关于坐标原点对称③函数()x a f y +=与函数()x a f y -=的图象关于直线0=x 对称④若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数.⑤若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数.⑥函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;⑦函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;⑧函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;⑨函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的⑩函数()ax f y =)0(>a 的图象是把函数()x f y =的图象沿x 轴伸缩为原来的a1得到的; ⑾函数()x af y =)0(>a 的图象是把函数()x f y =的图象沿y 轴伸缩为原来的a 倍得到的 8 求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 9 函数与其反函数之间的一个有用的结论:()().b f 1a b a f =⇔=-原函数与反函数图象的交点不全在y=x 上;()1y f x a -=+只能理解为()x f y 1-=在x+a 处的函数值 原函数()x f y =在区间[]a a ,-上单调递增,则一定存在反函数,且反函数()x f y 1-=也单调递增;但一个函数存在反函数,此函数不一定单调. 11 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗?若f(x) 偶函数,则f(x)=f(|x|),这一性质在避免相关分类讨论中有非常重要作用,你知道吗?12.根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负 )。
高三数学教师对学生考前的提醒

高三数学教师对学生考前的提醒..一、应试策略篇——高考临场技巧助你每科轻松增10分高考数学应试技巧如何在有限的时间内充分发挥自己的水平甚至超水平发挥呢?除了平时知识的积累,心理素质等因素之外,一些最基本的应试技巧也是不能不知道的。
通览全卷,沉着应战刚拿到试卷,一般心情比较紧张,不要匆匆忙忙提笔就写,建议拿到卷子后通览全卷,看看考卷一共几页,有多少道题,了解试卷结构,了解试卷的分量,试题的类型,所考的内容,试题的难易和各题的比分等,做到心中有数,沉着应战。
通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
缜密审题,扣题做答“基础题得分和丢分都很容易。
”越容易的题越要仔细。
“既然得不到难题分,一定要保证简单题不错。
” “弃卒保帅”。
每做一道题,特别是做解答题。
首先要全面、正确地理解题意,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。
弄清题目要求和解答范围,抓住重点,然后认真作答,这样才不会答非所问。
先易后难,从容解答各科试卷每种题型中所列的试题,基本上是从易到难排列的。
在规定的时间之内做好答案,一般来说,解题要按先易后难,从简到繁的顺序进行。
如果避易就难,啃住难题不放,只会费时甚至会影响对易题的做答,还可能造成紧张的心理状态,打乱思路和步骤。
解题时可先绕过难题,先做好有保证的题,才能尽量多得分。
坚定信心,力克难题所谓难题,一般指综合性较强,变化较多的试题。
但是不管它怎么难,都不会超出中学所学范围,总是渗透着所学的概念、原理、定理、定律、公式等基本知识。
所以,应当有攻克难题的信心,决不能在难题面前后退。
解答难题,可采用两种方法:一是联想法,即通过课本有关知识和过去有关练习的联想,进行推导,触类旁通;二是试探法,即运用多种思考方法,从不同的角度试解,打开思路,找出正确答案。
一丝不苟,每分必争高考成绩是录取的重要依据,相差一分就有可能失去录取资格。
因此,考生必须一丝不苟,认真答题,每题必答、每分必争,力争得满分。
高考数学考前指导 高考临近给考生的100个温馨提醒试题

2021年高考数学考前指导 高考临近给考生的100个温馨提醒亲爱的高三同学,当你即将迈进考场时,对于以下问题,你是否有清醒的认识?你的数学教师提醒你:1.集合中的元素具有无序性和互异性。
如集合{},2a 隐含条件2a ≠,集合{}|(1)()0x x x a --=不能直接化成{}1,a 。
2.研究集合问题,一定要抓住集合中的代表元素,如:{x y x lg |=}与{x y y lg |=}及{x y y x lg |),(=}三集合并不表示同一集合;再如:设A={直线},B={圆},问A ∩B 中元素有几个?能答复是一个,两个或者没有吗?3 .进展集合的交、并、补运算时,不要忘了集合本身和空集的特殊情况,不要忘了借助于数轴和韦恩图进展求解;假设A B=φ,那么说明集合A 和集合B 没公一共元素,你注意到两种极端情况了吗?A φ=或者B φ=;对于含有n 个元素的有限集合M ,其子集、真子集、和非空真子集的个数分别是2n 、21n -和22n -,你知道吗?A 是B 的子集⇔A ∪B=B ⇔A ∩B=A ⇔A B A B ⊆⇔⊂,假设A B ⊆,你可要注意A φ=的情况。
4.你会用补集的思想解决有关问题吗?C U 〔A ∪B 〕=〔C U A 〕∩〔C U B 〕,C U 〔A ∩B 〕=〔C U A 〕∪〔C U B 〕,这种思想在计算概率时也经常用到:()()P A B P A B =+,()()P A B P A B +=5. 求不等式〔方程〕的解集,或者求定义域时,你按要求写成集合形式了吗?6.研究一个函数的图象或者性质时,你首先考虑函数的定义域了吗?7 .求一个函数的解析式或者一个函数的反函数时,你注明了该函数的定义域了吗?⑴求反函数的步骤掌握了吗?〔①先求函数的定义域和值域;②反解x 1()f y -=,③互换y x ,,得1()y f x -=,一定要注明定义域;原函数与反函数有两个“穿插关系〞:自变量与因变量、定义域与值域原函数)(x f y =在区间[a a ,-]上单调递增,那么一定存在反函数,且反函数也是单调递增;但一个函数存在反函数,此函数不一定单调,这样的函数是什么?如分段函数1(0)()(0)x x f x x x +≥⎧=⎨<⎩注意1()()f a b f b a -=⇔=,1[()]f f x x -=,1[()]f f x x -=, 但11[()][()]f f x f f x --=不一定成立,为什么?⑵ 函数(1)y f x =+的反函数是1()1y f x -=-,而不是1(1)y f x -=+8 .求一个函数的反函数时,你是按照“先求反函数,后求值〞这条原那么解题的吗?例如:11)(+-=x x x f ,求)1(1x f -;再如:函数(1)y f x =+,求1(1)f x -+,一般是先求出()f x ,后求1()f x -,再用代入法求出1(1)f x -+。
高考之前--数学考前3提醒100

7、小范围推大范围.
ab c , ④ f a x f b x c f x 有对称中心 2 2 三、三角比与三角函数
1、简单三角方程注意三角对称和周期导致的多解. 2、锐角三角形充要条件是任意的两个内角和大于直角.
3、三角形中的最小内角的范围是 0, ,最大内角的范围是 , . 3 3
sin cos ,sin cos ,sin cos 三个式子的正负,开方时往往只取其一.
10、 f x A sin x ( A 0, 0 )为奇函数的充要条件 k k Z ;为偶函数的充 要条件是 k
a1 an q 求和,可避免对项数讨论. 1 q
9、使用累加法、累乘法、退位相减法都必须验证 n 1 的情况,数列通项公式的最终结果要 注意是否分段. 10、题中出现 1 ,一般做奇偶分类讨论,注意最小的奇数与最小的偶数.
n
11、关注分段求和问题与周期数列问题. 六、矩阵与行列式 1、行列式在解二元(三元)一次方程组中的应用,考前关注下,有唯一解,无解,无穷多 解的充要条件. 2、区别余子式,代数余子式,关注增广矩阵在解方程组中的应用. 3、注意矩阵的乘法,加法与减法运算的法则. 七、圆锥曲线 1、看到以 AB 为直径的圆过 M 点,锁定 AM BM ,再利用向量解决,实施坐标运算. 2、 直线过定点问题, 本质上是构造出直线系方程, 多数条件下先设直线方程为 y kx b , 然后找出 b f k ,最后结合直线系方程,得出定点坐标. 3、动圆圆心求轨迹常结合圆锥曲线定义求解,无需设坐标求方程. 4、注意直线点斜式的局限性,解题时要注意补充讨论. 5、直线方程注意两种设法(斜率存在: y kx b ,斜率不存在且不为 0: x ny b ) 6、圆锥曲线问题中,若弦过焦点且涉及到线段和与差的最值,往往可用定义转化(椭圆双 曲线是到一个焦点的距离转化为到另外一个焦点的距离,抛物线是到焦点的距离与到准 线的距离相互转化) ,定义解决不了的,考虑二次函数解决. 7、椭圆、双曲线中焦点三角形的面积公式要熟记(一个是正切,一个是余切,公式中的角 是焦点对短轴张角的一半). 8、涉及到直线与圆锥曲线有两个不同交点时,圆锥曲线与直线关系联立,一定先算△ 0 .
高考数学100个提醒!推荐(DOC)

高考数学100个提醒――知识、方法与例题一、集合与逻辑1、区分集合中元素的形式:如:1x|y=lgx1—函数的定义域;「y|y = lgx?—函数的值域;1(x,y)|y = lgx?—函数图象上的点集,女口( 1)设集合M ={x| y =x+3},集合N= {y| y =x? +1,x壬M },则M 门N =___ (答:[1,2);(2)设集合M 二{a|a 二(1,2)…(3,4),,R},N ={a|a =(2,3) "(4,5),“ R},则M D N=________________ (答: {(—2,—2)})2、条件为A B,在讨论的时候不要遗忘了Ay•的情况女口:A 二{x|ax2-2x-1 =0},如果A R 丄 '求a 的取值。
(答:a< 0)3、A B ={x|x 三A且x 三B} ; A B 二{x|x 三 A 或x 三B}C U A={x|x € U 但x - A}; A 二B 二x • A则x • B ;真子集怎定义?含n个元素的集合的子集个数为2n,真子集个数为2n- 1;如满足{1, 2$M §{1, 2,3,集合M有______ 个。
(答:7)4、C U(A n B)=C U A U C U B; C U(A U B)=C U A A C U B;card(A U B)=?5、A n B=A A U B=B= A 二B二C U B二C U Au A n C U B= _ C U A U B=U6、补集思想常运用于解决否定型或正面较复杂的有关问题。
2 2如已知函数f(x)=4x -2(p-2)x-2p - p 1在区间[-1,1]上至少存在一个实3数C,使f(c) • 0,求实数p的取值范围。
(答:(-3,—))27、原命题:p=q;逆命题:q= p;否命题:—p——q ;逆否命题:—q= -p ;互为逆否的两个命题是等价的.如:“ si n t £si n 一:”是“、:.-… ”的 __ 条件。
高考前数学100个提醒8

高考前数学100个提醒8八、解几α。
πOK70.倾斜角α∈[0,π],α=900斜率不存在;斜率k=tanα=71.直线方程:点斜式 y-y1=k(x-x1);斜截式y=kx+b; 一般式:Ax+By+C=0两点式:;截距式:(a≠0;b≠0);求直线方程时要防止由于零截距和无斜率造成丢解,直线Ax+By+C=0的方向向量为=(A,-B)72.两直线平行和垂直①若斜率存在l1:y=k1x+b1,l2:y=k2x+b2则l1∥l2k1∥k2,b1≠b2;l1⊥l2k1k2=-1②若l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1⊥l2A1A2+B1B2=0;③若A1、A2、B1、B2都不为零l1∥l2;④l1∥l2则化为同x、y系数后距离d=73.l1到l2的角tanθ=;夹角tanθ=||;点线距d=;74.圆:标准方程(x-a)2+(y-b)2=r2;一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)参数方程:;直径式方程(x-x1)(x-x2)+(y-y1)(y-y2)=075.若(x0-a)2+(y0-b)2<r2(=r2,>r2),则 P(x0,y0)在圆(x-a)2+(y-b)2=r2内(上、外)76.直线与圆关系,常化为线心距与半径关系,如:用垂径定理,构造Rt△解决弦长问题,又:d>r相离;d=r相切;d<r相交.77.圆与圆关系,常化为圆心距与两圆半径间关系.设圆心距为d,两圆半径分别为r,R,则d>r+R两圆相离;d=r+R两圆相外切;|R-r|<d<r+R两圆相交;d=|R-r|两圆相内切;d<|R-r|两圆内含;d=0,同心圆。
78.把两圆x2+y2+D1x+E1y+C1=0与x2+y2+D2x+E2y+C2=0方程相减即得相交弦所在直线方程:(D1-D2)x+(E1-E2)y+(C1-C2)=0;推广:椭圆、双曲线、抛物线?过曲线f1(x,y)=0与曲线f2(x,y)=0交点的曲线系方程为:f1(x,y)+λf2(x,y)=079.圆上动点到某条直线(或某点)的距离的最大、最小值的求法(过圆心)80.椭圆①方程(a>b>0);参数方程②定义:=e<1;|PF1|+|PF2|=2a>2c③e=,a2=b2+c2④长轴长为2a,短轴长为2b⑤焦半径左PF1=a+ex,右PF2=a-ex;左焦点弦,右焦点弦⑥准线x=、通径(最短焦点弦),焦准距p=⑦=,当P为短轴端点时∠PF1F2最大,近地a-c远地a+c; 81.双曲线①方程(a,b>0)②定义:=e>1;||PF1|-|PF2||=2a<2c③e=,c2=a2+b2④四点坐标?x,y范围?实虚轴、渐进线交点为中心⑤焦半径、焦点弦用第二定义推(注意左右支及左右焦点不同);到焦点距离常化为到准线距离⑥准线x=、通径(最短焦点弦),焦准距p=⑦=⑧渐进线或;焦点到渐进线距离为b; 13.抛物线①方程y2=2px②定义:|PF|=d准③顶点为焦点到准线垂线段中点;x,y范围?轴?焦点F(,0),准线x=-,④焦半径;焦点弦=x1+x2+p;y1y2=-p2,x1x2=其中A(x1,y1)、B(x2,y2)⑤通径2p,焦准距p;105. B>0,Ax+By+C>0表示直线斜上侧区域;Ax+By+C<0表示直线斜下侧区域;A>0,Ax+By+C>0表示直线斜右侧区域;Ax+By+C<0表示直线斜左侧区域;求最优解注意①目标函数值≠截距②目标函数斜率与区域边界斜率的关系.82.过圆x2+y2=r2上点P(x0,y0)的切线为:x0x+y0y=r2;过圆x2+y2=r2外点P(x0,y0)作切线后切点弦方程:x0x+y0y=r2;过圆外点作圆切线有两条.若只求出一条,则另一条垂直x轴.83.对称①点(a,b)关于x轴、y轴、原点、直线y=x、y=-x、y=x+m、y=-x+m的对称点分别是(a,-b),(-a,b),(-a,-b),(b,a),(-b,-a),(b-m、a+m)、(-b+m、-a+m)②点(a,b)关于直线Ax+By+C=0对称点用斜率互为负倒数和中点在轴上解③曲线f(x,y)=0关于点(a,b)对称曲线为f(2a-x,2b-y)=0;关于y=x对称曲线为f(y,x)=0;关于轴x=a对称曲线方程为f(2a-x,y)=0;关于轴y=a对称曲线方程为:f(x,2a-y)=0;可用于折叠(反射)问题.84.相交弦问题①用直线和圆锥曲线方程消元得二次方程后,注意用判别式、韦达定理、弦长公式;注意二次项系数为0的讨论;注意对参数分类讨论和数形结合、设而不求思想的运用;注意焦点弦可用焦半径公式,其它用弦长公式②涉及弦中点与斜率问题常用“点差法”.如: 曲线(a,b>0)上A(x1,y1)、B(x2,y2)中点为M(x0,y0),则K AB K OM=;对抛物线y2=2px(p≠0)有K AB=85.轨迹方程:直接法(建系、设点、列式、化简、定范围)、定义法、几何法、代入法(动点P(x,y)依赖于动点Q(x1,y1)而变化,Q(x1,y1)在已知曲线上,用x、y表示x1、y1,再将x1、y1代入已知曲线即得所求方程)、参数法、交轨法等.86.解题注意:①考虑圆锥曲线焦点位置,抛物线还应注意开口方向,以避免错误②求圆锥曲线方程常用待定系数法、定义法、轨迹法③焦点、准线有关问题常用圆锥曲线定义来简化运算或证明过程④运用假设技巧以简化计算.如:中心在原点,坐标轴为对称轴的椭圆(双曲线)方程可设为Ax2+Bx2=1;共渐进线的双曲线标准方程可设为为参数,≠0);抛物线y2=2px上点可设为(,y0);直线的另一种假设为x=my+a;⑤解焦点三角形常用正余弦定理及圆锥曲线定义.87、解析几何与向量综合时可能出现的向量内容:(1) 给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知与的中点三点共线;(5) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.(6) 给出,等于已知是的定比分点,为定比,即(7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角,(8)给出,等于已知是的平分线/(9)在平行四边形中,给出,等于已知是菱形;(10) 在平行四边形中,给出,等于已知是矩形;(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);(12) 在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);(14)在中,给出等于已知通过的内心;(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);(16) 在中,给出,等于已知是中边的中线;。
高考数学考前提醒(考前的那天晚上务必看看)

数学考前提醒1.在应用条件A B ⊆易忽略A 是空集的情况.2.求解与函数、不等式有关的问题注意定义域优先的原则.(求值域、单调区间、判断奇偶性、解不等式等等)3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.4.注意()f x 0y=[]有意义,必须()0f x ≠5.用判别式判定解题时,易忽略讨论二次项的系数是否为0.尤其是直线与圆锥曲线相交时更易忽略.6.等式两边约去一个式子时,注意约去的式子不能为零.7.求反函数时,易忽略求反函数的定义域.8.求函数单调性时,易错误地在多个单调区间之间添加符号“ ” 和“或”;单调区间不能用集合或不等式表示.9.解关于x 的不等式20ax bx c ++>时,不要忘记对0a =是否进行讨论,注意0a <时,不等号要改变方向。
10.恒成立问题,求字母a 的范围,特别注意a 能否取到端点的值。
11.在分类讨论时,分类要做到“不重不漏、层次分明”,并进行总结.12.用等比数列求和公式求和时,易忽略公比q=1的情况13.由11n n n S S a S --≥⎧=⎨⎩ (n 2) (n=1),易忽略n =1的情况14.等比数列{}n a 中,11350,0,,,...a q a a a ≠=且同号。
15.用均值定理求最值(或值域)时,易忽略验证 “一正二定三等”这一条件.16.用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况。
22.用到角公式时,易将两条直线的斜率的顺序弄颠倒.17.判断直线与双曲线位置时,有时可借助直线与渐近线的位置关系判断18.正多面体有5种(正四面体,正方体,正八面体,正十二面体,正二十面体)19.分清四面体,四棱锥,分清直四棱柱,正四棱柱,直平行六面体,长方体20.正三棱锥对棱相互垂直21.复数a+bi (a ,b R ∈)的虚部为b22.在解答题中,如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明.如双勾函数的但调性23.各种角的范围:(1)两个向量的夹角 ︒≤≤︒1800α(2)直线的倾斜角︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α 的角到21l l ︒≤<︒1800α(3) 两条异面线所成的角 ︒≤<︒900α 直线与平面所成的角 ︒≤≤︒900α 斜线与平面所成的角 ︒<<︒900α 二面角 ︒≤≤︒1800α24.解选择题时,要会运用特例排除法及数形结合的方法25.注意重要数学方法的运用:(1)特殊归纳一般(2)换元法(3)数形结合(4)含字母的考虑是否分类讨论。